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Abstract: Amodal segmentation is a new direction of instance segmentation while considering the
segmentation of the visible and occluded parts of the instance. The existing state-of-the-art method
uses multi-task branches to predict the amodal part and the visible part separately and subtract the
visible part from the amodal part to obtain the occluded part. However, the amodal part contains
visible information. Therefore, the separated prediction method will generate duplicate information.
Different from this method, we propose a method of amodal segmentation based on the idea of the
jigsaw. The method uses multi-task branches to predict the two naturally decoupled parts of visible
and occluded, which is like getting two matching jigsaw pieces. Then put the two jigsaw pieces
together to get the amodal part. This makes each branch focus on the modeling of the object. And we
believe that there are certain rules in the occlusion relationship in the real world. This is a kind of
occlusion context information. This jigsaw method can better model the occlusion relationship and
use the occlusion context information, which is important for amodal segmentation. Experiments
on two widely used amodally annotated datasets prove that our method exceeds existing state-of-
the-art methods. In particular, on the amodal mask metric, our method outperforms the baseline
by 5 percentage points on the COCOA cls dataset and 2 percentage points on the KINS dataset. The
source code of this work will be made public soon.

Keywords: computer vision; amodal segmentation; occlusion context

1. Introduction

When you are walking on the street and about to turn at an intersection, you see a
bicycle wheel suddenly appearing in front of you, and you know that there is a cyclist
behind the wall at the moment, although you don’t see him. Then you stay in place,
waiting for the cyclist to pass first. People often witness such scenes in their lives. But this
is particularly difficult for robots. Because people have a powerful visual system, they can
perceive the overall target object only through some local areas of the target object. In order
for the robot to also have the overall visual ability to perceive the object through the local,
visible information of the object (shown as Figure 1), the task of amodal segmentation [1]
was proposed.

Amodal segmentation is a complex high-level perception task. It needs to segment
both the visible part of the target object and the occluded part of the target object. The
amodal mask can be considered to be composed of the visible mask and occlusion mask
of the instance object. From the perspective of amodal segmentation task, the current
research can be roughly divided into two categories. The first category thinks that amodal
segmentation is a single task. These models obtain amodal perception ability by learning
the amodal mask that people have annotated on the dataset and directly infers the target’s
amodal mask (ASN [2], SLN [3]). Mask R-CNN [4] is often trained with amodally annotated
dataset as the baseline. ASN [2] adds whether there is an occlusion in the branch prediction
area and uses the judgment information of whether there is occlusion to assist amodal
segmentation. SLN [3] uses a new representation of a semantics-aware distance map
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instead of the mask as the prediction target to segment the amodal mask of the instance.
The second category divides amodal segmentation into two parts(amodal part and visible
part). For example, VRS&SP [5] first segment the visible part of the target object and then
add shape prior information to infer the amodal mask. ORCNN [6] predicts the amodal
part and the visible part separately and subtracts the two to get the occluded part.

1

Figure 1. Humans have powerful amodal perception capabilities, just like when seeing the occluded
scene in the picture on the left: a cat lying prone in front of the laptop. You can still perceive the
complete shape of the laptop, as shown on the right.

Amodal segmentation is a complex task. Dividing it into two parts will help reduce
the granularity of the model and improve the prediction effect of each part. In this way,
the second category of methods is dominant. When the amodal segmentation is divided
into two parts to complete, how to decompose is the key to determining the effect of the
model. There is no intersection between the visible mask and the occlusion mask of the
same instance, so the predictions of the two parts in the multi-task branch are decoupled,
which will make each branch focus on the modeling of the object. What’s more, we believe
that there are certain rules in the occlusion relationship between the objects in the real
world. For example, in the occlusion relationship formed by the dinner plate and bread,
it is often that the bread obscures the dinner plate. This is a kind of occlusion context
information. The exploration of this context can help the amodal segmentation. These
motivate us to propose a multi-task branch and combine it with the occlusion relationship
modeling amodal segmentation method. The method firstly uses multi-task branches to
first obtain two pieces of the instance (visible mask and occlusion mask). And then, we
model the occlusion relationship. Finally, we utilize the modeled occlusion relationship
and stitch the two parts to get the complete jigsaw of the instance (amodal mask).

Our contributions could be summarized as the following aspects:

• We propose multi-task branch to obtain two pieces of instance (visible part and
occlusion part). The proposed method stitches these parts to get the complete jigsaw
of instances, which makes each branch focus on modeling of objects.

• We model the occlusion relationship utilizing the occlusion context information of the
visible part and occlusion part, and we apply the occlusion relationship to complete
the jigsaw of the instance, which helps the amodal segmentation greatly.

• The experimental results on two widely used datasets (KINS and COCOA cls) show
our state-of-the-art performance, proving the effectiveness of our method.

2. Related Work
2.1. Instance Segmentation

As one of the four basic tasks of computer vision (classification, object detection, se-
mantic segmentation, and instance segmentation), predecessors have done a lot of research.
Among these works [7–11], the most representative one is Mask R-CNN [4] based on
the Faster R-CNN [12] object detection framework, which sends the features extracted
by the Backbone into The RPN generates proposals and uses RoIAlign feature pooling
to obtain fixed-sized features of each proposal. Because of the fixed-sized features, the
accuracy of segmentation is improved. PANet [13] makes the information path between
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the bottom-up and the top-level features of the deep network shorter by using bottom-up
path augmentation. Mask scoring RCNN [14] adds an additional mask head branch to
Mask R-CNN to learn MaskIoU consistent Mask score. The combination of Mask R-CNN
and MaskIoU Head solves the problem of mismatch between the confidence score and
localization accuracy of predicted masks. Ref. [15] uses multi-level feature networks in
instance segmentation and proposes an attention-based feature pyramid module, effec-
tively upgrades the performance of the instance segmentation method. These methods
have reached state-of-the-art in the field of instance segmentation.

2.2. Amodal Instance Segmentation

The task of amodal segmentation was first proposed by [1]. They use the modally
annotated data for object overlap data enhancement to generate amodal data, and then
used it to train and validate their methods. They proposed the first method for amodal
segmentation, which expands the bounding box of the instance and regenerates the heat
map. With the release of some amodal annotation datasets, the research process of amodal
segmentation has been accelerated. Ref. [16] uses an amodal annotated dataset to train
ShapeMask [17], gets AmodalMask as the baseline. ORCNN [6] can directly predict the
amodal mask and visible mask of the instance by adding the mask branch of Mask R-
CNN [4]. The former subtracts the latter to get the occluded part. ASN [2] adds a branch
to determine whether the instance is occluded and performs multi-level encoding of the
determination result with the RoI feature map before predicting the amodal mask and
then performs amodal segmentation. SLN [3] introduces a semantic-aware distance map
instead of the mask as the prediction target to segment the amodal mask of the instance.
VRS&SP [5] proposes to simulate human amodal perception, first roughly estimating the
visible mask and amodal mask, and then use the shape prior to refining the amodal mask.

3. Methods
3.1. The Architecture of ARCNN

On the basis of Faster-RCNN [12], Mask-RCNN [4] adds the mask head to generate
the mask of the object, and modifies RoI pooling to RoI Align to deal with the problem
that the mask is not aligned with the object in the original image. ORCNN [6] can directly
predict the amodal mask and visible mask of the object by adding a mask head on the basis
of Mask R-CNN [4].

Our Amodal R-CNN (ARCNN) is shown in Figure 2. Inspired by Occlusion R-CNN
(ORCNN) [6], we extend Mask R-CNN (MRCNN) [4] with two additional heads to predict
amodal masks (amodal mask head) and the occlusion masks (occlusion mask head). As for
the original mask head of MRCNN, it’s used to predict visible masks(visible mask head).
Different from ORCNN, our ARCNN predicts the amodal mask by flattening the visible
mask and occlusion mask

FPNInput

Backbone

(ResNet50)
RPN RoIAlign Concat

Amodal mask head

Visible mask head

Occlusion mask head

Conv 3×3

Deconv 2×2

Conv 1×1

Figure 2. The architecture of ARCNN.
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Firstly, image features are extracted by the ResNet50 [18]. In order to take into account
the effect of object segmentation of different sizes, we perform multi-scale fusion of features.
After these features are sent to FPN [19] for multi-scale fusion, they are input into the RPN
to generate proposals. RPN is a network used to generate an area and determine whether
there is a possible object in it. For areas where there may be a object, RPN will output it
as a proposal. The proposals then are sent to RoIAlign to get RoIs as the input of visible
mask head and occlusion mask head. The outputs of these two mask heads correspond
to the visible and occlusion masks, respectively. Finally, the output of visible mask head
and occlusion mask head are concated, then sent to the amodal mask head to obtain the
amodal mask. Among them, in order to make the generated proposals can include the
visible mask and occlusion mask of the instance, the RPN is trained with the bounding box
of the amodal instance as the ground truth.

The visible mask head and occlusion mask head have the same structure, that is,
four cascaded 3 × 3 convolutional layers, a 2 × 2 deconvolutional layer with stride 2, a
1 × 1 convolutional layer. These convolutional layers are used to predict the visible mask
and the occlusion mask by using features from RoIs. The amodal mask head is a 1 × 1
convolutional layer, which is used to flatten the visible mask and the occlusion mask.

We propose the method to concat the visible mask and occlusion mask of the instance
in a jigsaw-like operation so that we can decompose the prediction of the amodal mask into
the prediction of the visible mask and the occlusion mask and make each branch focus on
the modeling of the object. So as to better cope with the challenges brought by the complex
task of amodal segmentation.

3.2. Modeling of Occlusion Relationship

The reason for the occlusion in the image is the overlap of two objects. And in the
real world, this kind of overlap often contains certain rules. For example, in the occlusion
relationship formed by the dinner plate and bread, it is often that the bread obscures the
dinner plate. This is a kind of occlusion context information. Therefore, we use a 1 × 1
convolutional layer (amodal mask head) to model the relationship between the masks,
thereby improving the model’s ability to obtain occlusion context information during the
amodal segmentation process. The modeling process is shown in Figure 3. The modeling
the relationship is as follows:

⊕ Conv1×1

2C

H

W

Amodal Mask

C

H

W

Result

H

W

Visible Mask

Occlusion Mask

C

H

W

C

H

W

Figure 3. Visible Mask and Occlusion Mask are the output from the visible and occluded mask
branches, respectively. The number of channels of the tensor C is the number of categories of
instances in the dataset, and W and H are tensors, respectively, Width and height (in this paper, they
are both 28). Amodal Mask is the mask predicted by the category of all instances in the dataset.
Finally, according to the result of the classification, the mask of the corresponding class is selected as
the output result.
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AM(:, :, i) =
n

∑
j=1

[VW(i : j)VM(:, :, j) + OW(i : j)OM(:, :, j)] (1)

The mask branch predicts each categorie’s mask for the input ROI feature. It needs the
classification branch to tell which category’s mask is the result. Then we use this category’s
mask as the final output result. We assume i-th category is the classification’s result. We
denote VM, OM and AM as Visible, Occlusion and Amodal Mask in Figure 3. AM(:, :, i)
(Result in Figure 3) is the corresponding i-th category’s mask in the Amodal Mask. The n is
the number of instance category owned by the dataset. VM(:, :, j), OM(:, :, j) are respectively
the visible mask and the occluded mask of the j-th category output by the mask branch.
VW(i : j), OW(i : j) are the weights learned by the 1×1 convolutional layer that represents
the relationship between the visible and occluded masks of the i-th category and the j-th
category.

Due to the modeling of the occlusion relationship, the model can make full use of the
occlusion context information.

3.3. Loss Function

The final prediction output of our model includes the bounding box, category, amodal
mask, visible mask, and occlusion mask of the instance. These five parts are interrelated,
and any part will affect the accuracy of the model. In order to coordinate the model as a
whole, we assign the same weight to these five parts of loss.

We follow the settings in [6], Lbox adopt standard Smooth L1 loss; Lcls adopt standard
cross entropy loss; LAM , LVM , and LOM all adopt standard binary cross entropy loss.

The above losses can be described as follows:

Lbox =
{

0.5b2 i f |b|<1
|b|−0.5 otherwise (2)

Lcls = −
n

∑
i=1

ci log c′i (3)

LM = − 1
N

N

∑
i=1

mi log m′i + (1−mi) log(1−m′i) (4)

Among them, b in Lbox refers to the difference between the real bbox and the predicted
bbox; c in Lcls refers to the real category, c′ refers to the predicted category; LM can refer to
the LAM , LVM , and LOM , where mi refers to the real mask, m′i refers to the predicted mask.

The final loss function L:

L = Lbox+Lcls+LAM+LVM+LOM (5)

4. Experiments
4.1. Datasets

Our experiments are conducted on the following two amodal annotated datasets: the
KINS dataset [2] and the COCOA cls dataset [6].

The KINS dataset is based on the KITTI dataset [20] for autonomous driving. It
consists of 7474 images in the training set and 7517 images in the validation set. The KINS
dataset has seven categories of instances. The COCOA cls dataset is based on the COCOA
dataset [16] and COCO dataset [21] about the complex everyday scenes. It consists of 2476
training images and 1223 validation images. This dataset has 80 categories of instances.

4.2. Experimental Details

We use detectron2 to build our model. All experiments are done on a GPU with a
model of GeForce GTX 1080Ti and memory of 11G.
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For a fair comparison, we chose the same hyperparameters as [5]. The main hyper-
parameters are set as follows: For the KINS dataset, batch size: 4, learning rate: 0.0025,
iteration: 48,000. For the COCOA cls dataset, batch size: 2, learning rate: 0.0005, iteration:
10,000. Model training adopts the Stochastic Gradient Descent [22] strategy. The backbone
of the model in the experiment is resnet50 [18].

4.3. Evaluation Criterion

In order to make the evaluation of the model in the amodal segmentation task have
universal significance, we choose the average precision (AP) and average recall (AR) as
metrics that are commonly used in the instance segmentation task. Among them, due to
most of the occlusion mask has a small area, the deviation of a few pixels may make a huge
difference with the ground truth IoU. Therefore, we calculate the AP of the amodal mask of
instances where the occlusion rate exceeds 15% to reflect the model’s ability to predict the
occlusion. For fair comparisons, We use the evaluation API of the COCO dataset [21].

4.4. Baselines

• ORCNN [6] adds a branch to the Mask R-CNN, and the two branches respectively pre-
dict amodal mask and visible mask. Subtract the visible mask from the amodal mask
to obtain the occlusion mask, thereby completing the task of amodal segmentation.

• VRS & SP [5] firstly estimates a coarse visible mask and a coarse amodal mask. Then
based on the coarse prediction, it infers the amodal mask by concentrating on the
visible region and utilizing the shape prior in the memory.

4.5. Experimental Results

We have completed the experiments of the method we proposed on two datasets
and the reproduction of ORCNN [6]. The experimental results of the VRS&SP model are
quoted from VRS&SP [5]. The performances of these models are shown in Tables 1 and 2.
Occluded AP infers to amodal mask AP of the instances whose occlusion rate is more than
15%. ARCNN-add is the method directly adding the visible and occluded output of the
branch.

4.5.1. Quantitative Analysis

We have carried out the following three comparisons and analyses.
ARCNN vs. ORCNN. It can be seen from the table that the evaluation indicators

of the amodal mask and the occluded mask segmented by ARCNN on the two datasets
exceed ORCNN. And for the COCOA cls dataset, ARCNN significantly surpasses ORCNN
in the performance of amodal mask and occluded mask. For the visible mask prediction,
there is only a small difference (less than 0.3) between the two indicators. This shows that
our proposed method surpasses ORCNN in the performance of amodal segmentation.

ARCNN-add vs. ORCNN. ARCNN-add is a method of directly adding the output
of the visible and occluded branches to get the amodal mask. It has a similar network
composition to ORCNN. But it has roughly the same performance as ORCNN on the
KINS dataset. On the COCO cls dataset, ARCNN-add’s indicators fully exceed ORCNN.
This shows that our jigsaw-like idea is effective in improving performance on amodal
segmentation tasks.

ARCNN vs. VRS & SP. VRS & SP is a state-of-the-art method that introduces shape
priors. It can be seen from the experimental results that, except for the occluded mask
evaluation indicators of the COCOA cls dataset, the ARCNN we proposed exceeds VRS&SP
in all indicators. This shows that our proposed method exceeds the current state-of-the-art
methods.

4.5.2. Ablation Studies

We designed the method ARCNN-add for ablation experiments. The difference be-
tween ARCNN and ARCNN-add is that ARCNN not only stitches visible and invisible
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masks based on a jigsaw-like idea but also models the occlusion relationship between
category instances. In terms of indicators, ARCNN surpasses ARCNN-add in both amodal
mask and occluded mask. In terms of visible mask-related evaluation indicators, the gap
between the two methods is very small. This shows that our proposed occlusion relation-
ship modeling, using the context information of occlusion, can improve the performance of
the model.

Table 1. The results on the KINS dataset.

Amodal Visible Occluded

Model AP AR AP AR AP

ORCNN 30.57 19.88 30.95 20.6 36.15
VRS & SP 32.08 20.9 29.88 19.88 37.4

ARCNN-add 30.2 19.75 30.89 20.61 36.27
ARCNN 32.94 20.96 30.68 20.56 38.71

Table 2. The results on the COCOA cls dataset.

Amodal Visible Occluded

Model AP AR AP AR AP

ORCNN 30.75 32.55 34.8 36.78 18.9
VRS & SP 35.41 37.11 34.58 36.42 22.17

ARCNN-add 32.26 34.06 35.46 37.25 19.32
ARCNN 36.29 37.39 35.48 36.69 20.84

4.5.3. Visualization of Amodal Results

Also, we visualized the amodal results of our method and ORCNN, and the results
are shown in Figure 4. From the comparison of the pictures, we can see that our proposed
method is more complete in the amodal mask predicting. And the ARCNN predicts that
the amodal mask is smoother than the ARCNN-add. This also proves the effectiveness of
our proposed method from another angle.

2

GT ORCNN ARCNN-add (ours) ARCNN (ours)

Figure 4. The columns from left to right are the ground-truth amodal masks, prediction of ORCNN
and Ours, respectively. The first row is the result from COCOA cls dataset. And the other row is from
KINS dataset.

4.6. Visualization of Occlusion Relationship

Interpretation of relational modeling is proved by our experiments and analysis to be
independent of categories. For better interpretation of relational modeling through better
visualization, we visualize the weights of the 1× 1 convolutional layer between the modeling
cat of the model trained under the COCOA cls dataset and other classes as Figure 5.
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Figure 5. This is the plot of the cat’s 1 × 1 conv weight. The abscissa represents the category of the
instance in the dataset. The ordinate is the weight value.

The figure contains two types of information. The first category is the correlation
between other categories of masks and cat category masks. If the weight is greater than
zero, the two are positively correlated, if the weight is less than zero, the two are negatively
correlated, and if the weight is equal to zero, the two are uncorrelated. The second category
is the relationship between masks of other categories and the occlusion order of the cat
category of masks. VW(i : j), OW(i : j) respectively represent the possibility of the cat being
occluded by the j-th category and cat occluding the j-th category. The relative size between
the two reflects the relationship between other categories and the occlusion order of cat on
the entire dataset to a certain extent. In the figure, the laptop corresponds to VW(i : j) < 0,
OW(i : j) > 0, that is, the occlusion order that appears on the entire dataset is cat occluding
the laptop. This is also can be confirmed in the process of visualizing the picture of the
dataset. In the figure, the person corresponding to VW(i : j) > OW(i : j) > 0, that is, the
relationship between person occluding cat and cat occluding person has appeared in the
entire dataset, but the former appears more often.

5. Conclusions

In this paper, we propose a method of decomposing the task of amodal segmentation
into the visible mask and occlusion mask prediction, and finally stitching the two parts to
obtain the amodal mask. The predictions of these two parts are naturally decoupled. In
this way, the division of labor of the network branches can be clearly realized so as to make
each branch focus on the modeling of the object. And we believe that there are certain rules
in the occlusion relationship in the real world, so we model it and applied the modeling
results to obtain the amodal mask. Experimental results prove that our proposed method is
simple and effective. In the case of adding only a small number of parameters, our method
on the amodal mask metric outperforms the baseline by 5 percentage points on the COCOA
cls dataset and 2 percentage points on the KINS dataset. The performance of our proposed
method on amodal segmentation task exceeds the existing state-of-the-art methods.
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