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Abstract: This work proposes an online task-scheduling method using mixed-integer programming
for a multi-tasking problem regarding a dual-arm cooking robot in a controlled environment. Given
each task’s processing time, their location in the working space, dependency, the required number
of arms, and the kinematic constraints of the dual-arm robot, the proposed optimization algorithm
can produce a feasible solution to scheduling the cooking order for each task and for each associated
arms so that the total cooking time and the total moving distance for each arm are minimized. We
use a subproblem optimization strategy in which the number of tasks to be planned is divided into
several groups instead of planning all tasks at the same time. By doing so, the planning time can be
significantly decreased, making the algorithm practical for online implementation. The feasibility of
our optimization method and the effectiveness of the subproblem optimization strategy were verified
through simulated experiments consisting of 30 to 120 tasks. The results showed that our strategy is
advantageous in terms of computation time and makespan for large problems.

Keywords: mixed integer programming; cooking robot; dual-arm robot; task planning; task scheduling

1. Introduction

Currently, autonomous robotic systems are used in various processes in manufacturing.
In the food industry, robotic systems are mainly used for food processing and packaging in
mass-production plants [1], while cooking and meal preparation at home or in restaurants
is one of the least automated areas. In restaurants that offer a variety of choices on their
menu, efficient job assignments are critical to serving orders on time as task scheduling
greatly affects efficiency [2].

Attempts have been made to automate cooking tasks using robots. Cooking motions,
such as cutting and peeling vegetables [3], mixing and chopping [4], and rocking and
flipping of pans [5], have been studied using robots. Another research [6] proposes the
collaboration of two robots to cook, but is limited to making a single type of dish. In
general, to make a recipe executable by a robot, the recipe has to be decomposed into
sub-tasks. In the case of simple recipes, the order of operation can be specified by breaking
down a written recipe into keywords, and the robot could cook according to the recipes [4].
However, for more complicated recipes, such as those with verbose descriptions, including
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comments from recipe creators [7], more sophisticated solutions are needed. Furthermore,
since most of the available cooking robots perform a single task at a time [8,9], multi-
tasking, which is an essential part of efficiently cooking, remains an open problem. Such
a task scheduling strategy is necessary to produce an optimal schedule that robots can
follow to concurrently perform multiple tasks and complete a dish on time. In general,
there are several methods to solve a task-planning problem. Specifically, planning domain
description language (PDDL) [10–12] is one of the most popular task-planning languages.
By predefining the object and its corresponding predicates(e.g., the affordances of an object),
a domain can be established to describe its actions and the corresponding results. However,
one disadvantage of PDDL is that the number of symbols and type are fixed [13], which
makes it harder to generate domains in which the robot can discover or reconsider the
type of objects, which is an essential requirement for many tasks such as cooking. Recently,
attempts have been made to solve the task-planning problem with reinforcement learning
or deep learning [14,15]. However, machine learning relies on handcrafted heuristics for
making decisions or has an expensive training cost [16]. In addition, deep learning usually
requires tremendous training data, and optimal solutions are not always guaranteed.
On the other hand, research to solve the decision-making process using Mixed Integer
Programming(MIP) has been actively conducted [17–20]. As a well-known flexible and
powerful method for solving large problems consisting of integer constraints, MIP has seen
recent developments as a computational resource in terms of speed and memory, and new
and improved algorithms and preprocessing techniques [21] have further advanced its
ability to be applied to more complex applications such as task planning.

Naturally, attempts have been made to solve these scheduling problems using MIP, but
most studies have focused on cases where the same operation is repeated [22–24]. Since
tasks are cyclic, the optimized solution of a cycle needs to be calculated before its operation.
Therefore, a preprogrammed task sequence cannot deal with situations where modifications
are needed on the fly depending on changing circumstances. Moreover, while MIPs have
been widely applied to other robotics applications, to the best of our knowledge, the ap-
plications of MIP in cooking robotics have been few. In our previous research [25], MIP
was also used to solve the task-scheduling problem of a dual-arm cooking robot; however,
the algorithm was solved offline and we only considered cases where one arm performed
one task at a time, which is not realistic since some tasks, such as cutting vegetables, need
both arms while some others, such as waiting for water to boil, require none. Our issue
can be described as the job-shop problem (JSP), where the goal is to complete n given
jobs scheduled on m machines within a minimal duration of the schedule (the makespan).
Some approaches to solving JSP have been proposed, including meta-heuristic (ant-colony
optimization [26], artificial bee colony [27,28], genetic algorithm [29,30], particle swarm
optimization [31,32] and neighborhood search [33,34]), heuristics [35], constraint program-
ming [36,37], and dynamic programming [38]. In the case of metaheuristic algorithms,
the same solution is not always guaranteed even for relatively small problems, whereas
MIPs are deterministic. Furthermore, some MIP models used to solve JSP could obtain a
more efficient solution than state-of-the-art metaheuristic algorithms [39]. For these reasons,
in this study, MIP is chosen for scheduling the cooking tasks. Attempts have also been made
to solve JSP using MIP [40,41], but they did not consider the kinematic constraints of the
robot and the tasks that need multiple machines or none at all.

In this paper, we use an optimization framework using MIP to solve the job-shop
scheduling problem for cooking multiple dishes using a dual-arm robot. We model the
cooking problem using a dual-arm robot as the job-shop problem and divide the input of
MIP for applying the subproblem strategy. As the subproblem optimization strategy is
used, the total completion time, including computation time and makespan(the length of
time that elapses from the start of work to the end), is reduced in the overall problem. Our
goal is to find a feasible plan that minimizes the makespan while considering the constraints
of task dependency, dual-arm collaboration constraints, and kinematic constraints of the
cooking robot. We separate the planning task into two steps: finding the task sequence and
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the assignment of the robot arm. We also propose a strategy that can reduce the planning
time by separating the number of tasks to be planned into segments. A set of tasks was
evenly divided considering the continuity of tasks. The strategy makes it possible to update
the cooking plans on-the-fly, even when the original cooking plan is altered because of
situations such as new dishes being added to the schedule because of new orders, canceled
dishes, as well as disruptions caused by undesired situations such as failure in the middle
of the cooking process. To verify our approach, an experiment was conducted using a
set of 32 tasks and 3 dishes on a dual-arm robot. As the kinematic constraints and prior
information about the tasks to be scheduled are known, an optimal cooking plan for the
dishes and operating sequences of the robot can be automatically generated. Moreover,
an analysis of various problem sizes also confirms the effectiveness of the subproblem
optimization, as the planning time was significantly reduced compared with when planning
all tasks at the same time. Finally, to verify that online planning is efficiently implementable,
experiments were conducted by changing the situation in the middle of planning.

This work is organized as follows. We define the terms for setting up the optimiza-
tion problem and explain how we considered the kinematic constraints in Section 2. The
two-step framework is then discussed in Section 3, with a discussion of the subproblem op-
timization strategy. Section 4 validates the proposed frameworks, and Section 5 concludes
the paper while introducing some future work.

2. Problem Description

We aim to develop a framework to optimize the cooking time for the multi-tasking
problem of a dual-arm cooking robot in a controlled environment. This section presents a
description of the problem and the environment in which the task-scheduling problem is
applied. Task dependency constraints, kinematic constraints, as well as other related termi-
nologies are explained before formulating the optimization problem in the next section.

2.1. Problem Description

Given a set of dishes, in which the cooking recipes can be separated into multiple depen-
dent tasks, the goal of our work is to find a feasible plan such that the total cooking time is
minimized and to assign the robotic arms for each task so that the total moving path of each
arm is minimized. The optimization problem is associated with the following subproblems:

1. Optimization of the order of cooking tasks so that the total time for all tasks (makespan)
can be minimized;

2. Assignment of the corresponding arms of a dual-arm cooking robot for each task
based on the output of the first problem so that the robot can finish cooking with
minimal movements.

In the first subproblem, we aim to find the optimal order of tasks using MIP in which
the overall cooking time can be optimized when making multiple dishes. Although the
order of tasks of each dish is known, knowing which cooking tasks can be performed at the
same time to reduce the overall cooking time when making multiple dishes is difficult. In
addition, the feasibility of assigning robotic arms to perform concurrent tasks also needed
to be taken into account. Since the feasibility of robotic-arm assignment was considered
in the first subproblem, the result of the second subproblem does not affect the cooking
time of all dishes. However, as the moving path is related to the transition time between
the tasks, it was considered the optimization objective in the second subproblem. Unlike
our previous work [25], this work considers dual-arm collaboration constraints, such as
cutting vegetables or mixing eggs in the bowl. In addition, we also take into account that
some tasks do not require the use of a robotic arm, for example, cooking in a microwave or
waiting for water to boil.

The whole process of our work is presented as Algorithm 1. The expression about
the tasks in lines 1 to 3 is defined in Section 2.3.1. Using the defined tasks and constraints,
a pre-calculation for reducing complexity is conducted in lines 4 to 6 and described in
Section 2.3.2. This process is performed only once because the output is not changed once
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the robot, environment, and tasks are defined. The next step is finding collision-task pair
sets for solving the order-optimization problem in lines 7 to 10, which is explained in
Section 3.1. Then, t, which represents the time sequence of the tasks, can be obtained in
line 11. Additionally, L(T ) and R(T ), which mean the assigned tasks for each robot arm,
are calculated in line 12. Lines 11 and 12 are explained in Sections 3.1 and 3.2, respectively.

Algorithm 1: Optimal task planner.

1: T = {D} = {(T , τ,Ls,Le, A)}
2: n← number of D
3: mi ← number of T in Di
4: for c = 1 to ∑ mi do
5: for d = 1 to ∑ mi do
6: CHECKPOSSIBLE(Tc, Td)→ MR(c, d)
7: for a = 1 to n and b = 1 to n do
8: for k = 1 to ma and l = 1 to mb do
9: if MR(k, l) = 0 and MR(l, k) = 0 then

10: C.insert(a, b, k, l)
11: find minimize

t
tC

12: find minimize
L(T ),R(T )

Dt

2.2. Comparison with Other Work

The job-shop problem (JSP) is an optimization problem of scheduling n jobs on m
machines, and each job contains multiple operations. Previous work using MIP to solve
JSP labeled a single operation as triplets (i, j, k), which denotes that the operation j of job
i must be executed on machine k [42]. This means that every operation has an assigned
machine. Subsequent studies using disjunctive constraints dealt with the same assumption
problem [40,43]. However, we did not assign a specific machine (robotic arm) to operations
(cooking tasks) or jobs (dishes) because we wanted to minimize the travel distance of
the robotic arms. Additionally, previous studies usually suggested how to formulate
constraints to reflect jobs that cannot be run concurrently yet did not obtain a list of jobs
that could not be performed at the same time but rather just simply defined and used
them in advance. Unlike previous research, we show an example of how to obtain a list
of cooking tasks that cannot be performed simultaneously in Section 2.3.2. Additionally,
the comparison between the performance of the conventional algorithm and that of ours is
also dealt with in Section 4.2.

2.3. Optimization Constraints

Prior to formulating the optimization problem, an analysis of the environment and
the problem at hand can help embed good heuristics into the optimization such that the
problem’s complexity can be reduced. This is similar to how infeasible solutions can be
eliminated with good heuristics and, in essence, can be compared to tightening the bounds
of a constraint.

2.3.1. Task-Dependency Constraint

The sequence of operations is especially important in the cooking process. This means
that some tasks can only be executed after the previous tasks have finished. Therefore,
some constraints that enforces dependencies on the task, such as execution of the task
in order, must be reflected in the optimization process. To effectively represent multiple
characteristics of each task, a hierarchical set called taskset is defined.

Definition 1. A taskset T is an array of D of quadruples consisting of T , τ, Ls, Le, A, and c,
where D is the set of dish, T is the set of task, τ is the set of time duration required to complete task,
Ls and Le are the set of location indices where the T starts and ends, A is the set of number of
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robotic arms required to perform a task, and c is the set of parameters that represents the continuity
of a task. If the value of c is 1, then the following task should be executed immediately after the
current task finishes. t is the set of execution time of tasks. The purpose of optimization is to obtain t
from each task.

Each set has components: for example, if the number of dish is n, D can be expressed
as D = {D1, · · · ,Dn}. The tasks in ith dish can be expressed as T i = T i

1 , · · · , T i
m, when

there are m tasks. The other components can also be expressed as ti
j (execution time of the

jth task in ith dish), τi
j (time duration of the jth task in the ith dish), etc. The superscript

can be omitted when it is clear which task is being referred to.
To illustrate what is the taskset, an example T is shown in Table 1. There are three

dishes in T, which are pancakes [6], hand drip coffee [44], and chicken salad [45], and those
can be written as D1, D2, and D3, respectively. Each recipe was simplified for implementa-
tion into our environment, assuming that the ingredients were prepared in bowls before
the start of cooking. Taking the second task T 1

2 as an example, the time duration of this task
is 10 seconds, and it moves from the 6th location to the 11th location in the environment.
Moreover, it only requires one arm for execution, and the following task T 1

3 does not need
to be executed immediately. Especially in the task related to fire (e.g., boiling, frying, etc.), c
needs to be set as 1; otherwise, the food can be burned or overcooked.

Table 1. An example taskset T.

D T No. T τ Ls Le A c

1

1 Add 400ml of milk to the pancake mix bottle 10 11 6 1 0
2 Put the milk back 10 6 11 1 0
3 Close the cap of the pancake mix bottle 10 6 6 2 0
4 Shake the bottle with the head facing down 60 6 6 1 0
5 Put the pancake mix bottle down 10 6 6 1 1
6 Sit the pancake mix 120 6 6 0 1
7 Shake the pancake mix again 30 6 6 1 0
8 Open the cap of the pancake mix bottle 10 6 6 2 0
9 Pour the mix into the frying pan 10 6 3 1 1
10 Put the pancake mix bottle back 10 3 6 1 1
11 Wait for 3 min 180 3 3 0 1
12 Flip the pancake 20 3 3 2 1
13 Wait until all pancakes are baked 180 3 3 0 0
14 Plate the food 15 3 10 2 0
15 Bring the pan to the wash station 10 10 15 1 0

2

16 Put the coffee bean powder in the coffee dripper 10 6 1 1 0
17 Wait until the water boils 90 2 2 0 1
18 Pour the water slowly 60 2 1 1 0
19 Put the pot back 10 1 2 1 0
20 Wait until the drip finishes 60 1 1 0 1
21 Pour the coffee 15 1 10 1 0
22 Bring the dripper to the wash station 10 10 15 1 0

3

23 Place all of the ingredients into a mixing bowl 10 8 9 1 0
24 Put the ingredient bowl back 10 9 8 1 0
25 Toss the ingredients together until evenly combined 45 9 9 2 0
26 Mound the ingredients into a large serving bowls 10 9 10 1 0
27 Put the mixing bowl back 10 10 9 1 0
28 Place the mandarin orange segments around the salad 45 8 10 1 0
29 Put the ingredient bowl back 10 10 8 1 0
30 Sprinkle the almonds and sesame seeds over the salad 45 8 10 1 0
31 Put the ingredient bowl back 10 10 8 1 0
32 Garnish the salad with some thinly sliced snow peas 10 8 10 1 0
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As an example of dependency, to prepare dish #3 (D3), tasks T 3
23 to T 3

32 must be
executed in this order. The dependency constraint can be written as ti

j+1 ≥ ti
j + τi

j in

the task set of the ith dish. Considering continuity, when ci
j = 1, the formula becomes

ti
j+1 = ti

j + τi
j because T i

j+1 must be started right after T i
j finishes by the definition of ci

j.

2.3.2. Kinematic Constraint

Due to the use of a robot in a controlled environment, kinematic constraints are
generated. The constraints are affected by the configuration of the robot, predefined tasks,
and the locations where the tasks are performed. Those components are not changed unless
the configuration of robot or environment is not changed. Therefore, once the constraints
are calculated before solving the problem, it does not need to be calculated while solving
the optimization problem.

To minimize makespan, it is important that both robotic arms are performing tasks
concurrently as much as possible. Using kinematic information, it is possible to calcu-
late whether robotic arms can perform two specific tasks simultaneously, and it can be
represented as a hashtable-like matrix called a Relation Matrix.

Definition 2. A Relation Matrix MR is a binary matrix where the rows represent one arm’s
capability to execute tasks and the columns represent the other arm’s capability to execute tasks. If
there exists a nonzero element in MR(i, j), then one arm can perform Ti while the other arm can
also conduct Tj. If there are n tasks in T, the size of MR is n× n in the case where two robotic arms
are used. When the number of robots is m, MR has a dimension of n× n× mC2.

An example of the case with three machines (robotic arm) describing the Relation
Matrix is shown in Figure 1. A simple taskset T is defined in Figure 1d, and examples
of obtaining the components of MR are presented in (a)–(c). In this example, MR has
(3 × 3 × 3C2) dimension, because the number of tasks are 3, and robots are 3. To check
whether the robot i and robot j can perform specific tasks simultaneously, we define
CHECKPOSSIBLE(Ti, Tj), and it returns the value 1 when possible and 0 when not. Ti, Tj
is the task conducted by robot i and j, respectively. The function CHECKPOSSIBLE(Ti, Tj)
checks two components: reachability and collision between two robots. Reachability can
be calculated by discretizing the Cartesian space into smaller cubes and by verifying if
all points on a surface of a sphere inside the cube can be reached [46]. However, in our
environment, cooking materials, appliances, and tools are placed at specific locations, so it
does not need to consider the entire Cartesian space. Figure 1b shows the case where the
right arm cannot perform T3 because it cannot reach the location. In this case, the value of
CHECKPOSSIBLE(T2, T3) becomes 0 and so does MR(2, 3, 1).

The second thing checked by CHECKPOSSIBLE(Ti, Tj) is the collision between two
arms, which is affected by kinematic constraints such as the configuration of the robot.
Finding out the collisions between manipulator is one of the research fields in robotics,
but it is not the main scope of our work. In more detail, the state-of-the-art method [47] can
be applied. Figure 1c shows the case in which the two arms collide with each other. In
this case, the value of MR(2, 1, 1) become 0 because CHECKPOSSIBLE(T2, T1) is 0. Figure 1a
shows that this case is possible, so the value MR(1, 2, 1) is 1. MR(i, k, 2), MR(j, k, 3) also can
be obtained using the method above. Following the method described above, MR can be
found before the start of the optimization process. In the next section, the method describing
how to apply the information from MR to the optimization problem will be presented.
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Figure 1. Examples for explaining the Relation Matrix. CHECKPOSSIBLE(Ti, Tj) is the function that
checks whether robot i and robot j can conduct two tasks concurrently. (a) The case in which the
robots can conduct two tasks. (b) The case in which the robot j cannot reach the third task location.
(c) The case in which the robots collide with each other. (d) Example taskset and MR used for the
example. MR(i, j, 1) follows the result of CHECKPOSSIBLE(Ti, Tj).

3. Task Scheduling with Mixed-Integer Programming

In this section, the two-step task-scheduling algorithm presented in Section 2.1 consid-
ering the unique constraints mentioned in Section 2.3 is presented. The overall algorithm
is shown in Algorithm 1. Once a taskset T, such as the one shown in Table 1, is prepared,
the proposed mixed-integer optimization is conducted to determine the cooking sequences
of all of the tasks. Thanks to the disjunctive constraints introduced to express the con-
straints, the optimization process can be formulated in a systematic way. After an optimal
task is selected, the arms are assigned for each task based on the moving distance optimiza-
tion criterion. Moreover, we present the subproblem optimization strategy in this section,
which makes it possible to realize the optimization framework that can produce a feasible
solution in run-time.

3.1. Task Scheduling with the Kinematic Constraints

While arranging multiple tasks, there are task pairs that cannot be performed simulta-
neously due to kinematic constraints. In this case, only part of the constraints in the task
pairs set must hold, and it is called disjunctive constraints [48]. To schedule tasks in T,
suppose that there are n dishes(D). Each T i

j (jth task in ith dish) must be performed on each
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Di. Suppose that the ith dish has xi tasks; then, the range of j is expressed as mi
1, · · ·mi

xi
.

For example, m2
1 = 16, m2

7 = 22, m3
10 = 32 in Table 1. Suppose ti

j is the start time of jth

task (T i
j ) on the ith dish (Di). τi

j means the time duration of T i
j in Di. Because T i

j+1 cannot

start until T i
j is finished, we can obtain the constraints below. ci

j is also considered in the
constraint, as explained in Section 2.3.1.

ti
j+1 ≥ ti

j + τi
j when ci

j = 0, for j = mi
1, · · · , mi

xi

ti
j+1 = ti

j + τi
j when ci

j = 1, for j = mi
1, · · · , mi

xi

(1)

Equation (1) reflects the dependency constraint, but the kinematic constraints still need
to be reflected. Assuming that MR is precalculated, it can be known which tasks cannot be
performed simultaneously. For setting the constraints, the cases to be found are the cases
that cannot be performed simultaneously. We describe this situation as the ‘tasks are in
collision’. Therefore, an equation is formulated to avoid the collision of the task. Suppose
that Ti and Tj are checked for collisions. For example, when MR(i, j) = 0 and MR(j, i) = 1,
Ti and Tj will not collide with each other because Tj can be performed by the right arm
and Ti can be carried out by the left arm. Therefore, to find collision tasks, the cases
MR(i, j) = 0 and MR(j, i) = 0 should be found. This task collision checking process is
shown in Algorithm 2 lines 7 to 10 and in Algorithm 2 lines 5 to 8. For all tasks and dishes
in the T, the collision checking process needs to be performed to find all collision task pairs.
Suppose that T a

k in Da and T b
l in Db (a, b, k, l ∈ N : a, b ∈ [1, n], k ∈ [1, ma], l ∈ [1, mb])

determine that both cannot be performed simultaneously; then, (a, b, k, l) is inserted into
the list of conflicting tasks is C.

After finding all colliding task pairs, the collision avoidance constraints need to be set.
To set collision avoidance constraints, disjunctive constraints δab

kl is introduced [49]. δab
kl is a

binary variable, and its value becomes 1 when T a
k is processed before T b

l starts (ta
k ≤ tb

l )
and 0 when ta

k ≥ tb
l . Using δab

kl , the constraints can be written as below. B is a sufficiently
large positive number.

tb
l − ta

k+1 + B(1− δab
kl ) ≥ 0,

ta
k − tb

l+1 + Bδab
kl ≥ 0,

for (a, b, k, l) ∈ N : (a, b) ∈ [1, n], k ∈ [1, ma], l ∈ [1, mb].

(2)

Our goal is to minimize the time the last task to finish. tC is defined as makespan,
and it is greater than or equal to the completion time of each dish. It can be expressed
tC ≥ ti

xi
+ τi

xi
for all D when each Di has xi tasks. The list of conflicting tasks C was defined

above, and the collision avoidance constraints need to be added with all of the components
in C. If the number of components of C is k, then the constraint 2k is added. If the number
of D is n, then the total number of constraints are n + 2 ·∑n

i=1 xi + 2k. The formulation that
considers every constraints is as follows:

minimize
t

tC

subject to tC ≥ ti
xi
+ τi

xi
for i=1,...,n

ti
j ≥ 0

ti
j+1 ≥ ti

j + τi
j when ci

j = 0, for i = 1, · · · , n, j = mi
1, · · · , mi

xi

ti
j+1 = ti

j + τi
j when ci

j = 1, for i = 1, · · · , n, j = mi
1, · · · , mi

xi

tb
l − ta

k+1 + B(1− δab
kl ) ≥ 0

ta
k − tb

l+1 + Bδab
kl ≥ 0 for ∀(a, b, k, l) ∈ C

δab
kl ∈ {0, 1}.

(3)
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Algorithm 2: Optimization solver.

1: procedure SOLVEOPTIMIZATION(T)
2: T = {D} = {(T , τ,Ls,Le, A)}
3: n← number of D
4: xi ← number of T i

j in Di

5: for a = 1 to n and b = 1 to n do
6: for k = ma

1 to ma
xa and l = mb

1 to mb
xb

do
7: if MR(k, l) = 0 and MR(l, k) = 0 then
8: C.insert(a, b, k, l)
9: find minimize

t
tC

10: subject to tC ≥ ti
xi
+ τi

xi
for i = 1, · · · , n

11: ti
j ≥ 0

12: ti
j+1 ≥ ti

j + τi
j when ci

j = 1, for i = 1, · · · , n, j = mi
1, · · · , mi

xi

13: ti
j+1 = ti

j + τi
j when ci

j = 0, for i = 1, · · · , n, j = mi
1, · · · , mi

xi

14: tb
l − ta

k+1 + B(1− δab
kl ) ≥ 0

15: ta
k − tb

l+1 + Bδab
kl ≥ 0 for ∀(a, b, k, l) ∈ C

16: δab
kl ∈ {0, 1}.

17: for j = 1 to N do
18: D.insert(‖p(Ls,j)− p(Le,j+1)‖)
19: find minimize

L(T ),R(T )
Dt

20: subject to Dt ≥ L(T ) ·D
21: Dt ≥ R(T ) ·D
22: L(Tj) + R(Tj) = Aj for j = 1, ..., N
23: L(Tl) = 1, R(Tl) = 0, L(Tk) = 0, R(Tk) = 1 for ∀(k, l) ∈ C
24: when MR(k, l) = 0 and L(Tj) + R(Tj) = 1.
25: return t, L(T ), R(T )

3.2. Assigning Arm to the Tasks

In this section, the formulation that assigns the robot arms to each task and minimizes
the transition distance between tasks is proposed. The tji values for all T i

j are decided
in Section 3.1. Thus, the results from Section 3.1 is used as the input of our second-step
formulation. The constraint of the second-step formulation is mainly related to Ai

j, which

is the number of arms needed to proceed T i
j . Let the sum of the number of tasks be

N = ∑n
i=1 xi. Then, we can define two binary vectors to assign tasks to the left and right

arms, L(T ) and R(T ) , and their size is N. If L(T i
j ) = 1, the left arm is performing T i

j ,

and 0 means that T i
j is not processed by the left arm. This definition gives the condition

L(T i
j ) + R(T i

j ) = Ai
j for j = 1, · · · , N. When Ai

j = 2 or 0, L(T i
j ) and R(T i

j ) are determined

to be (1,1) and (0,0), respectively. However, in the case whereAi
j = 1, additional constraints

are needed. From the result in Section 3.1, the task pairs in that process can be concurrently
seen. Assuming that T a

k and T b
l need to be processed at the same time and Aa

k = 1 and
Ab

l = 1, it must be checked whether MR(T a
k , T b

l ) = 1 or MR(T a
l , T b

k ) = 1. If the former
case, the result becomes L(T b

l ) = 1, R(T b
l ) = 0, L(T a

k ) = 0, R(T a
k ) = 1, and if the latter, it

becomes 0, 1, 1, and 0, respectively. From A, most of constraints are decided. However,
in the case of T i

j having no pairs of tasks performed concurrently and Ai
j = 1, additional

constraints are needed.
For additional constraints, when Tj+1 is the next sequence of Tj, the distance between

Le,j and Ls,j+1 is considered. Let us define p(Ls,j), p(Le,j) as the Cartesian coordinates of
Ls,j and Le,j. Additionally, we define D as the set of distances between the locations. If
we define d = ‖p(Ls,j+1)− p(Le,j)‖, then we can add d to D. Because the sizes of L(T )
and R(T ) are N, the number of d can be obtained N − 1. To make the dimensions of D the
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same as L(T ) and R(T ), we add an initial location. Then, the distance between the initial
position and first task can be added into D, making the size of D N. The moving distance
does not need to be considered when the robot arm will not perform T i

j ; when Ai
j = 0, it

has to be zero. Reflecting this condition, the moving distance of the left arm is L(T ) ·D and
that of the right arm is R(T ) ·D. One condition for these equations to be established is that
the left or right arms should not be moved when L(T i

j ) = 0, R(T i
j ) = 0, respectively. From

the result of the cross product, the constraints Dt ≥ L(T ) ·D, Dt ≥ R(T ) ·D when Dt is to
be minimized. The formulation that considers every constraint is as follows:

minimize
L(T ),R(T )

Dt

subject to Dt ≥ L(T ) ·D
Dt ≥ R(T ) ·D
L(Tj) + R(Tj) = Aj for j = 1, ..., N

L(Tl) = 1, R(Tl) = 0, L(Tk) = 0, R(Tk) = 1 for ∀(k, l) ∈ C
when MR(k, l) = 1 and L(Tj) + R(Tj) = 1.

(4)

The whole optimization process is shown in Algrothm 2. Line 5∼ 8 shows the collision
check process of the task in Section 3.1 before optimization. Through this process, the list
of conflicting tasks C can be obtained. After that, the sequence of time t can be obtained
through the solving stage 1 in Section 3.1 and is shown in lines 9 ∼ 16. Using the collision
information, the distance vector D is calculated in lines 17 ∼ 18. Stage 2 in Section 3.2 is
processed in lines 19 ∼ 25.

3.3. Subproblem Optimization Strategy

This section deals with how to apply the subproblem optimization strategy by dividing
one T into several. In the previous section, if the whole T is applied to the formulation,
the actual work cannot begin until all processes have been computed. In the real process,
it is necessary to modify or add a task in the middle, so online planning is necessary. We
established a strategy to divide T to carry out online planning, which was one of the
limitations of the previous study [25].

The process of executing the subproblem optimization strategy is in Algorithm 3. Our
first goal is to recursively divide T into subproblems. S is set as the maximum number
of tasks in a subproblem in line 2. In line 4, G is set as a group of subproblems. Let the
ith component in G be defined as Ti. DIVIDE(Ti) divides Ti into several proper size of
subproblem. The method to divide Ti is as follows. If Ti contains m tasks and n dishes and
Ti is divided into s segments, then one segment of T contains m/s tasks when m/s ∈ N. In
each segment, the tasks located in the first sequence of each dish are gradually filled. In the
case of m/s /∈ N, each segment contains a different number of tasks. Moreover, considering
the continuity of tasks, the tasks that cannot be separated from each other should be placed
in one segment. If Ti is divided into s problems, the outputs become Ti,1, ...,Ti,s, and these
are described in line 8. The each components of outputs Ti,1, ...,Ti,s are used as input of
DIVIDE in the next step. This step (lines 5 to 10) is executed until the number of tasks in all
components of G is reduced under S .

After dividing the problem, the optimization of all subproblems should be solved.
Let the ith t, L(T ), and R(T ) be defined as tseg,i, L(T )seg,i, and R(T )seg,i, respectively.
Then, the result of optimizations of Ti is that tseg,i, L(T )seg,i, R(T )seg,i can be obtained
from SOLVEOPTIMIZATION(Ti). The final results t, L(T ), R(T ) are the stack of each seg-
mented result.
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Algorithm 3: Subproblem optimization strategy.

1: T = {(T , τ,Ls,Le, A)}
2: S ← Maximum number of tasks in segmented T
3: G ← Group of segmented T
4: G.insert(T)
5: while NUMBEROFTASKS(∀Ti ∈ G) > S do
6: g← Empty list
7: for Ti in G do
8: Ti,1, ...,Ti,s ← DIVIDE(Ti)
9: g.insert(Ti,1, ...,Ti,s)

10: G ← g
11: for Ti in G do
12: tseg,i, L(T )seg,i, R(T )seg,i ← SOLVEOPTIMIZATION(Ti)
13: t.insert(tseg,i)
14: L(T ).insert(L(T )seg,i)
15: R(T ).insert(R(T )seg,i)

4. Experiment

In this section, the results of the test Algorithms 1 and 3 are presented. In the simulated
experiments, the results were observed when changing the number of tasks and the number
of segments. The optimization solver used is MOSEK [50], running on a desktop computer
with a CPU of Intel Core i7 10700K @ 3.80GHz and 32GB of RAM at 2666 MHz.

4.1. Task Scheduling and Assigning Arm

Using the the taskset T data in Table 1 as the input, Algorithm 1 was tested in a realistic
environment. The cooking robot in the environment is made up of 11 degrees of freedom
(DOF) dual arms, where there are five DOFs per arm with another revolute joint that
couples the two arms at the center of the body. This robot was designed and analyzed in
our previous work [51]. Additionally, the tables with tools for cooking surround the robot.
Figure 2 shows the environment used for the experiments. The workspace is segmented
into several spaces, and specific tasks are performed at that location. The yellow boxes
in Figure 2 represent each location, and the indices were set for convenience, which are
the numbers in the white box in (b). We assume that one task can have performed in
1 ∼ 2 locations, start and end locations (e.g., moving the bowl from the 6th location to the
7th location). Depending on the robot configuration, the table is arranged in a way that the
robot can access all locations. Thanks to the coupling joint in the waist of the robot, a single
arm can access all locations easily.

Figure 2. The environment of the cooking robot. (a) Isometric view of the whole environment.
Yellow cubes represent pre-defined locations for defining tasks. (b) Top view of the environment.
The meaning of number in white box is the index of locations.
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The results of the experiment are shown in Figure 3. Figure 3a shows the result of the
first step of the optimization process in Section 3.1, (b) shows the result of the second step
in Section 3.2. Each rectangle represents all T in T and the same color represents the same
location of the task. If Ls 6= Le in one T , then the colors change gradually in one box. In
Figure 3a, the result did not violate any kinematic constraints and dependencies of T . In
Figure 3b, all T are assigned to the left and right arms properly. The task needs two arms
(e.g., T12 , T14, and T25) and no arm (e.g., T6, T11, T13, T17, and T20) are also well assigned
following the sequences. Moreover, the continuity is well reflected in the result. The tasks
where c = 1 were T5, T6, T9 to T12, T17, and T20. The result shows that T5 to T7, T9 to T13,
T17, T18, T20, and T21 are consecutive, so it can be seen that continuity is well reflected.

Figure 3. The optimization result of T in Table 1. It shows that makespan is minimized without any
violation of the constraints. While the left arm made dish 1 mainly, the right arm made dishes 2 and 3.
(a) The result of the first step of the optimization process. It shows the sequence of tasks per dish. (b)
The result of the second step of the optimization process. It shows the sequence of tasks per each
robot arm.

4.2. Comparison with Conventional Algorithm

The experiments were performed to compare the performance of our algorithm with
the conventional algorithm. Let us define an n×m problem when n jobs are conducted on
m machines. The experiments consist of problems of twelve sizes, which are 2 × 2, 3 × 2,
4 × 2, 5 × 2, 2 × 3, 3 × 3, 4 × 3, 5 × 3, 2 × 4, 3 × 4, 4 × 4, and 5 × 4, and each set consists
of ten problem instances. As mentioned in Section 2.2, the conventional algorithm used a
pre-assigned machine for a specific operation. Therefore, while testing the conventional
algorithm, a robotic arm is assigned to cook specific dishes. Additionally, our algorithm did
not assign a robotic arm to a specific task. In case of number of machine is more than two,
the process adding constraint (lines 20 to 24 in Algorithm 2) is executed mC2 times when m
machines exist. For example, for n × 3 problem, the constraints from the pairs of (1st, 2nd),
(1st, 3rd), (2nd, 3rd) robots will be added in the formula. Table 2 shows the result of the
comparison between conventional algorithm and ours. Opt means the number of instances
proved to optimality. The results show that our algorithm can obtain a better or same
makespan than the conventional algorithm. The reason for this result is that if the number
of machines (robotic arms) is insufficient compared with the number of jobs (dishes), it is
more advantageous in makespan to allocate robot arms later. In case of run-time, when the
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size of the problem is small, there are cases where it is larger because of the second step
of our algorithm (lines 19 to 25 in Algorithm 2). However, as the problem size increases,
the run-time of our algorithm also had advantages because pre-defined machines create
more constraints using the conventional method.

Table 2. The comparison result of a conventional disjunctive algorithm and our algorithm.

Problem
Disjunctive [40] Our Method

Makespan(s) Run-Time(s) Opt Makespan(s) Run-Time(s) Opt

2 × 2 347.9 0.50 10 347.9 0.80 10
3 × 2 361.8 1.18 10 320.8 1.24 10
4 × 2 420.8 9.03 10 405 13.78 10
5 × 2 280 2.93 10 272.6 3.09 10
2 × 3 351.7 1.06 10 351.7 1.04 10
3 × 3 363.5 2.18 10 306.5 1.65 10
4 × 3 329.9 8.30 10 309 8.00 10
5 × 3 303.8 8.55 10 302.8 11.79 10
2 × 4 349.5 1.04 10 349.5 1.04 10
3 × 4 338.5 2.42 10 305.4 1.66 10
4 × 4 346.2 4.60 10 323.9 3.89 10
5 × 4 337.4 28.27 10 333 28.01 10

4.3. Subproblem Optimization Strategy

In this section, Algorithm 3 is validated. It is obvious that the result of the makespan
in the segmented case is longer than in the non-segmented case because the task that can be
performed at the same time may not be performed simultaneously. However, the advantage
in the run-time of the algorithm can be expected. In general, when computing optimization,
the computation time increases exponentially with each process step [52]. As the number of
tasks increases, the probability of the number of collision cases between tasks also increases.
According to Equation (2), if the length of C increases, then the number of constraints
increase twice. By dividing the T, the number of constraints in MIP will be decreased. The
experiments for verifying these are conducted as followed.

To see the correlation between the number of tasks and the optimization result, experi-
ments were conducted using 30 to 120 tasks. Each T contained 2 dishes and was divided
until each segments included 10 tasks (S = 10). Figure 4 shows the experimental results,
and the experiments were conducted 50 times to compare the average. When looking at the
cases in which the number of tasks in T is less than 70 in Figure 4a, the total elapsed time
(tC + run time) increased by 3.36% on average when T was divided compared with the
case in which T was not divided. However, as the size of T increases, the computational
time of the full case exponentially increases, as shown in Figure 4b. It causes opposite
trends, as shown in Figure 4a, when the number of tasks exceeds 70. The total time elapsed
decreased by 12.4% on average when T was divided. It can be seen through the result that
the subproblem strategy reduces not only the computation time but also the overall time
in the large problem. When comparing Figure 4b,c, the segmented result is much smaller
relative to the full-sized result.

Figure 4b shows the result of using full-sized T. The computational times taken
to solve collision checking and MIP (including the first and second steps) are displayed
together. However, in the case of (b), the run-time of the collision check is much more than
that of MIP. It can be seen that, when the problem size becomes big, the collision checking
process becomes the most computationally expensive. Thus, when the run-time of a big
problem is considered, considering only the computational time of the collision checking
process can be acceptable. Figure 4c shows the result of using segmented T. In this figure,
it can be seen that the run-time of the collision checking process is significantly reduced.
In the case of T that has 120 tasks, run-time is reduced from 499 s to 2.433 s. The average
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reduced run-time is 73.81% and 98.9% when the number of tasks is more than 60. Through
the experimental results, it can be seen that the optimization strategy for subproblems
has an advantage in terms of computational time and total elapsed time, especially when
the size of the problem is large. It can be expected that this strategy will be optimized to
perform tremendous cooking tasks that humans cannot perform.

Figure 4. The comparison result of the full-sized T and segmented T. Each T contains 2 dishes and
30 to 120 tasks. (a) The result of the total elapsed time (makespan + run-time). (b) The run-time result
of the experiment using full-sized T. (c) The run-time result of the experiment using segmented T.

To examine how the subproblem optimization strategy can respond to change of task
in the middle of executing, three cases with changing situations are verified. T used in this
experiment is randomly generated, and it contains four dishes. D1 contains 10 tasks, D2
has 15, D3 has 10, and D4 has 13. The first case is to add one more plate in the middle of
the process. If it is assumed that the robot is working in a restaurant kitchen, this can be
happened when a customer orders an additional dish. In Figure 5a, the result of the first
case is shown. In the first part of the timeline, only D1 to D3 are processed. At the time
indicated by the red dashed line, the command was given to start cooking D4. As shown
in the figure, D4 started successfully and finished the entire process. The second case is
when the dish is removed in the middle of the process. This situation can happen when
the order is canceled. In Figure 5b, D1 to D4 are processed simultaneously by the robot.
However, D4 is removed after the time indicated by the red dashed line. After that, D4 is
not processed at all. The last case is that one dish is restarted after a failure. It is assumed
that the situation is such that if the robot drops any ingredients earlier during cooking, then
cooking has to be restarted from the beginning. There are two red dashed line in Figure 5c.
The line on the left indicates the time at which the robot fails D4. After recognizing the
failure, the restart command is given in the second red line. From this, D4 is restarted again
from the beginning. Through all three cases, it is shown that our algorithm can conduct
online planning.
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Figure 5. Examples of online planning. The red dashed line indicates the time at which the command
was given. The result shows the change of planning result when the situation changes in the middle
of planning. In all cases, planning was conducted well without any violation of the constraints. (a)
The case of dish 4 being added in the middle of execution. (b) The case of dish 4 being removed in
the middle of execution. (c) The case of dish 4 restarting after failure.

5. Conclusions

In this article, a framework is proposed that can optimally schedule multiple cooking
tasks simultaneously. Two mixed-integer programs are formulated to schedule a sequence
of tasks and to assign robot arms to tasks. For executing online planning, a subproblem
optimization strategy is also proposed. Even though the makespan increased by 6.02%,
the run-time was significantly reduced by 98.9%, so the total elapsed time was reduced by
7.89% in a big problem with over 110 tasks.

The approach was validated on a real-sized taskset and segmented taskset. Moreover
online planning was validated in situations where tasks are suddenly reordered. Although
this work was proposed for the scheduling of cooking tasks, it can be applied to any
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situation that needs to be optimized, such as the scheduling of work in a warehouse using
multiple mobile robots, where more than one robot is used and the workspace is shared.
Future work includes cooking in a real environment with a vision-recognition system that
can detect tasks that fail.
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