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Abstract: The pandemic of COVID-19 has caused millions of infections, which has led to a great loss
all over the world, socially and economically. Due to the false-negative rate and the time-consuming
characteristic of the Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, diagnosing
based on X-ray images and Computed Tomography (CT) images has been widely adopted to confirm
positive COVID-19 RT-PCR tests. Since the very beginning of the pandemic, researchers in the
artificial intelligence area have proposed a large number of automatic diagnosing models, hoping to
assist radiologists and improve the diagnosing accuracy. However, after two years of development,
there are still few models that can actually be applied in real-world scenarios. Numerous problems
have emerged in the research of the automated diagnosis of COVID-19. In this paper, we present a
systematic review of these diagnosing models. A total of 179 proposed models are involved. First,
we compare the medical image modalities (CT or X-ray) for COVID-19 diagnosis from both the
clinical perspective and the artificial intelligence perspective. Then, we classify existing methods into
two types—image-level diagnosis (i.e., classification-based methods) and pixel-level diagnosis (i.e.,
segmentation-based models). For both types of methods, we define universal model pipelines and
analyze the techniques that have been applied in each step of the pipeline in detail. In addition, we
also review some commonly adopted public COVID-19 datasets. More importantly, we present an
in-depth discussion of the existing automated diagnosis models and note a total of three significant
problems: biased model performance evaluation; inappropriate implementation details; and a low
reproducibility, reliability and explainability. For each point, we give corresponding recommendations
on how we can avoid making the same mistakes and let AI perform better in the next pandemic.

Keywords: artificial intelligence; COVID-19 diagnosis; medical image analysis

1. Introduction

The SARS-CoV-2 (COVID-19) pandemic began in the spring of 2020. In the battle be-
tween humans and the novel coronavirus, medical professionals and scientists contributed
a large amount. At the same time, a popular reaction from other research communities,
including the AI community, is “how can we help?”. In practice, the diagnosis of COVID-19
can be based on two methods: the Reverse Transcription Polymerase Chain Reaction (RT-
PCR) test and radiography imaging (X-ray or CT scan). Current AI technologies can hardly
help with RT-PCR tests, but they can assist the radiography imaging-based diagnosis of
COVID-19 from a computer vision perspective. In the virus-stricken area, radiologists have
a heavy burden on analyzing massive scanning images, so automated diagnosis models
have great potential value in supporting medical decisions. The AI community responded
very quickly to this point. The first automated diagnosis model (from Wang et al. [1]) was
posted on MedRXiv on 17 February 2020, when the total number of confirmed cases was
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only around 64,000 (current global confirmed cases: more than 400,000,000 (data retrieved
from https://covid19.who.int, accessed on 11 February 2022)), nearly a month before the
World Health Organization (WHO) announced COVID-19 as a global pandemic (12 March
2020). As shown in Figure 1, following the work of Wang et al. [1], a large number of
researchers dived into this field, making the automated diagnosis of COVID-19 become a
noticeable research hotspot in the AI community. Meanwhile, an unprecedented amount of
papers have been presented. As of this writing, there are more than 1320 manuscripts on
arXiv (Google Scholar search: COVID-19 [“CT” OR “X-ray”] [“machine learning” OR “deep
learning” OR “artificial intelligence”] site:arxiv.org) and 535 manuscripts on medRXiv
(Google Scholar search: COVID-19 [“CT” OR “X-ray”] [“machine learning” OR “deep learn-
ing” OR “artificial intelligence”] site:medrxiv.org). As shown in Table 1, at least 13 special
issues on this topic have been held by various journals. Moreover, there are more than
20 review or survey papers [2] that have been presented to the best of our knowledge.
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Figure 1. Accumulated count of automated COVID-19 diagnosing models during the 3 months after
the first model was proposed (17 February to 17 May 2021). The data are obtained according to the
initial submission date on arXiv/medRXiv.

The research on the automated diagnosis of COVID-19 is highly interdisciplinary.
A good study should be qualified with both clinical standards and AI standards. From the
clinical perspective, the model should avoid making mistakes such as improper data
collection, data prepossessing and data augmentations. From the AI perspective, the models
should have rigorous experiment design, enough robustness and a good generalization
ability. However, unfortunately, while there are thousands of studies that appeared in
these two years, very few of them are qualified from both sides. On 27 March 2020, a
group from Europe presented an early review of the diagnosis models [3,4]. Among
hundreds of covered studies, they found that “all models were rated at high or unclear
risk of bias” according to the result obtained from PROBAST [5] (a prediction model risk
of bias assessment tool). On 13 November 2020, Summers [6] described AI for COVID-19
imaging as “A Hammer in Search of a Nail”. He called for moving beyond studies that
repeatedly show that AI can detect COVID-19. Reliable diagnosis models that can meet
real-world clinical requirements are more urgently needed. However, this need was not
met by subsequent studies. On 15 March 2021, a group from the UK [7] published an article
pointing out that “our review finds that none of the models identified are of potential clinical
use due to methodological flaws and/or underlying biases”. Later, a review paper [8]
noted that “The vast majority of manuscripts were found to be deficient regarding potential
use in clinical practice”.

The problems of the research on the automated diagnosis of COVID-19 are not limited
to an insufficient application value. A group from the University of Cambridge reviewed
studies of AI models for COVID-19 diagnosis and found an “apparent deterioration in
standards of research” [9]. Hryniewska et al. [10] listed numerous mistakes that were made
during the research of the automated diagnosis of COVID-19. Cruz et al. [11] analyzed
public COVID-19 datasets and found that most of them had significant problems that
would lead to a high risk of model bias.

https://covid19.who.int
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Table 1. The special issues that have been held by various journals during 2020–2022. All links are accessed on 5 March 2022.

Special Issue on Submission Deadline Journal Publisher Impact Factor

Artificial Intelligence and Information Technologies for COVID-19 April 2020 Computers, Materials & Continua Tech Science 3.772
https://techscience.com/cmc/special_detail/COVID-19

Bioengineering Techniques and Applications Against COVID-19 April 2020 Bioengineering MDPI 4.673
https://www.mdpi.com/journal/bioengineering/special_issues/against_COVID-19

Intelligent Analysis of COVID-19 Imaging Data June 2020 Medical Image Analysis Elsevier 19.116
https://www.sciencedirect.com/journal/medical-image-analysis/special-issue/10W9DDB50B2

AI for COVID-19 July 2020 IEEE Transactions on Big Data IEEE 3.344
https://www.computer.org/digital-library/journals/bd/call-for-papers-special-issue-on-ai-for-covid-19

Artificial Intelligence Techniques for COVID-19
Imaging Data—Recent Advances

January 2021 Health Informatics Journal SAGE 2.681

https://journals.sagepub.com/page/jhi/call-for-papers/special-collections/artificial-intelligence

Deep Learning: AI Steps Up in Battle against COVID-19 May 2021 International Journal of Environmental
Research and Public Health

MDPI 3.531

https://www.mdpi.com/journal/ijerph/special_issues/AI_against_COVID-19

AI and Data Science in COVID-19 August 2021 International Journal of Data
Science and Analytics

Springer 3.239

https://www.springer.com/journal/41060/updates/19117582

Artificial Intelligence for COVID-19 Diagnosis October 2021 Diagnostics MDPI 3.24
https://www.mdpi.com/journal/diagnostics/special_issues/AI_COVID-19

COVID-19: Diagnostic Imaging and Beyond February 2022 Journal of Clinical Medicine MDPI 4.242
https://www.mdpi.com/journal/jcm/special_issues/COVID-19_Diagnostic_Imaging_and_Beyond

Multidisciplinary Approaches to Manage
COVID-19: From Surveillance to Diagnosis

February 2022 Diagnostics MDPI 3.24

https://www.mdpi.com/journal/diagnostics/special_issues/COVID_surveillance_diagnosis

Artificial Intelligence Computing and Applications for COVID-19 March 2022 Applied Sciences MDPI 2.679
https://www.mdpi.com/journal/applsci/special_issues/Computing_and_Applications_for_COVID_19

Surveillance Strategies and Diagnostic Procedures:
Integrated Approaches to Manage the COVID-19 Outbreak

April 2022 Diagnostics MDPI 3.24

https://www.mdpi.com/journal/diagnostics/special_issues/COVID-19_diagnostic_strategies

COVID-19 No submission deadline Healthcare Informatics Research Springer 3.261
https://www.springer.com/journal/41666/updates/17947710

https://techscience.com/cmc/special_detail/COVID-19
https://www.mdpi.com/journal/bioengineering/special_issues/against_COVID-19
https://www.sciencedirect.com/journal/medical-image-analysis/special-issue/10W9DDB50B2
https://www.computer.org/digital-library/journals/bd/call-for-papers-special-issue-on-ai-for-covid-19
https://journals.sagepub.com/page/jhi/call-for-papers/special-collections/artificial-intelligence
https://www.mdpi.com/journal/ijerph/special_issues/AI_against_COVID-19
https://www.springer.com/journal/41060/updates/19117582
https://www.mdpi.com/journal/diagnostics/special_issues/AI_COVID-19
https://www.mdpi.com/journal/jcm/special_issues/COVID-19_Diagnostic_Imaging_and_Beyond
https://www.mdpi.com/journal/diagnostics/special_issues/COVID_surveillance_diagnosis
https://www.mdpi.com/journal/applsci/special_issues/Computing_and_Applications_for_COVID_19
https://www.mdpi.com/journal/diagnostics/special_issues/COVID-19_diagnostic_strategies
https://www.springer.com/journal/41666/updates/17947710
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Review and survey papers are also important. A good review can help researchers to
quickly understand the current status and background of the research field, reducing the
risk of conducting repetitive work. In June 2020, we contributed a conference paper [12]
that reviews the automated diagnosis model of COVID-19. In that paper, we pointed out
that the literature coverage of existing reviews is insufficient, as demonstrated in Table 2.
Meanwhile, they lack proper organization, a comparison of performance and an in-depth
analysis of shortcomings. Specifically, in several reviews, diagnosing models are divided
into CT-based models and X-ray-based models, but CT-based models and X-ray-based
models share many similarities in preprocessing, feature extraction, classification and
evaluation. Many early reviews contain repetitive restatements summarizing previous
papers, failing to provide their own insights and new perspectives and failing to point out
clear directions in how AI will be used in practical medicine in the future. These points are
partially confirmed by a recent paper [2] that systematically analyzes the methodological
quality of COVID-19 review papers.

Table 2. Summarizing existing review or survey papers related to automated diagnosis of COVID-19.

Reference Date Covered Methods Covered Datasets

Systematic review and critical appraisal of prediction models
for diagnosis and prognosis of COVID-19 infection [3]

March 2020 6 -

Mapping the landscape of artificial intelligence applications
against COVID-19 [13]

March 2020 6 -

Artificial Intelligence in the Battle against Coronavirus
(COVID-19): A Survey and Future Research Directions [14]

April 2020 12 -

Detection of Covid-19 From Chest X-ray Images Using
Artificial Intelligence: An Early Review [15]

April 2020 5 -

The Role of Imaging in the Detection and Management
of COVID-19: A Review [16]

April 2020 23 -

Novel coronavirus (COVID-19) diagnosis using computer
vision and artificial intelligence techniques: a review [17]

June 2020 21 7

A Survey on the Use of AI and ML for Fighting the
COVID-19 Pandemic [18]

August 2020 35 -

Sonographic Diagnosis of COVID-19: A Review of Image
Processing for Lung Ultrasound [19]

September 2020 12 -

Survey of the Detection and Classification of Pulmonary
Lesions via CT and X-ray [20]

December 2020 39 26

Medical imaging and computational image
analysis in COVID-19 diagnosis: A review [21]

June 2021 51 -

Deep neural networks for COVID-19 detection and diagnosis
using images and acoustic-based techniques: a recent review [22]

August 2021 27 10

Diagnosis of COVID-19 Using Machine Learning and
Deep Learning: A review [23]

October 2021 52 -

(Ours) Let AI Perform Better Next Time—A Systematic Review of Medical
Imaging-based Automated Diagnosis of COVID-19: 2020–2022

April 2022 179 15

Therefore, based on our previous conference paper, we aim to present a systematic re-
view for the 2-year (2020–2022) development of the medical imaging-based automated diag-
nosis of COVID-19 in this paper. We classify existing methods into two types—classification
and segmentation—then define universal model pipelines and analyze the techniques that
have been used in each step. We also review the existing public datasets. More importantly,
we summarize the problems that emerged in the research on this field, and provide some
comments and suggestions on how AI can perform better in the next pandemic. The rest
of this paper is organized as follows. We first discuss the input modalities of automated
diagnosis models in Section 2. In Sections 3 and 4, we, respectively, present a systematic
review of existing methods and datasets. Section 5 discusses the limitation of existing
methods and present corresponding recommendations, and Section 6 concludes this paper.
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2. Input Modalities: CT or X-ray
2.1. Clinical Perspective

An early study (March 2020) pointed out that fever, cough, myalgia, fatigue, expectora-
tion, and dyspnea are the main clinical symptoms of COVID-19 patients [24]. These symp-
toms can be used to diagnose COVID-19. However, later research shows that many infected
patients (estimated as at around 20%) can be asymptomatic, and that those asymptomatic
patients play an important role in the transmission of COVID-19 [25–27]. Real-time RT-PCR
has proven to be a much more effective way to diagnose COVID-19, but it still has the risk
of false-negative and false-positive results [28].

To solve this issue, medical imaging (CT or X-ray)-based diagnoses can be used as
a complementary method to correct false-negative RT-PCR tests. In February 2020, a
group from China [29] found that some patients with positive chest CT findings may
present with negative results of RT-PCR tests for COVID-19. CT patterns of COVID-19
includes Ground-Glass Opacities (GGO), vascular enlargement, bilateral abnormalities,
lower lobe involvement and posterior predilection [30]. Fang et al. [31] reported that
the sensitivity of CT-based diagnosis was greater than that of RT-PCR (98% vs. 71%).
Meanwhile, chest X-ray imaging has also proven to be an effective tool for diagnosing
COVID-19 [32]. Cozzi et al. [33] showed that there are several commonly observed features
in chest X-ray images, including lung consolidations, GGO, nodules and reticular–nodular
opacities. Rousan et al. [32] showed that nearly half of COVID-19 patients have abnormal
chest X-ray findings, and that GGO in lower lobes is the most common finding. Some
typical examples of COVID-19 CT and X-ray features can be found in Figure 2.

CT images: accurate but expensive X-ray images: less accurate but cheaper

Figure 2. Typical CT (left) [30] and chest X-ray (right) [32] images of COVID-19-infected patients.
The right subfigure a–f represents different cases, please refer to [32] for more details.

At present, a (repeated) RT-PCR test is the most commonly adopted COVID-19 diag-
nosing approach due to its scalability and relatively high sensitivity. Medical imaging-based
diagnosis is used as a complementary method to the RT-PCR test. Comparing CT and
X-ray-based diagnoses, a CT-based diagnoses are much more accurate (and even better
than RT-PCR) but much more expensive, whereas X-ray-based diagnoses are less accurate
but less expensive [34–36].

2.2. Artificial Intelligence Perspective

From the perspective of using artificial intelligence algorithms, the most significant dif-
ference between CT and X-ray images is the input shape. As shown in Figure 3, a CT image
contains a series of slices; therefore, the input has multiple channels. However, there are
also some methods that ignore the multiple channels and treat each slice independently,
leading to the loss of spatial contextual information. Comparatively, X-ray images only
have a single channel.
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Figure 3. Top: CT image contains multiple channels, whereas X-ray image only has a single channel.
Bottom: the proportion of CT/X-ray-based methods and datasets.

Despite the difference in data dimension, there are not many other differences be-
tween CT and X-ray images from the artificial intelligence perspective, since most existing
methods do not utilize any explicit domain knowledge. Therefore, the number of CT-based
methods and X-ray based methods are approximately equal (49% vs. 53 (some methods
are compatible with both CT and X-ray images)) among the covered papers in this review.
However, we found that, among CT-based and X-ray based methods, the proportion of
classification methods and segmentation methods is different. CT-based segmentation
methods account for 20%, whereas X-ray-based segmentation methods account for only
3%. The reason might be the difficulty of the X-ray-based segmentation task. Meanwhile, it
can also be partially explained by the imbalance in the dataset type: the proportion of the
CT-based segmentation dataset is more than that of the X-ray-based segmentation dataset
(40% vs. 29%).

3. Automated Diagnosis of COVID-19

Current automated diagnosis methods of COVID-19 can be divided into two categories:
image-level diagnosis and pixel-level diagnosis. Image-level diagnosis refers to the methods
that predict the label (e.g., COVID-19/normal) from a given medical image. Pixel-level
diagnosis can further provide the location of the lesion via predicting a segmentation mask.
Since most image-level and pixel-level methods are based on different neural network
architecture (i.e., image classification network, such as ResNet [37], and image segmentation
network, such as U-Net [38]), we will review each type of method separately in this section.
Image-level diagnosis methods will be firstly introduced in Section 3.1, whereas pixel level
methods will be presented in Section 3.2.

3.1. Image-Level Diagnosis: Classification-Based Models
3.1.1. Overview

To give a formal definition of the image-level diagnosis of COVID-19, suppose we
have a dataset D = {(Xi, Yi)}N

i=1 with N samples, where Xi and Yi are the ith input image
and the class label of the corresponding image. Our goal is to learn a function f , which
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is usually a Convolutional Neural Network (CNN) [39], to predict the label from a given
image accurately. In other words, the results of classification can be written as Ŷi = f (Xi)
and we expect a low prediction error di = Ŷi −Yi for each i.

This formulation is adopted by most researchers. Here, we first define a commonly
adopted pipeline that consists of several steps, then introduce techniques that have been
used in each step in the following sections (Sections 3.1.2–3.1.5). As shown in Figure 4,
this pipeline is a combination of the following steps: first, the lung scanning images (CT
or X-ray) are preprocessed by data augmentation or lung segmentation; then, the feature
vectors are extracted by Convolution Neural Networks (CNN) or other feature extractors.
The classifier predicts the label that corresponds to the input image.
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Figure 4. A typical ResNet-classification-based image-level COVID-19 diagnosis model.

In Figure 4, we use a ResNet-50 as the feature extraction backbone, which is adopted
by most researchers according to our statistics in Section 3.1.3. The ResNet-50 backbone
can be divided into four stages, and each of them has three, four, six and three blocks.
The detailed structure of a block is shown on the right side of Figure 4. It is an important
method to ensure that deep learning does not degenerate with the increasing number of
network layers.

3.1.2. Preprocessing

In the existing literature, researchers mainly used three types of preprocessing meth-
ods: data augmentation, image equalization and lung segmentation. Data augmentation
can enlarge the dataset and prevent overfitting, equalization improves the image qual-
ity and lung segmentation can preserve the region of interest (ROI) only and avoid the
undesired interference from areas out of the lung.

To avoid overfitting and solve the problem of data imbalance, data augmentations are
the most adopted method in the preprocessing stage. Rotating, flipping, scaling, cropping
and brightness and contrast adjusting [40–54] are the simplest and most common data aug-
mentation methods. For simplicity, in Table 3, we summarize basic transformation-based
data augmentation methods used by COVID-19 diagnosing models. We also summarize
the total number of papers that adopt each type of data augmentation in the last row
of Table 3. It can be seen that rotating and filling and scaling or cropping are the most
widely adopted techniques. However, their augmentation strength is limited. For example,
in the comparative experiment of Mizuho et al. [55], the conventional data augmentation
method improved the diagnosing performance by only 4%. Therefore, researchers pro-
posed applying other advanced data augmentation methods. To balance the imbalanced
data, Rahul Kumar et al. [56] proposed the synthetic minority oversampling technique
(SMOTE). Mehmet et al. [52] performed Zero-phase Component Analysis (ZCA whiten-
ing) to remove redundant information in input scanning images. Nour et al. [57] and
Arvan et al. [58] used the Generative Adversarial Network (GAN [59] and Conditional
Generative Adversarial Network (CGAN [60]), respectively, to generate virtual samples
for data augmentation. Generative models can significantly increase the dataset size, but
the quality of the generated sample is difficult to guarantee. The purpose of data augmen-
tation is to prevent overfitting by increasing the variation, but, in these virtual sample
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methods, the discriminant lesion patterns might be lost or distorted if the model increases
the variation too much.

Table 3. Basic transformation-based data augmentation methods. The last row summarizes the total
number of papers that adopt the corresponding approach.

Paper Rotating or Flipping Scaling or Cropping Brightness Adjusting Contrast Adjusting

[47,49,52,61–71]
√

- - -
[40,42–44,50,53,72–80]

√ √
- -

[45,51,81]
√ √ √

-
[41,82]

√ √ √ √

[54,56,83–89] -
√

- -
[90,91] -

√
-

√

[92]
√

-
√ √

[48]
√ √

-
√

[46,79,93,94] - - -
√

Total 36 32 6 10

In addition to the issue of insufficient data or imbalanced data, there are also large
image variations that are caused by different types of scanners. As shown in Figure 5,
we can observe significant image variation across different CT scanners. To solve this
issue, Md et al. [95] and Oh et al. [96] performed histogram equalization on the images.
However, histogram equalization has the potential harm of affecting image details or
bringing unexpected noise. Md et al. [95] eliminated the noise by introducing a Perona–
Malik Filter (PMF) [97], whereas some other researchers [93,94,98,99] solved the problem
by proposing the Contrast Limited Adaptive Histogram Equalization (CLAHE).

Figure 5. Significant variation among CT images caused by different scanners.

Lung segmentation aims to preserve only the lung area. This is motivated by prior
domain knowledge: COVID-19 is a type of viral pneumonia, and the evidence of infection
cannot lie outside of the lung. Lung segmentation can be conducted by using pretrained
lung segmentation models. Importantly, we note that, though segmentation models are
used and segmentation masks are predicted in this step, it has a fundamental difference
to the pixel-level diagnosis model. Lung segmentation is independent of identifying
COVID-19. It only requires identifying the lung area. Differently, pixel-level diagnosis
needs to locate the exact area of the COVID-19 lesion.

3.1.3. Feature Extraction

As previously demonstrated in Section 2 and shown in Figure 2, scanning images of
COVID-19 has certain characteristic manifestations, such as Ground-Glass Opacity (GGO)
and a crazy-paving pattern distributed in a certain zone of lungs [16]. Feature extraction de-
tects those discriminative lesion patterns. Most COVID-19 diagnosing models adopted the
Convolutional Neural Network (CNN) for feature extraction, and most of them used exist-
ing network structures, such as ResNet [37], GoogLeNet [100], DenseNet [101], VGG [102],
MobileNet [103], SqueezeNet [104], AlexNet [105], Capsule [106], etc. We summarized
some popular CNN structures that have been used by COVID-19 diagnosing models in
Table 4.
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Table 4. CNNs used By COVID-19 diagnosing models.

CNN Structure Paper Total

ResNet [37] [40,42,43,49,51,53,55–57,62,63,67,70,75,77,83,84,87,92,94–96,98,107–110,110–135] 54
GoogLeNet [100] [1,42,48,57,109,111,112,121,124–127,136–138] 18
DenseNet [101] [43,49,51,52,55,65,67,70,73,86,95,96,98,108,111,119,120,124–126,132–134,137,139–143] 29

VGG [102] [55,62,75,82–84,94,95,108,109,111,118,119,122,124,126,129,131,133,134,136,137,144–149] 28
MobileNet [103] [51,55,74,83,84,111,119,125,134,136,137,139,150] 13

SqueezeNet [104] [43,49,50,57,83,84,109] 7
AlexNet [105] [43,57,83–85,94,109,127,148,151–154] 13
Capsule [106] [44,58,73] 3

Some researchers also proposed automatic network structure designing methods to
identify the best network structure for lung feature extraction. Wang et al. [155] used a
generative synthesis approach to identify the optimal network architecture. Dalia et al. [46]
applied a Gravitational Search Algorithm (GSA) to determine the best network architecture
hyperparameters. Sivaramakrishnan et al. [137] developed an iteratively pruning strategy
to identify the optimal network structure. The model ensemble can also promote the overall
performance. Lawrence et al. [118] and Umut et al. [45] performed a model ensemble
by voting and feature fusion. Md et al. [95] applied Softmax Class Posterior Averaging
(SCPA) and Prediction Maximization (PM) for the model ensemble, and Rodolfo et al. [156]
combined seven traditional feature extraction models with Inception-v3 to obtain better
results. Mahesh et al. [145] assembled different CNNs using a stacked generalization
approach [115] to further improve the model performance. These models assumed that
different sub-models learn nonlinear discriminative features and semantic image represen-
tation from images of different levels. Therefore, the combined model will be more robust
and accurate.

In the beginning, trying existing CNNs is fast and convenient. However, these net-
works are designed for general image classification tasks, such as the ImageNet challenge.
Radiologists diagnose COVID-19 by finding distinguishing local patterns. Some researchers
design local methods to extract more discriminative features. For example, Umut et al. [45]
and Oh et al. [96] used the local patches to train the CNN feature extractor. To analyze
local textural features, Chirag Goel et al. [157] proposed the Grey Level Co-occurrence
Matrix (GLCM). However, lung infectious areas may vary significantly in size, and the
local methods with a fixed patch size are unable to extract features of the target with the
larger size. Hu et al. [158] proposed multi-scale learning to overcome such deficiencies.
The network aggregated features from different layers to make the final decision. Similarly,
Ying et al. [108] and Tan et al. [108] integrated ResNet or DenseNet with the Feature Pyra-
mid Network (FPN) [159], which is a pyramidal hierarchy network structure for multi-scale
feature extraction. In addition, the lesion of COVID-19 in the lung is a 3D object, and
slice-wise contextual information in CT images would be lost by a conventional 2D feature
extractor. Therefore, Zheng et al. [41], Xi et al. [151], Wang et al. [61] and Chih-Chung
Hsu et al.[78] proposed CNN structures with 3D convolution units to detect COVID-19 to
solve this defect. Han et al. [160] proposed an Attention-based Deep 3D Multiple Instance
Learning (AD3D-MIL) algorithm that can predict the infection according to multiple CT
slices. Compared to conventional 2D methods that predict the infection according to a
single CT slice, 3D methods can make the diagnosis more accurate. In addition, some
researchers also proposed some methods for the post-processing of the extracted features.
For example, [151] used PCA to find the most influential features, and Jin et al [154] used
the ReliefF algorithm to rank the extracted features.

In practice, radiologists also need to consider information such as epidemiology and
clinical manifestations for diagnosis. Therefore, some methods also combine auxiliary
external information with visual features to improve the model. Wang et al. [161] combine
clinical features, including age, sex and co-morbidity, with CNN features. Similarly, since
the infected area usually lies near the edge of the lung, Xu et al. additionally provided the
distance-from-edge information [107] of the local patch to the network. Shi et al. [162] and
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Sun et al. [163] calculated human-designed features, including using the volume, infection
lesion number, histogram distribution, surface area and radionics information.

3.1.4. Classification

Classification is used to present a diagnosing prediction (such as COVID-19/non-
COVID-19) according to the extracted feature. Most existing COVID-19 diagnosing mod-
els use CNN as the feature extractor, and most of them use softmax as the classifier.
Some researchers proposed improvements based on the CNN-softmax scheme. For ex-
ample, Wang et al. [1] combined softmax, decision tree and Adaboost algorithms, and
Zhang et al. [113] simultaneously performed softmax loss-based classification and con-
trastive loss-based anomaly detection to make the final decision. However, these deep mod-
els are black-box and usually need large-scale training sets. In the literature of [45,109,164],
researchers developed non-end-to-end models and took the Support Vector Machine (SVM)
as the classifier. Comparative experiments of classification algorithms, including SVM,
logistic regression, k-Nearest Neighbors (k-NN), Multi-Layer Perception (MLP), decision
tree, AdaBoost, random forest, LightGBM [165], and bagging classifier have been car-
ried out in [119,156,162,163]. Among them, classifiers in [119,156] are for visual feature
classification, whereas classifiers in [162,163] are for hand-crafted clinical feature classifica-
tion, in which, Least Absolute Shrinkage and Selection Operator (LASSO) [166] and deep
forest [167] algorithms were used for feature selection.

A straightforward way of modeling the COVID-19 diagnosing task into a classification
task is through binary classifying the scanning images into a COVID-19 class and normal
class; this is adopted by many models [40,41,45,47,49,50,53,54,58,62,65,67,83,110–113,119,
126,138,143,148,150,152,164,168–173]. However, in practice, test images of other types of
abnormal lungs can be misclassified as COVID-19. As shown in Figure 6, diagnosing
COVID-19 is a fine-grained task. Lung diseases that belong to the same subclass share
similar patterns in scanning images, and have a chance to be misclassified. Researchers
overcome the problem of misclassification mainly through two approaches: multi-class
classification and multi-step classification.

Normal

Abnormal

Pneumonia

Other Lung 
Disease

Viral
Pneumonia

Bacterial
Pneumonia

COVID-19

SARS

MERS

Figure 6. An example of the hierarchical relationships of different lung diseases.

For multi-class classification, some researchers added other pneumonia categories in
addition to the binary classification tasks, such as viral pneumonia, bacterial pneumonia,
Community-Acquired Pneumonia (CAP) and non-COVID-19 pneumonia. As summarized
in Table 5, the classification tasks of COVID-19/normal/viral pneumonia/bacterial pneu-
monia [44,48,52,74,93,95,114,116,118,122,124,133,155,174–176] and COVID-19/non-COVID-
19 pneumonia [41,57,66,69,76,79,84,86,94,110,134,135,142,149,177–184] are the most popu-
lar setting. Some models also take into account other types of lung diseases, including
ARDS [46,109], tuberculosis [95,96,185], lung cancer [42,161], pneumocystis, streptococcus,
varicella [156], fevers and upper respiratory tract symptoms [117] and Interstitial Lung
Disease (ILD) caused by other viruses [61].
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Table 5. Classes involved in multi-class classification models. VP: viral pneumonia; BP: bacterial
pneumonia; CAP: community-acquired pneumonia; NCP: non-COVID-19 pneumonia.

[99,107,115,
154,186]

[68,108,108,
153,187]

[44,48,52,74,
93,95,114,

116,118,122,
124,133,155,

174–176]

[87,92,117,
141]

[55,70,75,75,
79,82,136,

139,144,160,
188,189]

[1,190] [151,162,191]

[41,57,66,69,
76,79,84,86,
94,110,134,

135,142,149,
177–184]

COVID-19
√ √ √ √ √ √ √ √

Normal
√ √ √ √ √

- - -
VP

√
-

√
- -

√
- -

BP -
√ √

- - - - -
CAP - - -

√
- -

√
-

NCP - - - -
√

- -
√

Total 5 5 16 4 12 2 3 23

However, methods of multi-class classification rely heavily on datasets. Meanwhile,
the model cannot learn the hierarchical relationships between categories. Multi-step hi-
erarchical classification is used to help the models learn such hierarchical relationships.
For example, Eduardo et al. [75] and Yeh et al. [140] trained two binary classifiers: one for
normal/pneumonia classification and one for further COVID-19/non-COVID-19 classifi-
cation. Lv et al. [98] firstly classified the screening image into normal/bacterial pneumo-
nia/viral pneumonia, and then performed the COVID-19/non-COVID-19 classification.
Wang et al. [61] optimized the classifier by minimizing a three-task objective function:
one for normal/COVID-19 + ILD classification (detection task), one for COVID-19/ILD
classification (binary classification task) and one for normal/COVID-19/ILD classification
(combined three-category classification task). The above methods manually set up the
hierarchical relationships for the models, while Rodolfo et al. [156] proposed automatically
learning a decision tree using the state-of-the-art Clus-HMC framework. They also compar-
atively tested multi-class classification and automatic multi-step classification (hierarchical
classification), and they reached the conclusion that the multi-step classification could be a
feasible approach to improving the COVID-19 recognition performance.

3.1.5. Evaluation

Researchers evaluated their proposed models with several metrics in experiments.
The most used metrics are accuracy and the Area Under Curve (AUC). Accuracy is the
ratio of correctly classified samples. AUC is the area under the ROC curve, which is the
graph of the function between the true positive rate and false positive rate. The average
accuracy and AUC of diagnosing models based on X-ray scanning are 94.76% and 96.94,
and the average accuracy and AUC of CT scanning-based models are 90.13% and 94.76.
Theoretically, 3D CT scanning contains more information than 2D X-ray scanning, and CT
scanning can also avoid the occlusion of ribs compared with X-ray scanning. However,
X-ray scanning-based models achieve better performance. We consider the reason for this
to be that the large size of X-ray training sets helps these models, whereas CT scanning is
relatively more difficult to collect. The average training set size of X-ray-based models is
4185, and the average size of CT-based models is only 1417.

Although the performance of existing models is relatively high (average accuracy of
93.59% and average AUC of 95.75), the size of the test set is worth noting; in some models,
the test set only has a few COVID-19 samples. The average COVID-19/total ratio of test
sets is 0.274:1, which is highly imbalanced (the ratio of training sets is 0.3:1, which is also
imbalanced). In Table 4, we also color the table cells according to the number of samples in
the training and testing dataset (green and red are, respectively, corresponding to higher
and lower than the average, and the saturation is correlated with the difference from the
average). Some researchers reproduced the experiment with different datasets, but achieved
a significantly lower performance compared to the originally reported performance [192].
The reason for this might be due to the model overfitting and the lack of appropriate
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control of patients and ground truth labels. Moreover, models in Table 4 are evaluated in
different datasets, and most of them are private datasets of combined datasets. We think
a proper benchmark test set is vital for further research of this area. Experiments on the
same benchmark test set can also benefit the hospitals’ selection of diagnosing models.
In addition, how to combine the accuracy, AUC and other evaluation criteria, such as
the precision, recall and time complexity, in order to choose the best model for practical
applications is still an open question [193].

3.2. Pixel-Level Diagnosis: Segmentation-Based Models
3.2.1. Overview

The pixel-level diagnosis of COVID-19 can be formalized as follows: suppose we have
a dataset D = {(Xi, Yi)}N

i=1 with N samples, where Xi and Yi are the ith input scanning
image (CT/X-ray) and the corresponding binary lung lesion annotation. For each pixel of
Yi, zero represents the background, whereas one represents a lung lesion instance. The goal
here is to learn a function f that predicts Yi from Xi accurately. Similar to classification-
based models, the lung lesion detection can be written as Ŷi = f (Xi), and we expect a low
prediction error di = Ŷi −Yi for each i.

We present a typical segmentation-based COVID-19 diagnosis model in Figure 7.
This model uses a U-Net for segmentation, which mainly consists of two parts: an encoder
network and a decoder network. The encoder network has four downsample stages with
convolution and pooling layers that analyze the contextual pixel information in the image
to obtain the semantic feature. In each stage, the input tensor first goes through two
convolutional layers with ReLU activation. The output of convolutional layers is max-
pooled with a kernel size of 2× 2, therefore reducing the spatial resolution by a half. Let
conv(·) denote the two convolutional layers, and let pool(·) represent the max-pooling
layer. The L is the total number of stages. The output feature maps of each stage of the
encoder E can be formulated as follows:

Xl
E =

{
conv(X), l = 1
conv(pool(Xl−1

en )), l = 2, .., L
(1)
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Figure 7. A typical UNet-segmentation-based pixel-level COVID-19 diagnosis model.

The decoder network consists of four upsample stages. It recovers the same resolution
of the given input image. In each stage, a skip connection is built with the corresponding
stage in the encoder. The output tensor of the former stage of the decoder is upsampled
and concatenated along the channel axis with the output tensor of the same stage of the
encoder. The upsampling is performed by conducting nearest interpolation. Then, two
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3× 3 convolutions with ReLU activation and the same padding is applied. Let upsample(·)
denote the upsampling operation and let the ⊕ represent the concatenate operation; the
output tensor of each stage of the decoder D can be formulated as follows:

Xl
D =

{
Xl

E, l = L
conv(Xl

E ⊕ upsample(Xl+1
D )), l = 1, .., L− 1

(2)

3.2.2. Preprocessing

Similar to classification-based models, the following preprocessing methods are used
during preprocessing: data augmentation and lung segmentation.

Data augmentation, such as random clipping, left-right and up-down flipping, mir-
roring operation, rotation, scaling, etc. [71,107,123,194], is of vital importance to train the
neural network to achieve a high generalizability. In addition to these simple and com-
mon methods, Bo et al. [42] used a cubic interpolation approach for image normalization.
Chen et al. [194] minimized the influence of various random noises (e.g., words) on the
segmentation. To deal with the imbalanced distribution of the sizes of the infection regions
between COVID-19 and CAP, Xi et al. [123] developed a dual-sampling strategy to mitigate
the imbalanced learning.

As classification-based models, lung segmentation can reduce the interference from
the area out of the lung and therefore boost the model performance. Chen et al. [168]
trained UNet++ to extract valid areas in CT images. Md et al. [47] employed an inception
residual recurrent convolutional neural network with a Transfer Learning (TL) approach
for COVID-19 detection and NABLA-N network model for segmenting the regions infected
by COVID-19. Shuo et al. [161] used a fully automatic DL model (DenseNet121-FPN) to
segment lung areas in the chest CT image. However, they found that some inflammatory
tissues attaching to the lung wall may be excluded falsely by the model. In addition, there
are also many other lung segmentation methods, such as: VB-Net [123], U-Net [195],
ANN [71], FCN-8s, V-Net and 3D U-Net++ [42]. Among them, VB-Net replaces the
conventional convolutional layers in the up and down blocks with bottlenecks, and achieves
good and efficient segmentation results. U-Net is a fully convolutional network that uses
skip connection to fuse the information of multi-resolution layers. V-net uses a volumetric
and fully convolutional neural network to achieve three-dimensional image segmentation.

3.2.3. Segmentation

There are two different segmentation tasks in COVID-19 diagnosis models: lung
region segmentation and lung lesion segmentation. Lung region segmentation is used to
separate the whole lung region from the background, and lung lesion segmentation is used
to distinguish the lesion region from other lung regions. The first lung region segmentation
is usually performed as a preprocessing step. Here, we only focus on the methods that
have been used in lung lesion segmentation.

The V-Net-based segmentation model VNET-IR-RPN17 [107] was trained for pul-
monary tuberculosis purposes; it was verified to be good enough to separate candidate
patches from viral pneumonia. Md et al. [47] employed an inception residual recurrent
convolutional neural network with a transfer learning approach for COVID-19 detec-
tion and NABLA-N network model for segmenting the regions infected by COVID-19.
Chen et al. [194] used the aggregated residual transformations to learn a robust and ex-
pressive feature representation and applied the soft attention mechanism to achieve the
automated segmentation of multiple COVID-19 infection regions. Wu et al. [196] trained a
JCS system, which includes a segmentation branch that is trained with accurately annotated
CT images, performing fine-grained lesion segmentation. Fan et al. [197] proposed a novel
COVID-19 Lung Infection Segmentation Deep Network (Inf-Net) that can automatically
identify infected regions from chest CT slices. Xi et al. [123] proposed a novel online atten-
tion module with a 3D Convolutional Network (CNN) to focus on the infection regions in
the lungs when making decisions of diagnoses. Rohit Lokwani et al. [195] built a 2D seg-
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mentation model using the U-Net architecture, which gives the output by marking out the
region of infection. Gao et al. [198] developed a Dual-branch Combination Network (DCN)
for COVID-19 diagnoses that can simultaneously achieve individual-level classification
and lesion segmentation. Yang et al. [199] proposed federated semi-supervised learning
for COVID region segmentation in 3D chest CT. The framework is designed to leverage
unlabeled data for federated learning.

3.2.4. Evaluation

The most commonly used evaluation metrics of the models related to segmentation are
the accuracy and Area Under Curve (AUC). The average accuracy and AUC of diagnosing
models based on X-ray scanning are 98.74% and 99, and the average accuracy and AUC
of CT scanning-based models are 91.68% and 95.37. In fact, compared with X-ray, CT can
more deeply examine the lesions in a certain position of an organ. However, here, the
models based on X-ray scanning achieve a better performance. We think that there are a
couple of reasons for this phenomenon, which are as followed. First, COVID-19 diagnosing
models based on segmentation are far fewer than COVID-19 diagnosing models based on
classification, and there are fewer models based on X-ray scanning, which makes the result
relatively singular. Second, X-ray images are easier to collect than CT images. The average
training set size of X-ray-based models is much larger than that of CT-based models, where
the former is 3843 and the latter is only 2723.

The performance of existing models related to segmentation is relatively high (average
accuracy of 92.97% and average AUC of 95.89). In addition, in the models we have collected,
the average COVID-19 images of test sets are 507, and the average total images of test sets
are 829, where the average COVID-19/total ratio of test sets is 0.611:1. This ratio is still
relatively balanced. Only when the ratio is more balanced can we train a more optimized
model. Among them, by comparing MiniSeg with state-of-the-art image segmentation
methods, Qiu et al. [200] proved that MiniSeg not only achieves the best performance
but also has a high efficiency, where MiniSeg has an accuracy of 99.15%. Wang et al. [42]
proposed a “3D Unet++—ResNet-50” combined model, which achieved the best Area
Under the Curve (AUC) of 0.991 among four combined models mentioned in the text. In
addition to the accuracy and AUC, sensitivity and specificity are also good evaluation
metrics. Sensitivity/specificity measured the fraction of positives/negatives that were
correctly identified as positive/negative, so sensitivity/specificity was also known as the
true positive/negative rate.

4. Datasets

Having sufficient and high-quality annotated training data is important for the design,
implementation and evaluation of COVID-19 diagnosis models. In this section, we discuss
existing datasets of COVID-19 scanning images. Tables 6 and 7 provide overviews of
ten classification datasets and five segmentation datasets, respectively, including the size,
scanning type, number of COVID-19 samples and total samples, data annotations and other
categories besides COVID-19.

Table 6. Summary of COVID-19 image classification datasets.

Dataset Modality #COVID-19 #Total Size Format

SARS-CoV-2 CT-scan dataset CT 1252 2482 242 MB PNG
COVID-CT-Dataset CT 349 749 474 MB JPG

COVID-CTset CT 15,589 63,849 61.6 GB DICOM
CT Scans for COVID-19 Classification CT 4001 39,370 3.68 GB JPG
Large COVID-19 CT scan slice dataset CT 7593 17,104 2.12 GB PNG

COVIDx Dataset X-ray 18,490 30,882 12.9 GB PNG
COVID-19 Radiography Database X-ray 3616 21,165 744 MB PNG
COVID-19 Detection X-ray Dataset X-ray 129 5073 188 MB JPEG

Augmented COVID-19 X-ray Images X-ray 878 3532 173 MB PNG
Covid-Chestxray-Dataset CT + X-ray 563 930 529 MB JPG
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Table 7. Summary of COVID-19 image segmentation datasets.

Dataset Modality #COVID-19 #Total Size Format

COVID-19 CT Lung and Infection Segmentation CT - - 1.05 GB -
COVID-19 CT Segmentation Dataset CT 110 110 367 MB JPG

MOSMEDDATA CT - 1110 - NIFTI
COVIDGR Dataset X-ray 426 852 949 MB JPG

BIMCV COVID-19+ CT + X-ray - 23,527 389.27 GB MIDS

4.1. Classification Datasets

• SARS-CoV-2 CT-scan Dataset [201]. These data have been collected from real patients
in hospitals from Sao Paulo, Brazil. The aim of this dataset is to encourage the research
and development of artificial intelligent methods that are able to identify if a person is
infected by SARS-CoV-2 through the analysis of his/her CT scans. There are 2482 images
in total, including gender information;

• COVID-CT-Dataset [202]. The COVID-CT-Dataset is a radiologist-confirmed CT
image dataset. The images are collected from 760 COVID-19-related preprint PDFs
in medRxiv and bioRxiv. The labels are decided according to the associated figure
captions, while other information, such as age and gender, are also extracted;

• COVID-CT Dataset [63]. This dataset contains the full original CT scans of 377 per-
sons, including other information, such as age and sex. It was gathered from Negin
radiology located in Sari, Iran, between 5 March and 23 April 2020. There are 15,589
and 48,260 CT scan images belonging to 95 COVID-19 and 282 normal persons, respec-
tively. The format of the exported radiology images was a 16-bit grayscale DICOM
format with a 512 × 512 pixels resolution;

• CT Scans for COVID-19 Classification [203]. Data were collected from two hospitals:
Union Hospital (HUST-UH) and Liyuan hospital (HUST-LH). There are a total of
39,370 CT images, and they are in a JPG format with a resolution of 512 × 512;

• Large COVID-19 CT Scan Slice Dataset [204]. The CT images in this dataset are
collected from seven public datasets, which include COVID-CT-Dataset, COVID-
CT-MD, Covid-Chestxray-Dataset, MosMedData, COVID-19 CT Lung and Infection
Segmentation Dataset, COVID-CTset and COVID-19 CT Segmentation Dataset. There
are 17,104 images in total, and all of the CAP images are from the dataset of Afshar
et al., in which, 25 cases were previously annotated and their radiologist annotated the
remaining 35 volumes. The images are in PNG format with a resolution of 512 × 512.
The dataset also contains information such as gender, age and country;

• COVIDx Dataset [155]. The COVIDx Dataset is a combined dataset. The X-ray images
in the COVIDx Dataset are collected from more than five different data repositories,
which include COVID-19 Image Data Collection, COVID-19 Chest X-ray Dataset
Initiative, ActualMed COVID-19 Chest X-ray Dataset Initiative, RSNA Pneumonia
Detection Challenge dataset and COVID-19 radiography database; therefore, there
are 30,882 images in the dataset. However, the COVIDx Dataset is also a highly
imbalanced dataset: the positive samples account for only less than 3% of all samples;

• COVID-19 Radiography Database [43]. The COVID-19 Radiography Database is
the winner of the COVID-19 Dataset Award of Kaggle. A team of researchers from
Qatar University, Doha, Qatar, and the University of Dhaka, Bangladesh, along with
their collaborators from Pakistan and Malaysia in collaboration with medical doctors,
has created this dataset. The images are mainly collected from the Italian Society
of Medical and Interventional Radiology (SIRM) COVID-19 DATABASE and other
databases and publications. All of the images are X-ray images, and in PNG format
with a resolution of 299 × 299;

• COVID-19 Detection X-ray Dataset [205]. The 5073 X-ray images are collected from
Github user ieee8023 for COVID-19 X-rays and Paul Mooney for Pneumonia Dataset.
All images are in JPEG format;

• Augmented COVID-19 X-ray Images Dataset [206]. The Augmented COVID-19
X-ray Images Dataset is modified from two datasets, including Covid-Chestxray-
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Dataset and Chest-Xray-Pneumonia. There are a total of 3532 X-ray images in PNG
format. The images are augmented by basic augmentation methods, such as rotating,
flipping, scaling and cropping;

• Covid-Chestxray-Dataset [207]. Data were largely compiled from public databases
on websites such as Radiopaedia.org, the Italian Society of Medical and Interventional
Radiology2 and the Hannover Medical School. Both X-ray and CT images are in-
volved in the COVID-19 X-ray Images Dataset, where 930 images in total are in JPG
format. However, 43 of 45 CT images are COVID-19-positive. The imbalance makes it
unsuitable to be used alone. This dataset not only consists of the lung bounding box,
but is also annotated with other information, such as sex, age, location, survival, etc.

4.2. Segmentation Datasets

• COVID-19 CT Lung and Infection Segmentation Dataset [208]. The CT images in
this dataset are collected from five public datasets, which include StructSeg 2019,
NSCLC, MSD Lung Tumor, COVID-19-CT-Seg and MosMed. This dataset contains
20 labeled COVID-19 CT scans. Left lung, right lung and infections are labeled by two
radiologists and verified by an experienced radiologist;

• COVID-19 CT Segmentation Dataset [209]. 110 axial CT images from 60 patients
with COVID-19 are in this dataset, which is segmented by a radiologist. Three types
of objects, including ground-glass, consolidation and pleural effusion, are annotated.
Ground-glass opacities are in blue, consolidation is in yellow and pleural effusion is in
green. The images are in JPG format, while other information, such as age and sex, are
also extracted. This dataset is suitable for the training of both the classification model
and detection model;

• MOSMEDDATA [210]. A total of 1110 CT images were provided by municipal hospi-
tals in Moscow, Russia. A small subset of studies (n = 50) has been annotated by the
experts of the Research and Practical Clinical Center for Diagnostics and Telemedicine
Technologies of the Moscow Health Care Department. During the annotation, for
every given image, ground-glass opacifications and regions of consolidation were se-
lected as positive (white) pixels on the corresponding binary pixel mask. This dataset
also includes other information, such as age and gender;

• COVIDGR Dataset [211]. COVIDGR Dataset is a balanced X-ray dataset that covered
all levels of severity of illness, from normal with positive RT-PCR, mild and moder-
ate to severe. Data were collected from an expert radiologist team of the Hospital
Universitario San Cecilio, and there are 852 X-ray images in total;

• BIMCV COVID-19+ [212]. BIMCV COVID-19+ is a 389.27 GB annotated dataset that
consists of both X-ray and CT images. Data were collected from public sources, including
COVID-CT-Dataset, COVID-19 dataset and COVID-19 RADIOGRAPHY DATABASE.
Data were also collected from some private datasets. There are 23,527 images in total,
23 of which were annotated by a team of expert radiologists. Two types of objects,
including ground-glass and consolidation, are annotated. Ground-glass opacities are in
green, and consolidation is in purple. Images are stored at a high resolution and entities
are localized with anatomical labels in a Medical Imaging Data Structure (MIDS) format.
The dataset also contains other information, such as sex, age, diagnostics, survival, etc.

5. Discussion

Existing automated COVID-19 diagnosis methods have reported extraordinary per-
formances. To demonstrate this point, we show histograms of these reported model
performances in Figure 8. For the two types of the most commonly used evaluation metrics,
the accuracy and AUC, we calculate the proportion of them falling within each interval.
The histograms are obtained independently for classification-based models and segmenta-
tion models. As we can see, the performance reported by most models lies in the range
of (95%, 100%], regardless of the type of model (classification or segmentation) and the
used metrics (accuracy or AUC). Such a performance surpasses that of human radiologist
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professionals by a large range. However, after the two-year development in this field, there
are still very few models that can be actually applied in the real-world clinical scenario.
From this perspective, the academic research of COVID-19 automated diagnosis is not
satisfying enough in this COVID-19 pandemic. So, what went wrong? In this section, we
summarize the problems that have appeared during the research of applying AI to the
automated diagnosis of COVID-19. We hope that if there is a need for emergent AI research
and application in the future again, by avoiding these problems, the AI community can
perform better next time.

Figure 8. Histograms of the reported performance of automated diagnosis models for COVID-19.
We calculate the proportion of the reported model accuracy and AUC metrics that falls within each
interval. The model with very high claimed performance (e.g., >95%) accounts for a high proportion.

5.1. Biased Model Performance Evaluation

We think that the major problem of COVID-19 diagnosis model-related research is
the lack of benchmarks. There is not a well-recognized benchmark testing set (e.g., some-
thing like ImageNet [213] for image classification, MS-COCO [214] for object detection
and Cityscapes [215] for semantic segmentation) that can be used to compare COVID-19
diagnosis models. As a result, different papers used different datasets, making their results
not fully comparable. In addition, this problem leads to the appearance of many papers
that benchmark existing deep models on different datasets repeatedly. Most importantly,
this creates difficulties for researchers in assessing the effectiveness of numerous newly
proposed methods.

• Recommendation: Well-recognized institutions should establish benchmarks (using baseline
models and a high-quality dataset and releasing reproducible codes) as soon as possible.

In addition to the problem of lacking a benchmark, each individual performance
evaluation report is not fully reliable. Many papers used no validation set (which means
that the authors directly tune the hyperparameters on the test set), leading to the problem
of data leakage. Moreover, in many studies, the testing set is too small. As in Figure 9, we
show the distributions of sample numbers (COVID-19 samples vs. total samples) in the
testing set of COVID-19 diagnosis models. For papers that did not explicitly declare the
size of the training and test set, we calculate them with the corresponding train–test split
ratio. Unfortunately, most studies used a very small testing set: the number of COVID-19
samples of more than 50% studies is smaller than 50. There are even several methods that
used fewer than 10 COVID-19 samples to evaluate their methods [111,116,153]. We think
this is one of the core reasons for the production of over-optimistic reports.

• Recommendation: The testing set should not be used for validation. In addition, the testing
set should be sufficiently large; otherwise, it cannot give an accurate estimation of the model
performance.
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In spite of the scale of COVID-19 diagnosis datasets, their quality is also problematic to
some extend. For data acquisition, several datasets are a combination of different datasets,
which would lead to potential data leakage and the production of an over-optimistic
estimation of the model performance. Some datasets are collected from the figures in
the PDF file of published papers, whereas some datasets convert the original DICOM file
format into PNG or JPG format. Both of them would lead to a decrease in image quality [9].
Moreover, in many datasets, different classes of samples are collected from different sources,
which would lead to a high risk of model bias [11].

• Recommendation: When making a new dataset public, researchers should guarantee its quality
and provide as much detailed information as possible.

Figure 9. Histograms of the testing set size. “# COVID-19” = number of samples labelled as COVID-19
positive; “# Total” = total number of sample.

5.2. Inappropriate Implementation Details

The major issue in the research of the automated diagnosis of COVID-19 is the lack
of data, especially in the early stage (e.g., first several month). In addition, many COVID-
19 datasets are also highly imbalanced. The most popular solution to such an issue is
performing data augmentation. However, as shown in Figure 10, some data augmentation
techniques that work well for images of general objects are too aggressive for medical
images. In addition, several studies tried to apply GAN-based data augmentation. Modern
GANs have achieved impressive performances in generating realistic general images
(e.g., objects, faces, etc.), but this does not mean that they naturally become perfect choices
for generating COVID-19 images. Moreover, there are few theoretical guarantees about the
effectiveness of GAN-based data augmentation in medical images. Many open questions
need in-depth investigation.

• Recommendation: When solving the problem of lacking training data with data augmentation,
the ‘safety’ of selected data augmentation techniques should be considered.

Figure 10. Some data augmentation techniques that work well for images of general objects are too
aggressive for medical images.
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Another typical solution to the lack of a massive amount of training data is transfer
learning. Among existing works, 34 models adopted the transfer learning scheme. They
pretrained the CNN on a larger image dataset (mostly on ImageNet), then fine-tuned the
model with X-ray or CT scanning images. However, ImageNet contains images of general
objects, which make the convolution filters learn some patterns that will not appear in
scanning images. Instead, transferring the model that was pretrained on the lung cancer
dataset [161] or conventional pneumonia dataset [140] can lead to a better performance.

• Recommendation: When solving the problem of lacking training data with transfer learning,
it is better to select the pretraining dataset carefully, or consider using domain adaptation
algorithms [169,216].

5.3. Low Reproducibility, Reliability and Explainability

Artificial Intelligence (AI) has made significant progress in the last decade. Open-source
deep learning frameworks and public implementations of state-of-the-art methods make the
deep learning model able to be easily accessed by the community. If newly designed deep
neural network architectures, loss functions and pretrained model weights for COVID-19
diagnosis can be conveniently utilized, then the technical barrier can be lowered and the
research cycle can be accelerated. Unfortunately, among our covered 179 studies, only 48 of
them provide an official implementation (i.e., 26%). This poses difficulties when researchers
came to this field and tried to establish some baselines for comparison.

• Recommendation: If possible, upload clean codes accompanying the posted papers. Prepare
easy-to-follow documents that describe how to re-implement the proposed method.

If no official code is released, researchers can also reimplement the proposed methods
according to the paper. Unfortunately, a proportion of papers have the problem of missing
important implementation details, such as a detailed data preprocessing procedure, neural
network architectures, hyperparameter settings, the learning rate, batchsize, number of
total epochs, etc. Without these details, other researchers would face a great difficulty
in reimplementing and performing a fair comparison. Moreover, readers and reviewers
cannot identify the potential mistakes without these details.

• Recommendation: authors should provide sufficient technical details of their proposed methods
in order to guarantee the reproducibility.

In existing classification-based methods, Class Activation Mapping (CAM) and
Gradient-weighted Class Activation Mapping (Grad-CAM) [217] are adopted by many
researchers [40,50,87,95,96,98,110,113–115,117,120,137,139,140,155,158,160,169,218] to out-
put heatmaps for explaining the final result and present an intuitive understanding of
which area the model is focusing on. Ideally, these heatmaps can provide radiologists with
more useful information and further help them. However, we found that most papers
only present the output heatmaps, but provide no analysis about them. We think that one
possible reason for this is that they lack radiologist experts to analyze the correctness of the
heatmaps. As already illustrated in [9], working as a multidisciplinary team and respect of
the opinions of clinicians are important in automated COVID-19 diagnosis research. If this
is not conducted, some AI researchers could fail to realize the mistakes that were made by
the model according to the heatmaps [10].

• Recommendation: Work as a multidisciplinary team. Opinions from domain experts are
valuable for evaluating the correctness of AI models.

6. Conclusions

In this paper, we review 179 medical imaging-based automatic diagnosis models of
COVID-19. We first discuss the two types of input modalities and compare their differences
from both a clinical perspective and artificial intelligence perspective. Them, we divide
existing methods into classification-based models and segmentation-based models. Uni-
versal pipelines are defined for both of them. For each step in the pipeline, we review and
analyze the adopted techniques in detail. Furthermore, a total of 10 COVID-19 datasets for
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classification-based models and a total of 5 datasets for segmentation models are reviewed.
Finally, we summarize three significant problems that emerged in the research of the au-
tomated diagnosis of COVID-19: a biased model performance evaluation; inappropriate
implementation details; and a low reproducibility, reliability and explainability. We hope
that, based on our provided corresponding recommendations, AI can play a better role
next time.
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