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Abstract: One of the primary purposes of forest fire research is to predict crisis situations and, also,
to optimize rescue operations during forest fires. The research results presented in this paper provide
a model of Cross-Country Mobility (CCM) of fire brigades in forest areas before or during a fire. In
order to develop a methodology of rescue vehicle mobility in a wooded area, the structure of a forest
must first be determined. We used a Digital Surface Model (DSM) and Digital Elevation Model (DEM)
to determine the Canopy Height Model (CHM). DSM and DEM data were scanned by LiDAR. CHM
data and field measurements were used for determining the approximate forest structure (tree height,
stem diameters, and stem spacing between trees). Due to updating the CHM and determining the
above-mentioned forest structure parameters, tree growth equations and vegetation growth curves
were used. The approximate forest structure with calculated tree density (stem spacing) was used for
modeling vehicle maneuvers between the trees. Stem diameter data were used in cases where it was
easier for the vehicle to override the trees rather than maneuver between them. Although the results
of this research are dependent on the density and quality of the input LiDAR data, the designed
methodology can be used for modeling the optimal paths of rescue vehicles across a wooded area
during forest fires.

Keywords: forest fire; rescue vehicle; vegetation structure; optimal pathfinding; canopy height model
(CHM)

1. Introduction

Forest fires are very frequent crisis situations, especially in dry or arid landscapes [1].
The prediction of forest fire occurrence depends on knowledge of the factors that affect
the fires and on the technologies that facilitate the monitoring and modeling the spread
of the fire. Ganteaume et al. [2] analyzed the most common human and environmental
factors driving forest fire ignition. The primary factors that directly cause forest fires
are natural (lightning strikes, seismic and volcanic activity, etc.) or human (carelessness
and activities such as arson, slash-and-burn agriculture, fire-fallow cultivation, machinery
sparks, discarded glass bottles or cigarette butts, military activity, etc.). The factors that
determine fire spread are as follows: forest type and structure (distances between trees,
DBH, canopy height, tree crown density, etc.); meteorological conditions (precipitations,
temperature, wind speed, air humidity, cloudiness, soil moisture, etc.); topographic (mor-
phological shapes of terrain, orientation of relief slopes, etc.); geological and pedological
(underground structure, soil structure, and terrain surface color); and season and time of
day, which determine the amount of available sunlight and temperature, etc. The tech-
nologies that facilitate the monitoring and modeling of a forest structure and the spread
of forest fires include the sensor types for vegetation data collection and forest structure
determination and technologies for monitoring and modeling the spread of fire. Blair,
Rabine, and Hofton [3] described the Laser Vegetation Imaging Sensor (LVIS), which
operates at altitudes of up to 10 km aboveground and is capable of producing data for
topographic mapping with dm accuracy and vertical height and structure measurements of
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vegetation. The LVIS instrument is also suitable for subcanopy ground elevation mapping.
Lim et al. [4] described many of the initial studies of the application of LiDAR for forestry
focused on verifying through statistical analysis that LiDAR could be used to accurately
measure forest attributes. The focus has been on canopy tree heights given the nature
of this attribute as a predictor variable for other forest attributes, such canopy density.
Hyyppä et al. [5] analyzed existing algorithms and methods of airborne laser scanning that
are used for extraction of the canopy height and individual tree information. Aschoff and
Spiecker [6] described an algorithm for detecting trees in a semiautomatic way. Gobakken
and Næsset [7] analyzed the effects of forest growth on laser-derived canopy metrics. Car-
son et al. 2004 [8], Ahlberg et al. [9], and Su et al. [10] provided the overview of LiDAR
applications in forestry. By comparing these methods based on laser scanning, it can be
stated that, at present, an approximate forest structure for modeling the movement of
rescue vehicles can be determined. At the metric density of the DSM (CHM), the error in
tree positioning can reach values in decimeters, sometimes up to meters, depending on
the structure and type of the canopy. At the decimeter density of the DSM points out, it is
possible to calculate the tree position errors in centimeters to decimeters. When comparing
the possibilities of using LiDAR and aerial optical images, both methods have advantages
and disadvantages. Aerial images provide both spatial and image information, but they do
not allow, unlike LiDAR, full automation to determine the forest structure.

However, the use of LiDAR and aerial optical images may be problematic in the area
of fire because of the clouds or smoke generated by the fire. In these situations, radar
methods can be used to measure forest parameters. The mapping of forest units by radar is
described, for example, by Martoni et al. in [11]. Kugler et al. [12] compared the LiDAR and
radar methods for determining the heights of the forest in three areas: boreal, temperate,
and tropical. The correlations achieved confirm the possibility of combining the use of both
forest mapping methods. Additionally, Cazcarra-Bes et al. [13] described the possibilities
of the horizontal and vertical forest structure mapping from radar using data obtained
by synthetic aperture radar tomography. The use of radar methods is, however, limited
in terms of the accuracy of the determination of the characteristics of individual trees.
Furthermore, Landsat or Sentinel 2 global satellite data can be used to monitor forests
before and during a fire. Sentinel 2 with a multispectral instrument (MSI) with 13 spectral
channels in the visible/near-infrared (VNIR) and shortwave infrared spectral range (SWIR)
and three bands for vegetation mapping can provide the crisis management with actual
data in the shortest possible time, especially during a forest fire. The data accuracy (about
20 m) does not allow a more accurate mapping of the internal forest structure—see, e.g.,
Puletti et al. [14].

Technologies for monitoring and modeling the spread of a fire are divided into stages:
prediction, during the fire, and post-fire [15]. Milz and Rymdteknik [16] described the
technologies of detection and the spread of the forest fires by using satellite-borne remote
sensing techniques. However, the technologies of fire monitoring and distribution are
limited by the availability of up-to-date data from satellites, planes, UAVs, or terrestrial
observations. We also need to know the prediction of the spread of a fire to deploy rescue
vehicles. Koo et al. [17] described possible solutions using a physical model for the forest
fire spread rate. This model successfully evaluated wind and slope effects of a fire on
forest vegetation.

The above-mentioned factors and technologies are very important for the teams (fire
brigades, military units, health services, and police) that are deployed to rescue people and
reduce the damage during forest fires. Remote sensing support is very important for rescue
units when they are moving across vegetation before and during a fire and, also, for the
decision to deploy aircraft. We can use LiDAR and aerial image data to create a navigation
analysis for rescue (fire brigade or military) vehicles—see also [18–20]. These data can
be supplemented by active fire scenes using infrared sensors or aerial or UAV images.
Among the most effective data sources for Cross-Country Movement (CCM) navigation
and optimal pathfinding across a forest are LiDAR data and the products of its analysis.
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A prerequisite for the success of this analysis is an up-to-date picture of vegetation data
obtained by laser scanning. This precondition is especially crucial for forest stands, where
data become quickly outdated due to vegetation growth.

The primary focus of this article was the LiDAR data update for the forest stand
structure, a simulation of the creation of a forest structure with the subsequent creation
of a model for navigating the movement of a rescue vehicle between trees as obstacles in
the terrain. The reason for designing the method of detecting the current forest structure
was that LiDAR data in the Czech Republic is gradually becoming obsolete as a result
of tree growth. The following procedure was chosen: (1) Selection of the most common
type of forest stands in the territory of the Czech Republic with the predominant spruce
tree (Picea abies). Obtaining LiDAR data characterizing DSM with a density of 1 × 1 m.
(2) Obtaining inventory data on the growth of spruce trees from MENDEL University, Brno.
(3) Detection of DSM accuracy by geodetic and photogrammetric method. (4) Corrections of
tree heights due to DSM density and tree growth. (5) Creation of forest structure by random
distribution. (6) Selecting a simulated area where a fire could occur (older, drier forest).
(7) Calculating the simulated shortest route for a particular vehicle (outside the area of the
fire). The research results presented in this paper represent a new methodology of updating
a digital surface model (DSM) or canopy height model (CHM) using the equations of tree
growth and vegetation growth curves. DSM and Digital Elevation Model (DEM) data
evaluated for forestry passability were scanned by LiDAR in 2013. CHM data and field
measurements were used for determining the approximate forest structure (tree height,
DBH, and stem spacing between trees). The described methods were tested on a spruce
forest stand composed only from one type of tree—Sitka spruce (Picea abies), situated
approximately 300 m south of the village of Brno-Utechov (see Figure 1), where the heights
of trees in the Krtiny Training Forest Enterprise (TFE) area were detected and measured.
This spruce forest was chosen because of the availability of a series of aerial photos and
LiDAR data. Additionally, the forest is highly representative, as it contains the tree species
most commonly found in many Central European countries. The current age of this forest
is about 30 years.
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Figure 1. Location and character of TFE Krtiny.

The approximate forest structure with the calculated tree density (stem spacing) was
used for modeling fire brigade vehicle maneuvers between the trees. DBH data were used
in cases where it was easier for the vehicle to override the trees rather than maneuver
between them. DBH data were also used for the calculation of the distances between trees.
Due to the availability of a DSM with a density of 1 × 1 m, it was impossible to precisely
determine the locations of individual trees, so a random simulated forest structure was
created based on the number of trees per hectare.

The article describes the methodology of calculation of the rescue vehicle movement
using simulated areas of a burning forest. In the case of a real fire, we can use the above-
mentioned LiDAR data (DSM data) or current data from different sensors. The type of
sensors and the accuracy of the data obtained will have a significant impact on the terrain
analysis and search algorithm for optimal rescue vehicle routes. Only some scattered
and low-resolution data of the fire can help. If the optimal route for a special vehicle
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(fire-resistant rescue vehicle, tank, etc.) that will move through a burning forest is to be
calculated, we will need detailed vegetation and elevation data with a meter or decimeter
resolution for reconnaissance of fallen trees, boulders, etc.

2. Materials and Methods

Interventionary studies involving animals or humans, and other studies that require
ethical approval, must list the authority that provided approval and the corresponding
ethical approval code. For modeling forest passability for fire brigade vehicles, it was first
necessary to specify a forest structure using the DSM of a forest created from a LiDAR data
source using DEM, photogrammetric method, and tachymetry to correct the tree heights. In
order to update the CHM and determine the above-mentioned forest structure parameters,
tree growth equations and vegetation growth curves were used. However, DSM forest data
change quite rapidly, so it was necessary to adjust the CHM and forest structure model.
Having an updated forest structure, we finally created a model of its passability by a chosen
fire brigade vehicle Tatra 815.

2.1. Forest Structure Determination

The most important elements of forest structure determination for modeling vehicle
passability across vegetation are the average distances between trees and DBH. When
determining the forest structure while not using the most recently acquired LiDAR data, it
can be assumed that the older trees are taller (see [21–24] and Figure 2), the diameter of the
trunks grow, the distances and between trees also grow over time, but the number of trees
per unit area decreases. In order to derive the age, distances, and DBH of trees from their
height, a homogeneous forest, composed only from one type of spruce, was chosen. All
following equations and vegetation growth curves were provided by the Mendel University
in Brno and obtained from inventory data.

The number of trees per square unit N·ha-1 depends on the age of vegetation, slope
and other parameters (see Fatehi et al. [25]). We can express it using Formula (1) [26,27]:

N = B·t−m, (1)

where B and m are the constants of vegetation stand quality, and t is an age.
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When we know the age of the vegetation (which can be derived from the height) we
can determine the number of trees per hectare (N)—see [21]. The number of trees per
unit area is also highly important for determining the average distances between trees
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within a given forest unit—Mean Tree Spacing (MTS). We can express the MTS using
Formula (2) [21,28]:

MTS ∼=
√

40, 000
π·N − MDBH (2)

where N—number of trees per 1 ha, and MDBH—mean DBH.
The last important element of forest structure is DBH. Tree trunks are measured at the

height of an adult’s breast. However, this is defined differently in different countries and
situations. The convention is now 1.3 m above ground level. The DBH of trees is a function
of the N—number of trees per 1 ha, the age of vegetation, slope, and other parameters. We
can express it using Formula (3):

N = B·DBH−k, DBH = (N/B)k (3)

where B and k are the constants of the vegetation stand quality. Each type of tree has its
own constant B and k—see also [26].

All of the above-described methodology defining the relationships between forest
structure parameters were applied in the context of obsolete LiDAR data acquired in 2013.
The procedure for determining the individual parameters of the forest structure is shown
in Figure 3.
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Figure 3. Dependence of forest structure determination.

The heights of the trees are extracted from LiDAR or DSM data. The ages of trees are
possible to determine from the inventory data or from the growth equations and parameters.
Additionally, the number of trees and DBH can be directly determined from the inventory
data or calculated from N.

2.2. Forest Structure Updating

For determining the CHM while not using the most recently acquired LiDAR data
(from 2013), it was necessary to recalculate the tree height according to spruce age—see
Figure 2 and Formula (1). For determining the forest structure parameters, LiDAR data and
the derived DSM (CHM) were used. Since the default DSM data density was 1 m × 1 m, it
was necessary to verify how the actual spruce heights differ from the heights determined
by the DSM. Verification was done using a photogrammetric evaluation of the aerial
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photographs and geodetic method (tachymetry) for accuracy verification—see also [21].
Geodetic measurements of the positions of 116 trees and their heights were carried out
by a total station Leica TC 1500. Geodetic survey of the tree heights was taken as the
most accurate measurement method. Those tree height estimations were determined
photogrammetrically in different time periods with the aid of color aerial photographs. The
Military Geographical and Hydrometeorological Office (VGHMÚř) Dobruška took them at
regular photographing periods in the Czech Republic (2003, 2006, 2009, 2012, and 2014).
A detailed description of the photogrammetric evaluation was given in [21]. Tree height
LiDAR data do not match those more accurate from aerial photographs due to the fact that
the density of the reflected laser beams (1 m × 1 m) is not sufficient enough to catch the
peaks of trees—see the red dots in Figure 4. The LiDAR average tree height is 6 m less than
the average height determined by the photogrammetric method [22]. Photogrammetric
evaluation and tachymetric verification revealed that, because of the lower density of the
LiDAR data (1 m × 1 m), the treetops were not captured, and DSM needed to be corrected
(increase in height)—see the red lines in Figure 4.

Appl. Sci. 2022, 11, x FOR PEER REVIEW 6 of 15 
 

2.2. Forest Structure Updating 
For determining the CHM while not using the most recently acquired LiDAR data 

(from 2013), it was necessary to recalculate the tree height according to spruce age—see 
Figure 2 and Formula (1). For determining the forest structure parameters, LiDAR data 
and the derived DSM (CHM) were used. Since the default DSM data density was 1 m × 1 
m, it was necessary to verify how the actual spruce heights differ from the heights deter-
mined by the DSM. Verification was done using a photogrammetric evaluation of the aer-
ial photographs and geodetic method (tachymetry) for accuracy verification—see also 
[21]. Geodetic measurements of the positions of 116 trees and their heights were carried 
out by a total station Leica TC 1500. Geodetic survey of the tree heights was taken as the 
most accurate measurement method. Those tree height estimations were determined pho-
togrammetrically in different time periods with the aid of color aerial photographs. The 
Military Geographical and Hydrometeorological Office (VGHMÚř) Dobruška took them 
at regular photographing periods in the Czech Republic (2003, 2006, 2009, 2012, and 2014). 
A detailed description of the photogrammetric evaluation was given in [21]. Tree height 
LiDAR data do not match those more accurate from aerial photographs due to the fact 
that the density of the reflected laser beams (1 m × 1 m) is not sufficient enough to catch 
the peaks of trees—see the red dots in Figure 4. The LiDAR average tree height is 6 m less 
than the average height determined by the photogrammetric method [22]. Photogram-
metric evaluation and tachymetric verification revealed that, because of the lower density 
of the LiDAR data (1 m × 1 m), the treetops were not captured, and DSM needed to be 
corrected (increase in height)—see the red lines in Figure 4. 

 
Figure 4. Dependence of a forest structure determination. 

Figure 4 shows a series of average spruce heights from 2003, 2006, 2009, 2012, and 
2014 determined for the photogrammetry (blue points) and the average height of the same 
forest determined from the DSM in 2013 from the LiDAR data (red point). The height 
difference for 2013 was about 6 m; that is, we needed to adjust the values of the DSM 
heights (CHM) for this constant. Due to the corrected elevations of the DSM, it was possi-
ble to define a new forest structure (see the methodology above) and calculate the tree 
distances and stem diameters. For the forest structure simulation, the normal Gauss dis-
tribution of distances and DBH were used. The mean values of height, distance, and DBH 
were used at 18 m, 4 m, and 0.25 m.  
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Figure 4 shows a series of average spruce heights from 2003, 2006, 2009, 2012, and 2014
determined for the photogrammetry (blue points) and the average height of the same forest
determined from the DSM in 2013 from the LiDAR data (red point). The height difference
for 2013 was about 6 m; that is, we needed to adjust the values of the DSM heights (CHM)
for this constant. Due to the corrected elevations of the DSM, it was possible to define a
new forest structure (see the methodology above) and calculate the tree distances and stem
diameters. For the forest structure simulation, the normal Gauss distribution of distances
and DBH were used. The mean values of height, distance, and DBH were used at 18 m,
4 m, and 0.25 m.

2.3. Passability Model

To find the optimal route through the forest, it is necessary to know: parameters of the
vehicle, parameters of the trees, start and end points of a route, and impassable areas. The
most important parameters of a vehicle are vehicle width (VW), length, turning radius, and
tolerance (T)—see Figure 5.



Appl. Sci. 2022, 12, 3939 7 of 14

Appl. Sci. 2022, 11, x FOR PEER REVIEW 7 of 15 
 

2.3. Passability Model  
To find the optimal route through the forest, it is necessary to know: parameters of 

the vehicle, parameters of the trees, start and end points of a route, and impassable areas. 
The most important parameters of a vehicle are vehicle width (VW), length, turning ra-
dius, and tolerance (T)—see Figure 5.  

  
(a) (b) 

Figure 5. Fire and tested vehicles. (a) Fire vehicle Tatra 815 4 × 4, Length/Width/Height: 7950/2550/3000 
mm. (b) Tested terrain vehicle Tatra 815 8 × 8, Length/Width/Height: 8950/2550/3300 mm. 

T determines the minimum distance of the vehicle from a trunk to pass between two 
trees safely. To simplify the passability model, T also replaces the effect of other vehicle 
parameters (length, turning radius, etc.). In turn, tree parameters refer to those character-
istics that are key to finding the optimal route in the forest. In our case, those parameters 
are stem simulated coordinates, mean tree spacing (MTS), mean DBH, mean riding corri-
dor (MRC), and a VW. We can express the relationship between MTS, MDBH, and MRC 
(see Figure 6) using Formula (4):  

MRC = MTS − MDBH. (4)

If we do not know the exact coordinates of each tree (which is the usual situation), 
we can generate the simulated forest structure from average values—see the procedure 
above. We use the process of random tree deployment to determine the probability of 
crossing the forest. 

 
Figure 6. The relationship between particular tree spacing, DBH, and riding corridor. 

The start and end points of a route can be substituted by an initial and final area in a 
forest region. It is usually not possible to go between these points or areas directly, and 
we must maneuver between tree stems. Impassable objects (steep slopes, rocks, lakes, riv-
ers, burning forest, etc.) can be obtained from GIS databases or using aerial or satellite 
images. For the purposes of modeling vehicle mobility in the above-described forest, the 
impassable areas of the simulated burning polygons were chosen, though other objects 
(obstacles) were not considered. To search the optimal vehicle route, the following algo-
rithms were used (see Figure 7): Voronoi graph and Delaunay triangulation, Dijkstra al-
gorithm, and optimization of the fractional line. 

Figure 5. Fire and tested vehicles. (a) Fire vehicle Tatra 815 4 × 4, Length/Width/Height: 7950/2550/
3000 mm. (b) Tested terrain vehicle Tatra 815 8 × 8, Length/Width/Height: 8950/2550/3300 mm.

T determines the minimum distance of the vehicle from a trunk to pass between
two trees safely. To simplify the passability model, T also replaces the effect of other
vehicle parameters (length, turning radius, etc.). In turn, tree parameters refer to those
characteristics that are key to finding the optimal route in the forest. In our case, those
parameters are stem simulated coordinates, mean tree spacing (MTS), mean DBH, mean
riding corridor (MRC), and a VW. We can express the relationship between MTS, MDBH,
and MRC (see Figure 6) using Formula (4):

MRC = MTS − MDBH. (4)
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If we do not know the exact coordinates of each tree (which is the usual situation), we
can generate the simulated forest structure from average values—see the procedure above.
We use the process of random tree deployment to determine the probability of crossing
the forest.

The start and end points of a route can be substituted by an initial and final area in a
forest region. It is usually not possible to go between these points or areas directly, and we
must maneuver between tree stems. Impassable objects (steep slopes, rocks, lakes, rivers,
burning forest, etc.) can be obtained from GIS databases or using aerial or satellite images.
For the purposes of modeling vehicle mobility in the above-described forest, the impassable
areas of the simulated burning polygons were chosen, though other objects (obstacles)
were not considered. To search the optimal vehicle route, the following algorithms were
used (see Figure 7): Voronoi graph and Delaunay triangulation, Dijkstra algorithm, and
optimization of the fractional line.

Figure 7 shows the positions of individual trees (Vertex M)—blue points. The closest
two trees to the given tree create the Delaunay triangle—Figure 7b, and the most secure
route sections (Voronoi edges) are intersected in the Voronoi nods—blue lines in Figure 7c.
The Dijkstra algorithm was used to find the shortest routes from the nod of the graph given
to all other nods—see also [23,24]. Using Figure 7c, we can simulate a forest path (see
Figure 7d). Trees that were obstacles are marked in red, and Voronoi nods (pale blue points)
are connected with Voronoi edges (dark blue lines). All Voronoi edges are rated by weights.
These weights may represent the distances or time for which a vehicle passes through the
Voronoi edges. In the event that we search for the shortest route from point 1 to point 15,
the condition of the minimum sum of the Voronoi edges (weighing) is to be compliant with
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the shortest route—red line in Figure 7d passing through Voronoi nods 1-3-7-6-11-12-14-15,
since the sum of route segment values (3.0 m + 3.3 m + 0.8 m + 3.8 m + 1.2 m + 2.1 m +
1.6 m) = 15.8 m is the smallest (shortest) compared to all possible routes connecting points
1 and 15.
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(a) Set of trees generated from average MTS values. (b) The area is divided into elementary triangles
using Delaunay triangulation (each reference tree has its two closest neighbors). (c) Axes of triangle
sides create so-called Voronoy edges and Voronoy cells. (d) Voronoy edges represent the safest.

3. Results

The result of the creation of a forest structure from data obtained from the original
forest (see Figure 8) by generating random tree positions is shown in Figure 9. The size of
the analyzed forest area was 140 × 80 m (11,200 m2). The length of the vehicle’s passage was
212 m. The direct path between the starting point and the target is shown by a black line.
This path is generally unrealistic due to the tree stem obstacles (displayed as green points).
All possible paths (blue closed Voronoi polygons) that match the tree distances and vehicle
parameters have been computerized using Dijkstra algorithm and displayed in Figure 8
using our own software tools. Unfinished Voronoi polygons (ending between trees) are
nonbinding paths where the width of the vehicle does not allow passage between trees. We
can choose any of these blue passable routes, but only one will be the shortest (fastest)—the
red highlighted route. This route traverses around (between) the burning forest polygons.
The simulation of the polygons displaying the fire areas was done completely at random
by adding the points around the impassable zones (orange areas). These areas can be
complemented e.g., by satellite images or aerial photos. If we wanted to avoid these risky
places, we would have to create a security zone around the burning polygons—so-called
buffers—using GIS tools.
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Figure 9. Navigation on the shortest vehicle route (red track) avoiding the burning forest (orange
areas). Randomly spaced trees, approx. scale 1:1000.

There are also displayed the routes inside the areas of fires (blue lines inside the orange
polygons)—see Figure 9. These routes can be used later when the fires end, but they are
primarily not included into the calculation of the shortest route. For some types of vehicles,
such as tanks, we can also choose the route through the burning area and calculate the route
segments inside the orange polygons. The influence of other elements of the terrain (slope
gradient, soil properties, terrain surface roughness, forest paths, etc.) are not calculated.

The above-mentioned result of seeking an optimal forest path partially affected by a
fire may be modified in case when the forest structure is regular triangular or rectangular.
There are displayed all the possible routes and the shortest route—red line in the triangular
forest structure in Figure 10.
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The methodology for finding the optimal rescue vehicle path was based on verifying
the input data. Determining a forest structure from DSM data can be very unreliable,
especially when LiDAR data are obsolete. Therefore, the use of growth curves of trees
and derived vegetation parameters were used. These parameters were determined on a
relatively small area. Verification of the vegetation parameters by photogrammetric and
geodetic pathways lasted several months. The results of the presented model are valid
for the designated coniferous forest. The general application of the optimal vehicle route
determination will depend on the type of trees (coniferous, deciduous, and mixed). The
author assumes that the presented model for finding the optimal route of a vehicle will be
better utilized with the development of mapping methods aimed at determining the exact
coordinates of the trees.

4. Discussion

The described methodology for determining the possibility of moving the fire brigade
vehicles in forest vegetation can be used if tree position data or forest structure (generated
from photogrammetric data or from LiDAR data) are available. In both cases, the same
algorithm can be used to find the optimum forest path. In case we have more precise
tree coordinates (from terrestrial or remote sensing sensors), the calculated route of the
vehicle will be more reliable. Although the methods of directly determining the exact
tree position by remote sensing data are constantly developing, the forest structure is
often determined using DSM (CHM) methods. This is due to the financial cost of the
high density of LiDAR data, as well as the personnel demand for data acquisition using
photogrammetric methods. The quality of the photogrammetric evaluation depends on
the scale of the images and the evaluator’s experience. The main problem is to target the
marker at the tree’s top point, which is above the tree trunk. The accuracy of tree position
evaluation is higher for coniferous trees than for leafy vegetation. The disadvantage of
the photogrammetric method is the lower performance of manual evaluation compared
to the possibility of automated evaluation of LiDAR data. LiDAR methods are faster
than photogrammetric methods, and they allow a more efficient assessment of the forest
structure and determination of the possibilities of vegetation passability without a manual
evaluation. LiDAR methods can also be better combined with other remote sensing data
sources (infrared, multispectral, radar, etc.). For example, an infrared spectrum can be
used to map environmental and fire temperature characteristics, and at night, multispectral
imagery can be used to classify species, and radar data is appropriate for mapping a burning
forest covered with smoke or clouds. However, these methods have a disadvantage when
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scanning vegetation with a low density of DSM elevation points (smaller than 1 m × 1 m)
and in the case of DTM data absence. On the other hand, the repeated photogrammetric
evaluation of the representative forest stands and the data from DSM could bring about
a new approach for forest growth analysis and could be a sufficient method for DSM
updating in different growth conditions of forest stands.

The results of this experiment showed that this method is fully applicable for the
DSM generated from LiDAR data. The method can be appropriately implemented as
a relatively inexpensive updating tool for GIS technology between two laser scanning
campaigns of a territory. This method can also be refined using the growth curves of
individual types of trees. Forest growth characteristics are very important due to the age
of LiDAR DSM data. The results of photogrammetric measurements from aerial images
taken at consecutive time intervals and statistical calculations show that the growth curves
of the trees are initially steeper, but vegetation growth later slows. It is also necessary to
investigate the relationships between the natural environment factors and specific canopy
growth. The above-mentioned DSM updating method could be used for many applications,
e.g., in forestry, military, etc.—see, e.g., [29–33]. It should be noted that the tree height
correction values decrease with the increasing density of the LiDAR data. At the DSM
density 1 m × 1 m, the average correction is approx. +6 m. At the DSM points density of
1 dm × 1 dm, it is possible to estimate the average height corrections of spruce trees in
decimeters, depending on the age of the vegetation. Height corrections of the DSM can
significantly affect the computationally generated forest structure and, hence, the vehicle
motion models. The resulting model of forest crossing by a vehicle will depend, to a large
extent, on the quality of the forest structure data. This study focused on a spruce forest—the
predominant tree species in Central Europe. In general, it can be said that the species of
vegetation may be variable in different forest groups. From this point of view, the study
presented in this article can be considered as partially applicable. Using LiDAR/DSM
data, the determination of the deciduous forest structure and positioning of the tree trunks
will be more difficult, especially due to the crown surface diversity. From this point of
view, it can be assumed that the model of finding the optimal vehicle path through the
deciduous forest will be less reliable. The success of these models will largely depend on
the resolution, coverage, and actuality of LiDAR data, as well as on the accuracy of the
forest fire localization data. It should be noted that the use of this methodology in practice
has a number of limitations resulting from data that cannot include all objects in the forest,
such as lying trees, stones, low tree branches, etc. [34].

Tree branches can be an important obstacle to the movement of rescue vehicles. It
mainly concerns young forests or deciduous forests, where branches are thicker and located
below the ground. In coniferous stands, the lower branches of older trees are dry and
thin and do not represent a major obstacle for heavy wheeled or tracked vehicles. Below
is Table 1, containing measured data of tree branching; the lowest branches were about
1–2 cm thick. The measurement of tree canopy branching was performed only on trees for
which resistance tensile forces were measured, not on all the trees in the area.

The problem is how to get the lower branch data. For this purpose, we plan to use
LiDAR data with a resolution in cm [35–37] and use the last but one reflection for this
measurement. Additionally, terrestrial LiDAR could help to solve this problem—we tested
it on a small area in March 2022—see Figure 11 below.

The author assumes that, in the near future, it will be possible to solve the coordinates
of trees, their DBH, and the characteristics of tree crown branches.

The spread of fire, depending on a number of factors, can be very variable, and
actual data from burning areas will not always be available. Additionally, visibility can be
significantly affected by smoke and the daytime. It should be noted that the calculation
of the optimal vehicle route was based on the width of the vehicle. The reliability of
route determination also depends on other vehicle parameters, such as vehicle length and
height and minimum turning radius. This model did not even include a case where the
vehicle would go back (e.g., in case of a spreading fire). For the more accurate calculations
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of a vehicle route, the impact of the side slope should be also considered. Notable was
also the driver’s ability to overcome difficult terrain and to maneuver between trees in
crisis situations.

Table 1. Branch position of selected trees.

Tree Num. Tree Stem Diameter
DBH (cm)

Height of Dry
Branches (cm)

(φ 1–2 cm)

Height of Semi-Dry
Branches (cm)

Height of
Green Branches

(cm)

Tree Height
(cm)

1 21.0 310 820 1080 1750
2 19.5 350 800 1040 1600
3 12.8 460 690 950 1460
4 19.0 490 870 1150 1730
5 13.9 none 720 930 1590
6 17.0 230 450 990 1710
7 17.8 380 510 650 1710
8 12.4 550 850 920 1470
9 22.1 170 500 1030 1730

10 18.3 330 770 900 1640
11 19.0 400 570 840 1640
12 16.7 560 830 970 1620
13 25.3 360 830 960 2050
14 23.7 none 340 1040 1870
15 22.9 350 550 930 1730
16 15.3 none 370 780 1525
17 14.3 260 470 750 1490
18 22.0 280 580 770 1550
19 10.8 none 380 650 1100
20 10.5 none 320 515 1030
21 14.5 770 990 1180 1770
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5. Conclusions

The primary aim of this article was to introduce the theoretical aspects, methods, and
results of modeling the possibilities of firefighting rescue vehicle mobility in forest areas
during fires using remote sensing data. The main result of the presented research is the
methodology of the forest structure creation from DSM data, updating due to the growing
vegetation parameters, as well as the proposal of the methodology of finding the optimum
path of the vehicle to cross the forest, which is considerably more difficult than navigation
on the roads.

Although the presented methods are approximate and their applications depend on
a number of other factors, the author of the article believes that the presented methods
and research results will be applicable in relation to the severity of damage caused by fire.
The author also expects further developments of the vehicle navigation methodology in
forest regions and the calculations of other factors influencing the search for optimal rescue
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vehicle routes (low vegetation, lower branches of trees, inclination of slopes, soil influence,
terrain surface, etc.). It will also be important to develop the theory and modeling of fire
spread in forest areas and to link these models to rescue vehicle navigation.
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37. Krůček, M.; Král, K.; Cushman, K.; Missarov, A.; Kellner, J.R. Supervised Segmentation of Ultra-High-Density Drone Lidar for

Large-Area Mapping of Individual Trees. Remote Sens. 2020, 12, 3260. [CrossRef]

http://doi.org/10.1007/s12665-015-4759-y
http://doi.org/10.17221/9/2016-JFS
http://doi.org/10.3390/f8060212
http://doi.org/10.5194/isprs-archives-XLI-B4-25-2016
http://doi.org/10.1016/j.sbspro.2010.12.381
http://doi.org/10.1016/j.rse.2015.12.012
http://doi.org/10.3390/rs13234811
http://doi.org/10.3390/f10030273
http://doi.org/10.3390/rs12193260

	Introduction 
	Materials and Methods 
	Forest Structure Determination 
	Forest Structure Updating 
	Passability Model 

	Results 
	Discussion 
	Conclusions 
	References

