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Abstract: In the future, as populations grow and more end-user applications become available,
the current traditional electrical distribution substation will not be able to fully accommodate new
applications that may arise. Consequently, there will be numerous difficulties, including network
congestion, latency, jitter, and, in the worst-case scenario, network failure, among other things. Thus,
the purpose of this study is to assist decision makers in selecting the most appropriate communication
technologies for an electrical distribution substation through an examination of the criteria’s in-fluence
on the selection process. In this study, nine technical criteria were selected and processed using
machine learning (ML) software, RapidMiner, to find the most optimal technical criteria. Several ML
techniques were studied, and Naïve Bayes was chosen, as it showed the highest performance among
the rest. From this study, the criteria were ranked in order of importance from most important to
least important based on the average value obtained from the output. Seven technical criteria were
identified as being important and should be evaluated in order to determine the most appropriate
communication technology solution for electrical distribution substation as a result of this study.

Keywords: criteria selection; machine learning; communication technologies; electrical distribution
substation; naïve bayes; decision tree; random tree forest; gradient boosted tree; k-NN; cross validation

1. Introduction

The traditional power distribution network is designed to distribute electricity and
information in a unidirectional flow from the power transmission network to consumers
through electrical distribution substations. The introduction of distributed energy resources
(DERs) and many other end-user applications, such as electric vehicles (EVs), advanced
metering infrastructure (AMI), and smart appliances, to the distribution grid has resulted in
a shift in the supply and demand trend of electricity. However, the traditional distribution
communication networks are not suitably designed for these additional connections [1].
This necessitates two-way communication in the distribution substation in order to accom-
modate the fast response required for supply and demand from consumers for effective
power distribution.

Furthermore, the expected exponential growth in the population, the anticipated in-
crease in DERs, and the rise of end-user applications connected to the distribution networks
would place further strain on the current communication infrastructure in the distribu-
tion grid. This is due to the expected increment in power, bandwidth, and data rate
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demands. As a result, the distribution grid will face a multitude of difficulties, including
network congestion, latency, jitter, and, in the worst-case scenario, network failure. There-
fore, it is necessary to investigate viable future communications technology to cater for
these future demands, particularly for the communication within and between electrical
distribution substations.

However, the manual selection process for the appropriate communication technology
for the distribution substation is frequently difficult and complex due to the presence of
numerous factors and specification criteria that must be considered, such as bandwidth,
frequency, data rate, distance coverage, topologies, and geographical limitations. Other
considerations, aside from the technical criteria, include costs, standards, technology matu-
rity, and so on, all of which will influence the selection of the appropriate communication
technology. Thus, in this study, machine learning (ML) was used to aid the decision makers
in the selection of the best communication technology for distribution substations based on
the analysis of the influences of the criteria on the selection process. In short, the objectives
of this paper were to find the optimal performance for the ML models in criteria selection,
rank the criteria from the most important to the least important, and evaluate the criteria
that most strongly influence selecting the best communication technology for the electrical
distribution substation.

Other considerations, aside from the technical criteria, include costs, standards, tech-
nology maturity, and so on, all of which will influence the communication technology
selection. Manually selecting suitable communication technologies can be complex, espe-
cially when numerous criteria are involved. Thus, in this work, machine learning (ML) was
used to aid in the selection of the best communication technology for electrical distribution
substation based on the analysis of the influences of the criteria on the selection process. In
short, the objectives of this paper were to find the optimal performance for the ML models
in criteria selection and to omit some technical criteria that least influence the selection of
the best communication technology for the electrical distribution substation.

The first step for criteria selection using ML for electrical distribution substation
communication technology was to identify the potential communication technologies for
the substations. Then, based on several important criteria in the literature, a dataset for
communication technology specification was created. The dataset was fed into one of the
ML software packages, RapidMiner, in which several ML models were selected to find the
model with the highest performance in terms of prediction accuracy. In particular, several
performance markers, such as the “support prediction”, and “contradict prediction” values,
were be used to aid the assessment of each of the ML model’s abilities in deciding which
criteria should be considered in the selection of potential communication technology for the
electrical distribution substation. Based on the performance output, the average score for
each technical criteria was calculated and ranked in terms of importance for the selection
of communication technology for the electrical distribution substation.

The contributions of this paper are:

• A list of the potential communication technologies to be applied at the electrical
distribution substation, based on extensive literature review.

• The creation of an ML dataset of the potential communication technologies based on
the specifications in the literature.

• A thorough investigation on the ML models with the highest performance in select-
ing the most important criteria for electrical distribution substation communication
technology.

• A ranking of the criteria from the most important to the least important, and an evalua-
tion of the criteria that most strongly influence the selection of the best communication
technology for the electrical distribution substation.

The remainder of the paper is structured as follows. Section 2 describes the communi-
cation technologies in detail, and Section 3 discusses the criteria and dataset specification
for the ML model. Section 4 discusses the ML process and the preliminary results. The
acronym used in the rest of this paper is tabulated in Table 1.
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Table 1. Acronyms and definition.

Acronyms Definition

AMI Advanced Metering Infrastructure

EV Electric Vehicle

HAN Home Area Network

IoT Internet of Things

k-NN k-Nearest Neighbor

LoS Line of Sight

LTE Long-Term Evolution

ML Machine Learning

M2M Multipoint-to-Multipoint

NB-IoT Narrow-Band IoT

NBPLC Narrowband Power Line Communication

P2M Point-to-Multipoint

P2P Point-to-Point

PLC Power Line Communication

SATCOM Satellite communication

UHF Ultra-high frequency

WAN Wide Area Networks

2. Selection of Communication Technology

The smart grid consists of three major components: electrical generation sources, trans-
mission system, and distribution system, where communication plays an important role in
providing reliable, efficient, and secure power transfer. The distribution system consists of
all the facilities and equipment connecting a transmission system to the customer’s equip-
ment and typically consists of distribution transformers, switches, distribution feeders, and
substations [2]. The substation’s main function is to receive the energy transmitted from
the generating station at high voltage, reduce it to an appropriate local distribution level,
and provide switching facilities. This substation includes isolators, lightning arresters,
step-down transformers, circuit breakers, and capacitor banks [3]. Communication systems
allow information to be exchanged between monitoring systems, and data management
systems, all of which necessitate fast and reliable communication. With the advent of
distributed energy sources and energy storage systems closer to the consumer’s side, the
importance of timely and dependable communication grows exponentially.

The initial step for this research starts with finding the potential communication tech-
nologies for the electrical distribution substations. The typical communication technologies
for the smart grid consist of wired and wireless communication. Wired communication
relies on a physical medium (cables) that exists between the transmitter and the receiver in
a wired communication system, through which the signal is transferred. The cables can
transmit and receive data depending on the capability of the cables themselves. Transmis-
sion of information over a distance without wires, cables, or any other electrical conductors
is called wireless technology. The data transmission is transferred using electromagnetic
waves such radio frequencies, infrared, and satellites.

In wired technology, power line communication (PLC) is widely used in smart grid
applications, such as advanced metering infrastructure (AMI). PLC offers a wide range
of technologies from the transmission grid to the distribution grid and home automation,
such as ultra narrowband, narrowband, and broadband PLC [4]. Narrowband power line
communication (NBPLC) is capable of handling and identifying equipment faults and is
preferable on the distribution side of the power grid by participating in and supporting
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distributed generation (DG), microgrids, and consumer participation based on two-way
communication [5].

Another wired communication technology that is commonly employed is fiber optics,
which is used to provide backbone communication for various smart grid applications,
such as substation automation and transmission domain communication, and to provide a
long-term smart grid solution [6]. Fiber optics communication consists of several standards,
such as AON (IEEE 802.3ah), BPON (ITU-T G.983), GPON (ITU-T G.984), and EPON (IEEE
802.3ah). Each standard possesses a different data rate and distance it can cover [7]. The
distinction between PLC and fiber optics communication is that PLC communicates over
existing electrical lines, whereas optical fiber communication involves the installation of
fiber optics cables. It offers high bandwidth, low attenuation, small interference, and
enhanced signal to noise ratio (SNR), making it a commonly utilised cable communications
technology in the smart grid [8]. Despite the advantages, the most significant drawback
of fiber optics communication is its high cost of installation. Furthermore, because the
installation of fiber optic cables involves a significant amount of time, they are not ideal for
quick deployment. Connecting geographical regions located in rocky or steep terrain is
also difficult [8].

Zigbee is a wireless technology built on the IEEE standard 802.15.4 that is widely used
in wireless communication for home or building automation, energy monitoring, managing
industrial plants, as well as AMI applications [5]. As a result of its low power consumption
and low deployment cost, it has been widely used in many smart grid applications in
distributed automation, control, monitoring, management, and fault identification. Zigbee
operates in unlicensed industrial, scientific, and medical (ISM) bands. However, since it
shares the same spectrum with other wireless communication mediums, it is most likely to
suffer from interference between the mediums [9].

Cellular networks, one of the most rapidly growing communication technologies, is
also considered. This technology has rapidly evolved, starting from the 2G, 3G, 4G; the most
recent is 5G technology. These cellular networks, particularly 4G, LTE, and 5G, provide
numerous wide-area services to smart grid applications at a low cost [5]. For example,
cellular networks can enable smart metering deployments in a wide area environment [6].
In addition, because of the existing network, the cellular network is ideal for rapid rollout.
This technology is being used for AMI, home area network (HAN), wide area networks
(WAN), and vehicle-to-vehicle (V2V) communication, among other applications [8]. Some
of the features of cellular networks are that they offer high data rates, large coverage, high
reliability and flexibility, and operate in both licensed and unlicensed spectrum. However,
because the cellular system is shared by many users, it cannot support mission-critical
applications that require uninterrupted service [8]. For 5G, there are some concerns on
security and privacy issues, apart from the expected high deployment cost. Additionally,
the long-term environmental impacts of 5G are still unknown. Because of their stability
and capabilities, only 4G, 5G, and private long-term evolution (LTE) are considered in
this research Furthermore, 1G, 2G, and 3G technologies are not included because they are
considered sunset technologies and are no longer available in most parts of the world.

WiFi is a wireless network that is based on the IEEE 802.11 family of standards. In
the IEEE 802.11 family, there are other standards, such as 802.11a, 802.11b, 802.11g (also
known as enhanced WiFi), 802.11n (WiFi 4), 802.11ac (WiFi 5) and 802.11ax (WiFi 6). Each
of the standards differs in terms of speed and the frequency band used. Some of the
standards only utilise 2.4 GHz or 5 GHz, and some can utilise both frequencies. WiFi
is mostly used in gadgets that utilise HAN technology, such as mobile phones, laptops,
and personal computers [10]. From the research in [11], WiFi wireless sensor networks
offer more advantages than Zigbee, such as large coverage, high bandwidth, cost effective,
and ease of expansion. It also offers the advantage of high data rates, IP support, wide
availability, and scalability [10]. However, the big challenges in using Wi-Fi for smart grid
HAN applications are the interference between other wireless mediums and security issues.
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LoRa (short for long range) is a wireless technology that provides long-distance, low-
power, and secure data transfer for machine-to-machine (M2M) and internet of things
(IoT) applications. It uses chirp spread spectrum (CSS)-derived modulation technology
that uses lower power, such frequency-shift keying (FSK) modulation, for long-range
communications. LoRa is a representation of low-power wide-area network (LPWAN)
technology that operates in several ISM bands. Due to LoRa’s low data rate, it is only
suitable for applications with small payloads, such as sensors and actuators that operate in
low power mode, and is unsuitable for mission-critical services [9,12].

Another wireless communication that operates on the existing cellular networks,
particularly the LTE facilities, is the narrow-band IoT (NB-IoT). The NB-IoT is capable of
coexisting seamlessly with traditional GSM, general packet radio service (GPRS), and LTE
technologies [9]. It offers an excellent battery life of 8 to 10 years, low channel bandwidth, a
huge coverage area, is inexpensive, and possesses a good level of network security [12]. The
NB-IoT can offer greater quality of service (QoS) compared with unlicensed technologies
for neighbourhood area networks (NANs) and dependable services for mission-critical
grid applications, such as meter reading and home automation [9]. However, NB-IoT is
a latency-insensitive technology, which makes it more applicable to those delay-tolerant
applications, such as AMI services.

Ultra-high frequency (UHF) is one of the wireless communication technologies that
can be considered for electrical distribution substation communication. UHF is well-suited
for applications that require only a small amount of bandwidth, such as monitoring or
automation through the IEC 60870-5-104 protocol. Applications with modest data rate
requirements and widely distributed end points, such as an extensive private broadband
wireless infrastructure, may have a negative benefit-cost ratio. In these cases, newly
upgraded UHF radio systems are a better fit for these requirements [13]. A major advantage
of these UHF systems is their ability to scale dynamically between throughput and range.
They are also suitable for mission-critical applications due to the deployment of licensed
spectrum and the flexibility of private network architecture [13].

The RF mesh is a standard adopted by the Wireless Smart Utility Networks Alliance
(Wi-SUN Alliance). It is for building private wireless networks based on a mesh topology,
with each network node acting as a repeater. As a result, each element can be accessed
directly by an access point or indirectly via another network terminal element over one
or more hops [14]. In order to assure compatibility across networks and devices from
different manufacturers, RF Mesh aspires to be a system built on open standards. For utility
applications, RF Mesh is a well-established and practical technology. From a technological
and functional standpoint, RF Mesh was designed to satisfy the requirements of critical
utility applications, such as smart metering and distribution automation in the case of the
electric sector [14].

Satellite communication, often known as SATCOM, is a technology that has been
extensively utilised for a variety of purposes, including direct-to-home (DTH), geological
monitoring, and military uses. SATCOM consists of several frequency bands such as
C-band, L-band, X-band, Ku-band, and Ka-band. Due to the system’s location in space,
natural calamities, such as floods and earthquakes, do not effect this system, making it
one of the advantages [8]. SATCOM also offers a high availability range and is suitable for
deployment in areas lacking terrestrial communication facilities, as the facilities are either
expensive or insufficient for domain needs [15]. The disadvantage is that data transmission
will be delayed due to the great distance between the earth and the satellite system, making
it unsuitable for real-time monitoring and control applications [8].
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3. Criteria and Dataset Specification

Each of the shortlisted technologies in Section 2 has numerous characteristics and
technical criteria that may need to be considered when selecting a communication solution
for the substation. Due to this, ML was employed to help in the selection of criteria that are
important in deciding or selecting the best communication technology for the substations.
The ML process needs a dataset to train on in order to make the right selection. This dataset
must be comprehensive and cover all of the criteria for the communication technologies
suitable for implementation at the electrical distribution substation. The identified criteria
were frequency, data rate, distance, bandwidth, line of sight (LoS), scalability, interference,
topology, and terrain factor (city, plains, coastal, forestry, and mountains). The overall flow
of this research is summarized in Figure 1. The information below is the justification of the
selected criteria:

1. Frequency is defined as the rate of radio signals measured in Hertz (Hz) to transmit
and receive communication signals. Each technology has its own operating frequency
spectrum, which can be classified into two categories: (1) licensed: assigned solely
to operators for independent use; and (2) unlicensed: assigned to each citizen for
non-exclusive use subject to regulatory limits such as transmission power restrictions.

2. Bandwidth is defined as the range that carries a signal within a band of frequencies.
For example, a system that operates on frequencies between 150 MHz and 200 MHz
operates with a bandwidth of 50 MHz.

3. Data rate is defined as the amount of data transmitted over a network in a certain
period of time, commonly expressed in megabit per second (Mbps).

4. Distance refers to the coverage offered by a communication technology. Some wire-
less technologies, such as SATCOM, LoRa, and private LTE, are known to offer
long-distance coverage, whereas others offer short-distance coverage (Zigbee, WiFi).
Shorter coverage usually leads to higher deployment of a particular technology in the
selected areas.

5. Terrain factor divides the land into several categories as follows:

(a) City: The city area is known to contain the highest user density, with buildings
and existing wireless communication technologies. It is one of the factors
affecting the reliability of communication technologies, especially in terms of
the line-of-sight (LoS) interference.

(b) Coastal: The coastal area is defined as the interface or transition area between
land and sea, including large inland lakes. Because of its large area and low
population density, it is assumed to contain no LoS interference.

(c) Plains: The plains are defined as a broad area of relatively flat land. The
assumption is that they contain lower user density compared to the city and
less or almost no LoS interference due to the wide area and lower vegetation.

(d) Forestry: A forest is defined as an area with more than 0.5 hectares of land,
trees taller than 5 m, and a canopy cover of more than 10%, or trees capable
of reaching these thresholds in situ. It does not include land that is predom-
inantly used for agricultural or urban land use. The assumption is that it
contains the lowest user density. However, the high density of forest affects
the communication technology’s reliability, especially for wireless technology.

(e) Mountains: A mountain is a land that is raised above the surrounding land-
scape. It is usually in the form of a peak with a well-defined summit. The
assumption is that mountainous areas contain low density of users and trees.
However, due to the topography, it requires higher cost and longer time for
cable installation.

6. Scalability is defined in this research as the ability of the communication technology to
be scaled, measured in terms of percentage. It is dependent on the topology and data
rate that each technology can offer, in which the more devices are added to a network,
the longer the communication delay on the network. This means that the number
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of devices added to a network topology needs to be monitored carefully to make
sure that the network resources are not stretched beyond their limit. Point-to-point
(P2P) topology is not scalable, whereas point-to-multipoint (P2M) and multipoint-
to-multipoint (M2M) are considered scalable. The ring topology raises scalability
concerns, as the bandwidth is shared by all devices within the network. A star and
mesh topology network is considered scalable, as network nodes can be added with
minimal disruption.

7. Line-of-Sight (LoS) interference, measured in terms of percentage in this research,
refers to the setting when the transmit and receive nodes are not in view of each
other due to the presence of obstacles between them. A higher percentage is given to
the wired technologies than to the wireless technologies due to the latter’s reliability
against LoS interference. The reliability of wireless technology is lower than wired
technology, taking into consideration the example of Urban (City): high density with
buildings, Suburban (Coastal and Plains): higher than Urban and Rural because there
are no or few LOS interferences due to the wide area and lower density (buildings,
trees), Rural (Forestry): high density of trees and Rural (Mountains): slightly lower
considering lower density of trees.

8. Interference refers to spectrum interference, measured in percentage in this research.
For wired technology, the assumption is that the interference is lower than the wire-
less technology. To the best of our knowledge, wired technology’s only source of
interference is interference from other mediums. Additionally, it is expected that there
will be less interference in wired technologies as they are mostly buried underground.
The terrain factor affects interference in wireless technology, especially because of the
user density in a particular area. For example, in urban areas (cities), the interference
is expected to be the highest compared to other areas due to the high density of users.

The process for ML dataset creation starts with identifying the technical criteria of the
proposed wired and wireless communication technologies, a visualization of the created
dataset is shown in Table 2.

These technical criteria were chosen from various literature reviews [4–15] and surveys
that are related to the possible communication technologies and were summarised in Table 3.
These criteria are deemed to be crucial and fit with the purpose of this study. Each criterion
was chosen based on the applicability, the general usage and how can it be implemented in
various areas, such as urban, suburban and rural. Each criterion has different characteristics,
for example, for distance, each area has different length of coverage. All of these factors
were considered and examined to ensure that the data creation process was smooth, simple
and straightforward.

From the criteria summarized in the Table 3, a total of 880 lines of communication
technology data were created using Microsoft Excel. This dataset served as a training input
for the ML models in the RapidMiner software, in which the performance of each ML
model was evaluated and analysed. The next section will describe how the dataset was
processed using the RapidMiner software.
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Figure 1. The methodology of this research.
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Table 2. The visualization of the training dataset in Microsoft Excel.

Technology Frequency
(MHz)

Data Rate
(Mbps) Distance (km)

Frequency
Bandwidth

(MHz)

Physical
Topology Scalability (%) Line-of-Sight

(%)
Interference

(%) Terrain Factor

NBPLC 0.01 0.5 150 0.1 Point-to-Point 30 70 60 City

NBPLC 0.01 0.5 150 0.1 Point-to-
Multipoint 45 70 60 City

NBPLC 0.1 0.5 150 0.1 Point-to-Point 30 70 60 City

NBPLC 0.1 0.5 150 0.1 Point-to-
Multipoint 45 70 60 City

NBPLC 0.3 0.5 150 0.1 Point-to-Point 30 70 60 City

NBPLC 0.3 0.5 150 0.1 Point-to-
Multipoint 45 70 60 City

NBPLC 0.5 0.5 150 0.1 Point-to-Point 30 70 60 City

NBPLC 0.5 0.5 150 0.1 Point-to-
Multipoint 45 70 60 City

Fiber 193,000,000 1000 70 50,000 Point-to-Point 60 85 60 City

Fiber 193,000,000 1000 70 50,000 Point-to-
Multipoint 80 85 60 City

Fiber 193,000,000 1000 70 100,000 Point-to-Point 60 85 60 City

Fiber 193,000,000 1000 70 100,000 Point-to-
Multipoint 80 85 60 City

NBPLC 0.01 0.5 150 0.1 Point-to-Point 30 70 45 Coastal

NBPLC 0.01 0.5 150 0.1 Point-to-
Multipoint 45 70 45 Coastal
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Table 3. The criteria specification of selected communication technologies.

Technology Frequency
(MHz)

Data Rate
(Mbps) Distance (km)

Frequency
Bandwidth
(MHz)

Physical
Topology Terrain Factor Scalability(%) LoS (%) Interference(%)

NBPLC

• 0.01
• 0.1
• 0.3
• 0.5

[5,16,17]

• 0.5

[5,6]
[16,18]

• 150

[6,18]
• 0.1

• P2P
• P2M

[5,19]

• City
• Coastal
• Plains
• Forestry
• Mountains

• City: 30 (P2P), 45 (P2M)
• Coastal and Plains: 30

(P2P), 45 (P2M)
• Forestry and Mountains:

25 (P2P), 40 (P2M)

• City: 70
• Coastal and

Plains: 70
• Forestry: 70
• Mountains: 60

• City: 60
• Coastal and

Plains: 45
• Forestry: 40
• Mountains: 35

Fiber optics
• 193,000,000

[20]

• 1000

[21]

• 70

[21]

• 50,000
• 100,000

• P2P
• P2M

[6,22]

• City
• Coastal
• Plains
• Forestry
• Mountains

• City: 60 (P2P), 80 (P2M)
• Coastal and Plains: 60

(P2P), 80 (P2M)
• Forestry and Mountains:

55 (P2P), 75 (P2M)

• City: 85
• Coastal and

Plains: 85
• Forestry: 85
• Mountains: 75

• City: 60
• Coastal and

Plains: 45
• Forestry: 40
• Mountains: 35

Zigbee

• 2400

[5,6,10]
[16,17]
[22–25]

• 0.25

[5,6,10]
[17,23–27]

• 0.07

[5,6,10]
[23,24,26]

• 2

[25]

• P2P
• Star
• P2M
• Mesh

[5,10,16,22]
[24,27,28]

• City
• Coastal
• Plains
• Forestry
• Mountains

• City: 35 (P2P), 55 (Star),
55 (P2M), 70 (Mesh)

• Coastal and Plains: 35
(P2P), 55(Star), 55 (P2M),
70 (Mesh)

• Forestry and Mountains:
30 (P2P), 50 (Star), 50
(P2M), 65 (Mesh)

• City: 60
• Coastal and

Plains: 60
• Forestry: 60
• Mountains: 50

• City: 75
• Coastal and

Plains: 60
• Forestry: 55
• Mountains: 50

WiFi

• 2400
• 5000

[6,10,16]
[23,24]
[26,28,29]

• 150
• 450

[5,6,10,18]
[27,30]

• 0.125
• 0.07

[5,29,30]

• 20
• 22
• 26

[30]

• P2P
• P2M
• Star
• Mesh

[26,28,31]

• City
• Coastal
• Plains
• Forestry
• Mountains

• City: 45 (P2P), 65 (P2M),
65 (Star), 80 (Mesh)

• Coastal and Plains: 45
(P2P), 65 (P2M), 65 (Star),
80 (Mesh)

• Forestry and Mountains:
40 (P2P), 60 (P2M), 60
(Star), 75 (Mesh)

• City: 60
• Coastal and

Plains: 60
• Forestry: 60
• Mountains: 50

• City: 75
• Coastal and

Plains: 60
• Forestry: 55
• Mountains: 50
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Table 3. Cont.

Technology Frequency
(MHz)

Data Rate
(Mbps) Distance (km)

Frequency
Bandwidth
(MHz)

Physical
Topology Terrain Factor Scalability(%) LoS (%) Interference(%)

RF Mesh • 2400
• 0.1

[14,32]

• 5 (Urban), 8
(Suburban), 12
(Rural)

[14,32]

• 0.2
• 0.7
• 1.2

• Mesh

[32]

• City
• Coastal
• Plains
• Forestry
• Mountains

• City: 70
• Coastal and Plains: 70
• Forestry and Mountains:

65

• City: 60
• Coastal and

Plains: 60
• Forestry: 60
• Mountains: 50

• City: 75
• Coastal and

Plains: 60
• Forestry: 55
• Mountains: 50

Cellular
Network—4G
LTE

• 900
• 1800
• 2600

[33,34]

• 100

[24]

• 2 (Urban), 3
(Suburban), 6
(Rural)

• 1.42 (Urban), 2.44
(Suburban), 5.88
(Rural)

• 1 (Urban), 2.05
(Suburban), 4.09
(Rural)

• 20
• P2P

[26,28,35]

• City
• Coastal
• Plains
• Forestry
• Mountains

• City: 45 (P2P)
• Coastal and Plains: 45

(P2P)
• Forestry and Mountains:

40 (P2P)

• City: 60
• Coastal and

Plains: 60
• Forestry: 60
• Mountains: 50

• City: 75
• Coastal and

Plains: 60
• Forestry: 55
• Mountains: 50

5G

• 700
• 3500
• 26,000
• 28,000

[36]

• 100 to
20,000

[37]

• 10 to 100

[38]

• 1000

[39,40]

• P2P

[41]
• City • City: 50 (P2P) • City: 50 • City: 75
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Table 3. Cont.

Technology Frequency
(MHz)

Data Rate
(Mbps) Distance (km)

Frequency
Bandwidth
(MHz)

Physical
Topology Terrain Factor Scalability(%) LoS (%) Interference(%)

Cellular
Network—
Private
LTE

• 450
• 900
• 2300

• 0.256,
0.512,
1.024

• 100

• 450 MHz:

- 30 (Urban,
Suburban,
Rural)

• 900 MHz:

- 2 (Urban),
- 3 (Suburban),
- 6 (Rural)

• 2300 MHz:

- 2 (Urban,
Suburban,
Rural)

[42]

• 10
• 20
• 5

• P2P
• M2M
• Mesh

[26,28,35]

• City
• Coastal
• Plains
• Forestry
• Mountains

• City:

- 450 MHz: 35 (P2P),
55 (M2M), 70 (Mesh)

- 900 MHz: 45 (P2P),
65 (M2M), 80 (Mesh)

- 2300 MHz: 35 (P2P),
55 (M2M), 70 (Mesh)

• Coastal and Plains:

- 450 MHz: 35 (P2P),
55 (M2M), 70 (Mesh)

- 900 MHz: 45 (P2P),
65 (M2M), 80 (Mesh)

- 2300 MHz: 35 (P2P),
55 (M2M), 70 (Mesh)

• Forestry and Mountains:

- 450 MHz: 30 (P2P),
50 (M2M), 65 (Mesh)

- 900 MHz: 40 (P2P),
60 (M2M), 75 (Mesh)

- 2300 MHz: 30 (P2P),
50 (M2M), 65 (Mesh)

• City: 60
• Coastal and

Plains: 60
• Forestry: 60
• Mountains: 50

• City: 60
• Coastal and

Plains: 45
• Forestry: 40
• Mountains: 35

NB-IoT (LTE)

• 900
• 1800
• 2600

[34,43]

• 0.2

[43]

• 1 (Urban), 5
(Suburban), 10
(Rural)

[43]

• 0.2

[43]

• P2P
• P2M
• Star

[43]

• City
• Coastal
• Plains
• Forestry
• Mountains

• City: 45 (P2P), 55 (P2M),
55 (Star)

• Coastal and Plains: 45
(P2P), 55 (P2M), 55 (Star)

• Forestry and Mountains:
40 (P2P), 50 (P2M), 50
(Star)

• City: 60
• Coastal and

Plains: 60
• Forestry: 60
• Mountains: 50

• City: 75
• Coastal and

Plains: 60
• Forestry: 55
• Mountains: 50
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Table 3. Cont.

Technology Frequency
(MHz)

Data Rate
(Mbps) Distance (km)

Frequency
Bandwidth
(MHz)

Physical
Topology Terrain Factor Scalability(%) LoS (%) Interference(%)

LoRa
• 433

[43–45]

• 0.0055
• 0.022

[45]

• 5 (Urban), 15
(Suburban), 20
(Rural)

[43]

• 0.125
• 0.5

[45,46]

• Star
• Mesh

[47]

• City
• Coastal
• Plains
• Forestry

• City: 55 (Star), 70 (Mesh)
• Coastal and Plains: 55

(Star), 70 (Mesh)
• Forestry and Mountains:

50 (Star), 65 (Mesh)

• City: 60
• Coastal and

Plains: 60
• Forestry: 60
• Mountains: 50

• City: 75
• Coastal and

Plains: 60
• Forestry: 55
• Mountains: 50

SATCOM
• C band:

4–8 GHz

[15,48]

• 0.032 • 100–6000 • 0.1 • Star
• Mesh

• Coastal
• Plains
• Mountains

• Coastal and Plains: 55
(Star), 70 (Mesh)

• Mountains: 50 (Star), 65
(Mesh)

• Coastal and
Plains: 60

• Mountains: 50

• Coastal and
Plains: 60

• Mountains: 50

UHF
• 450–470

[49]

• 0.032
• 0.064

[49]

• 30
• 0.0125
• 0.025

[49]

• P2P
• P2M

[50]

• Coastal
• Plains
• Mountains

• Coastal and Plains: 35
(P2P), 55 (P2M)

• Mountains: 30 (P2P), 50
(P2M)

• Coastal and
Plains: 60

• Mountains: 50

• Coastal and
Plains: 45

• Mountains: 35
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4. Machine Learning (ML)

ML has been widely used in various applications and fields. Nowadays, data can be
obtained across the internet, but the method of extracting or obtaining knowledge from the
data can be very challenging. With the aid of ML, the learning process of the data can be
performed with minimal calculation and less time consumption. The continuous learning
process is needed to ensure continuous development. In practice, this means enabling
a model to learn and adapt autonomously in production as new data is received. ML is
described as a computer’s capacity to learn and improve its accuracy over time without
being instructed to do so. In ML, an algorithm has been trained several times to adapt
and detect patterns in order to be able to make decisions and pre-dictions based on newly
acquired information [51]. Better algorithms often result in more accurate decisions and
predictions. Some of the ways to choose an algorithm is by looking at the size of the training
data, accuracy and/or interpretability of the out-put, the training time, and the number
of features. ML can be classified into three different categories, namely, supervised ML,
unsupervised ML, and reinforcement and semi-supervised learning [52,53].

In this research, supervised ML was selected as it has the capability of predicting con-
tinuous quantities (regression) and predicting a label or class (classification). In particular,
supervised ML will be used for the identification of the communication technology class
based on the technical criteria dataset. This will consequently lead to the identification of
the technical criteria having the biggest contribution to the decision on choosing the best
communication technologies for the electrical distribution substation. To the best of our
knowledge, there are limited studies related to criteria selection via ML especially in the
communication technology field. An example of ML criteria selection in a different field
can be found in [54], in which in the authors per-formed criteria selection in the selection
of non-native language Master of Business Administration (MBA) students in Shanghai
International MBA Program in China. Some of the major criteria of the study includes
age, oral English fluency, and working years. The authors evaluated three different ML
approaches: Ridge Linear Regression, Gradient-Boosted Decision Trees (GBDT), Random
Forests and SVM. Each of these algorithms is subjected to tenfold cross validation, which is
similar to our method.

Figure 2 depicts the steps of the ML modelling used, with each block representing an
operator that was used in the modelling. The created dataset in Section 3 was imported
into RapidMiner, and was applied to several ML models specialising in the classification
method, such as naïve Bayes, decision tree, random forests, k-nearest neighbours (k-NN),
and gradient boosted trees. These ML approaches were chosen and shortlisted for this
study because they are considered to be among the most well-known approaches in the
field of supervised machine learning. Other ML approaches such as support vector machine
(SVM), artificial neural networks, logistic regression and perceptron, were not selected, as
RapidMiner had identified them not suitable based on the dataset. This is because the label
data was in polynomial instead of binomial or real or integer. These ML models could not
identify the polynomial data, making them unsuitable to be used. RapidMiner is used for
this project since it has become one of the most popular tools for the ML models due to
its graphical user interface, and because it is user friendly and easy to use compared to
other code-based software. The tools and functions provided by RapidMiner are efficient
for data observation, comparison, results evaluation, and analysis. It also offers extensive
documentation, numerous worked examples, training, and support from a large user
community. A brief description on these ML models are as follows, while the advantages
and disadvantages of these ML models are described in Table 4.
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Figure 2. Overview of the ML modelling process using RapidMiner.

Naïve Bayes: The Naïve Bayes method is a form of supervised learning that is based on
the Bayes’ theorem, which involves conditional probability and is used to solve classification
problems. A Naïve Bayes classifier assumes that the presence of one feature in a class has
no relationship with the presence of any other feature [53]. The overall structure of Naïve
Bayes is called the Bayesian network. Naive Bayes is described as a method of classification
that requires only a small amount of training data. Another advantage is that it has a short
computational time for training [53,55].

Decision Tree: The decision tree is another supervised ML model used for classification.
Essentially, it is a basic tree that contains of branches where each branch indicates a possible
value a node may have and nodes, where the node represents attributes of a group that
is to be classified [53,55]. The tree structure is simple to comprehend and gives a clear
perspective for decision-making. But it has several disadvantages, such as overfitting, and
errors due to bias and variance. A simple technique to avoid overfitting is to pre-prune the
decision tree by preventing it from growing to its maximum size [55].

Random Tree Forest: The Random Tree Forest is an improvement on the Decision
Tree, which is a versatile and powerful ensemble classifier [56]. It has the capability of
generating a huge number of trees using random bootstrapped samples of the training
dataset. Random Forests need two parameters to be tuned, including the number of trees
(ntree), and the number of variables (mtry) [56]. However, since this method generates a
huge number of trees, the process consumes more time than the Decision Tree and takes
more effort to comprehend and evaluate. This is because each tree in the forest will be
produced, processed, evaluated, and analysed individually [57].

Gradient Boosted Tree: The gradient boosted tree is an ensemble of either regression
or classification tree models [58]. Its ensemble of weak prediction models usually involves
a decision tree to produce an improved or strong prediction model. Gradient boosted trees
function by building each succeeding tree consecutively and learning from the faults of the
preceding tree. The process of identifying and updating the pattern is then repeated until
no pattern can be modelled and the sum of residuals approaches zero and the predicted
values approach the actual values [59].

k-Nearest Neighbor (k-NN): The k-NN is a simple but effective supervised ML algo-
rithm [60]. This approach provides a class label to an unlabeled item based on the class
labels of its k nearest neighbours. The model is simple to implement, robust to noisy
training data, and effective even with large amounts of training data.

The steps of ML modelling start with importing the training dataset into the Rapid-
Miner software, using the ‘Retrieve’ operator. Next, the ‘Set Role’ operators are used to
assign a class to an attribute. In this case, the technology criteria were set as a label role. A
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label role works as a learning operator target attribute and is often referred to as ‘target
variable’ or ‘class’. After assigning a role to the imported dataset, the information was fed
into the ‘Cross Validation’ operator. Each ML approaches uses default parameters for both
variables and hyperparameters. Thus, no optimization is required.

Table 4. The advantages and disadvantages of the selected ML models.

ML Model Advantages Disadvantages

Naïve Bayes

• Time-efficient.
• Suitable for solving multi-class prediction

problems
• Better performance and requires fewer training

data than other models if its assumption of the
independence of features holds true.

• Better suited for categorical input variables than
numerical variables.

• Limited applicability in real-world use cases due
to its assumption that all predictors/features are
independent, which rarely happens in real life.

• Smoothing technique is needed to solve the
‘zero-frequency problem’ where it assigns zero
probability to a categorical variable whose
category in the test dataset was unavailable in the
training dataset.

• Its probability output estimations are not precise
in some cases.

Decision Tree

• Easy to use and understand.
• Can handle both categorical and numerical data.
• Resistant to outliers, hence, require little data

pre-processing.
• New features can be easily added.
• Can be used to build larger classifiers by using

ensemble methods.

• Prone to overfitting.
• Require some kind of measurement as to how

well they are doing.
• Need to be careful with parameter tuning.
• Can create biased learned trees if some classes

dominate.

Random Tree
Forest

• Reduces overfitting in decision trees and helps to
improve the accuracy.

• It is flexible to both classification and regression
problems.

• It works well with both categorical and
continuous values, and it automates missing
values in data.

• Normalizing of data is not required as it uses a
rule-based approach.

• It requires large computational power as well as
resources as it builds numerous trees to combine
their outputs.

• It takes a long time to train because it combines
many decision trees to determine the class.

• It also lacks interpretability due to the ensemble of
decision trees and fails to determine the
significance of each variable.

Gradient
Boosted Tree

• Is generally more accurate compared to other
models.

• It trains faster especially on larger datasets.
• It provides support for handling categorical

features.
• Able to handle missing values natively.

• Prone to overfitting.
• It can be computationally expensive and take a

long time to train, especially on central processing
units (CPUs).

• It can be hard to interpret the final models.

k-Nearest
Neighbor

• Quick calculation time.
• Simple algorithm.
• Versatile and useful for regression and

classification.
• High accuracy.
• It does not require any data assumptions. As a

result, there is no need to make additional
assumptions, fine-tune several parameters, or
construct a model. This is especially important in
the case of non-linear data.

• Accuracy depends on the quality of the data.
• With large data, the prediction stage might be

slow.
• Sensitive to the scale of the data and irrelevant

features.
• Require high memory, needs to store all of the

training data.
• Given that it stores all of the training, it can be

computationally expensive.

Cross-validation is one of several data resampling methods, including randomization,
bootstrap, and jackknife [61]. This method’s function is to estimate the accuracy and efficacy
of an ML model [62,63], while [64] states that the overall goal of cross validation is to assess
the generalization ability of predictive models and to avoid overfitting. This method will
randomly split the data by dividing into one or more subsets for resampling. The ‘Cross
Validation’ operator, in particular, is divided into two sub-processes: training and testing.
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Each of the ML models will undergo the training sub-process before being applied in the
testing sub-process. The performance obtained during the testing phase is used as an
accuracy marker for the ML model, with accuracy defined as how accurate the model is
in determining the labelled data, and it is calculated by dividing the percentage of correct
predictions by the total number of examples. As mentioned in [65], the authors stated that
the cross-validation method aided in these three ways:

1. It reduced the variability in prediction errors.
2. It made the best use of all available data while avoiding overfitting or overlap between

test and validation data.
3. It avoided testing hypotheses provided by arbitrarily split data.

Some of the cross-validations variants are K-fold cross validation, leave-one-out cross-
validation, stratified K-fold cross-validation, Repeated K-fold cross-validation, nested
cross-validation, and time series cross-validation [66,67]. In this research, the K- fold
cross validation was selected. The K-fold technique is popular and simple to grasp; it
produces a less biased model when compared to other methods because it assures that
every observation in the original dataset holds a chance of appearing in both the training
and test sets and suitable for limited input data. Moreover, one option for improving the
holdout method is to use K-fold cross validation. This strategy ensures that the ML model’s
score is independent of how we chose the train and test sets [63,68].

The general procedures of K-fold cross validation are as follows [69,70]:

1. Pick any number of folds, K. Ideally, it can be from 5 to 10, depending on data sizes.
2. The dataset will be divided into K equal subsets, which are also called folds.
3. Choose K − 1 folds, which will be the training set. The remaining folds will be the

test set.
4. Use the cross-validation method to train the ML model and calculate its accuracy
5. Evaluate the accuracy using all the K cases of cross validation.

Figure 3 shows an example when the number of folds is equal to 5, which also
summarizes the general procedure for conducting the K-fold cross validation. Typically, a
number of K = 10 is used in a vast area [65,71]. As K increases, the size of the gap between
the training set and the resampling subset decreases. Consequently, the technique’s bias
decreases (i.e., the bias is less for K = 10 than it is for K = 5), in which the bias defined in
this context is the difference between estimated and true performance values [72].

The authors in [71] proposed a repeated cross validation with K = 10, especially for
the research problems that are often encountered in the social sciences. Cross validation is
also used to predict fatty liver disease, with the authors using k-fold cross validation on
several machine learning algorithms [65]. They proposed four different machine learning
algorithms: Random forest, naïve Bayes, artificial neural networks, and logistic regression,
each with three different K values (3, 5, 10). Observation shows that the random forest
performed best with K = 10. As a result, K = 10 was also used in our analysis. As stated
in [70], because training and testing are done on separate sections of the dataset, the K-fold
produces a more consistent and trustworthy result. It is also possible to improve the overall
score by increasing the number of folds used to test the model on a variety of different
sub-datasets. The disadvantage is that increasing the number of K in training more models
may lengthen the training process.
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Figure 3. K-fold cross validation process.

The output of the ‘Cross-validation’ operator is then fed into the ‘Explain Predic-
tion’ operator to find the ML model’s performance using the ‘support prediction’, and
the ‘contradict prediction’ values. The ‘Explain Prediction’ operator provides statistical
and visual observations to help understand the role of each attribute/criterion on the
prediction. Essentially, this operator will create a table highlighting the attributes that most
strongly support or contradict each prediction. Additionally, the table is also presented
with two additional columns providing numeric data values on the support and contradict
predictions [73]. This operator works with all data types and data sizes. It supports both
classification and regression problems. The only ML model type that is not recommended
is random forest, since this model typically suffers from long runtimes. The output from
both the ‘Cross Validation’ and ‘Explain Prediction’ operators are exported into an Excel
file via the ‘Write Excel’ operator for further analysis on the outcome.

5. Results and Discussion

The obtained results from the ‘Cross Validation’ and ‘Explain Prediction’ operators
are tabulated in Table 5, which shows the comparison between each ML model in terms
of accuracy, standard deviation, classification error, the cross-validation execution time,
and ‘Explained Prediction’ execution time when K = 10. The model with the highest
accuracy is then selected for the elimination of the least important criteria for the electrical
distribution substation communication technology. The output of the ‘Explain Prediction’
operator for the chosen ML model was specifically evaluated in terms of its supporting
and contradicting prediction values. Following that, an average value for each technical
criterion was calculated, and the criteria were ranked in order of importance, as shown in
Table 6.

Table 5. Results comparisons obtained from the RapidMiner simulation.

Models Cross Validation
Accuracy Standard Deviation Execution Time

(Cross Validation)
Execution Time
(Explain Prediction)

Naïve Bayes 98.41% +/− 0.79% 28–50 ms 3320–3800 ms

Decision Tree 97.05% +/− 2.94% 45–80 ms 1800–2500 ms

Random Forest 97.95% +/− 1.29% 980–2400 ms 144,000–160,000 ms

Gradient Boosted Tree 98.07% +/− 1.52% 3700–9400 ms 28,000–40,000 ms

k-NN 97.73% +/− 1.42% 95–150 ms 47,000–55,000 ms
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Table 6. Ranked technical criteria based on the average values of the output of the ‘Explain Predic-
tion’ operator.

Criteria Average

Frequency 0.0127919

Distance 0.0086610

Scalability 0.0048568

Data rate 0.0037547

Reliability 0.0032249

Physical Topology 0.0013349

Frequency Bandwidth 0.0003337
Terrain Factor −0.0016518
Interference −0.0067775

From Table 5, it can be observed that the Naïve Bayes model showed the highest
accuracy, the lowest standard deviation, and the shortest cross validation execution time.
Furthermore, the ‘Explain Prediction’ operator execution time was the second shortest of
the five models tested. As this research only required a one-time process to determine which
criteria should be prioritized, accuracy took precedence over time spent. Although the
random forest model’s performance in cross-validation accuracy was comparable to naïve
Bayes, with almost a 0.5% difference and a +/− 0.5% standard deviation, its execution times
for both ‘Cross Validation’ and ‘Explain Prediction’ operators were longer. Additionally,
the naïve Bayes model offered several advantages over the random forest model, in which
its model size was low and quite constant with respect to the data [74]. Since naïve Bayes
models cannot reflect complex actions, they would not overfit. On the other hand, the
random forest model may result in overfitting if not carefully developed [74].

From its performance shown in Table 5, the naïve Bayes ML model was selected for
further analysis. Specifically, the outcomes of the ‘Explain Prediction’ operator for naïve
Bayes were used to assist in the elimination of the least important technical criteria for the
electrical distribution substation communication technology. The output of the operator
showed which technical criteria support or contradict the predictions. It also listed the
importance of the technical criteria row by row with respect to the column, presented
in numerical values. From that, an average was determined to assist in the ranking of
the criteria, with the highest influence on the selection of the communication technology.
Table 6 shows the average of the criteria for the 880 data points from the Naïve Bayes model.
It can be observed that terrain factor and interference held the most negative attributes
out of the nine criteria considered. These two lowest criteria shall be omitted because
they are regarded as the least important and have no significant impact on the selection
of electrical distribution substation communication technologies. The remaining seven
technical criteria should be evaluated to determine the best communication technology
solution for the electrical distribution substation.

6. Conclusions

This paper presents a method for technical criteria selection using ML for electrical
distribution substation communication technology solution. Manually selecting an appro-
priate communication technology as a communication solution for an electrical distribution
substation can be difficult, especially when numerous factors and criteria are involved.
Thus, in this paper, ML was used to aid in the selection process by short-listing the numer-
ous technical criteria of the potential communication technologies, based on the influences
of each criterion on the communication technology selection. More specifically, this paper
provided a list of the potential communication technologies to be applied at the electrical
distribution substation, based on an extensive literature review. From the list provided,
the technical criteria (or specifications) of each of the communication technologies were
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identified for the creation of the ML training dataset. This dataset was used for a supervised
ML process in the RapidMiner software package, where a thorough investigation into the
performance of several ML models in the classification of the communication technology
criteria was conducted. From the investigation, the naïve Bayes model showed the highest
overall performance in terms of accuracy and execution time. The output from the naïve
Bayes’ analysis was then used to rank and eliminate the technical criteria that held neg-
ative attributes for the selection of communication technology for electrical distribution
substation. The ranking of these criteria was expected to simplify the selection process of
the best communication technology for the electrical distribution substation. As for future
work, the remaining seven technical criteria will be evaluated further to determine the
most suitable communication technology for the electrical distribution substation.
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