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Abstract: Only a specific location can make sensor data useful. The paper presents an simplify
belief propagation and variation expectation maximization (SBPVEM) algorithm to achieve node
localization by cooperating with another target node while lowering communication costs in a
challenging environment where the anchor is sparse. A simplified belief propagation algorithm is
proposed as the overall reasoning framework by modeling the cooperative localization problem as a
graph model. The high-aggregation sampling and variation expectation–maximization algorithm is
applied to sample and fit the complicated distribution. Experiments show that SBPVEM can obtain
accurate node localization equal to NBP and SPAWN in a challenging environment while reducing
bandwidth requirements. In addition, the SBPVEM has a better expressive ability than PVSPA, for
SBPVEM is efficient in challenging environments.

Keywords: cooperative localization; belief propagation; expectation maximization; variation inference

1. Introduction

Positioning is essential in multi-sensor networks, vehicle ad hoc networks [1], under-
water unmanned clusters [2], military environment research [3], forest emergency rescue [4],
and other tasks that need environmental awareness. Cooperative localization uses mea-
surements between unlocalized target nodes to localize all network nodes when anchor
nodes are not sufficient or accessible.

Collaborative localization based on filtering [5] and optimization [6] requires that the
nodes have a good initial state. The optimization result is unreliable when the target node
does not have a good prior. However, nodes cannot provide good and reliable prior under
divergent conditions and some extreme conditions. Refs. [7,8] use belief propagation (BP)
methods to deal with the problems of no initial position of target nodes, few anchor nodes,
and sparse links between nodes. The BP method is an accurate reasoning method applied to
an acyclic probability graph, and the loopy belief propagation (LBP) method approximates
the BP algorithm on an acyclic graph. Ref. [9] proposed a SPAWN method for location on
the basis of LBP. In order to solve the positioning probability in continuous space, the BP
algorithm needs to discretize the value space by the grid. The high probability interval may
be smaller than the feasible region, which wastes many computational resources of the
algorithm. Ref. [10] proposed the Nonparametric Belief Propagation (NBP) method, which
uses weighted particles to represent the irregular distribution of node positions. However,
communication overhead is the critical problem in the implementation, which mainly
comes from the representation of information exchanged between neighboring nodes.
The particle-based method requires a higher communication overhead between nodes.

In order to reduce the communication overhead, Ref. [11] combines the idea of a
sigma point to fit the fitted parameters, which uses a Gaussian to represent the information
between nodes. Refs. [12,13] show that when BP based on parameter fitting is applied
to the positioning problem, it can only deal with the situation that the positioning center
of nodes is Gaussian distribution. Ref. [14] considers the multimodal situation of node
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position but confuses Gaussian distribution and mixed Gaussian distribution. Select a
Gaussian to fit the mixed Gaussian. Ref. [15] proposed for the first time to use the VMP
algorithm as a generalization of BP on a factor graph and to use a variational method to fit
the probability of nodes, which can fit the non-Gaussian situation. However, the mean-field
hypothesis destroys the association between multi-dimensional states. Ref. [16] applies
the VMP method to the positioning problem. However, only single-mode and dual-mode
positioning cases are considered. Ignore the constraint range of other nodes when the node
can only communicate with a few anchor nodes.

This paper proposes the SBPVEM method for the distributed cooperative localization
of sparse anchor targets in the algorithm. A simplified belief propagation algorithm is
proposed as the overall reasoning framework by modeling the cooperative localization
problem as a graph model. The high-aggregation sampling and variation expectation–
maximization algorithm is applied to sample and fit the complicated distribution. In
practice, our work solves the self-localization problem of distributed nodes under the
condition of a minimal number of anchor nodes, makes cooperative localization with
sparse anchor nodes in wireless sensor networks a reality, and lowers the cost in large-
scale applications.

The Section 1 of this paper details the subject’s background and associated studies.
Section 2 models cooperative localization problems as a graph model and describes belief
propagation as necessary background knowledge. The proposed SBPVEM approach is
detailed in depth in the Section 3. The Section 4 includes some experiments to show our
algorithm’s effectiveness. Discussion is presented in the Section 5.

2. Model
2.1. System Model

The undirected graph defined by the node v ∈ V and a set of edges (r, t) ∈ E is used
to represent the node location problem. Each node represents an intelligent unmanned
platform. For the following discussion, we divide the nodes into anchor nodes Va that
know their positions and nodes that need to be located Vt. Each edge represents the
communication link between sensors. If there is (r, t) ∈ E , it means the communication
relationship established between node T and node R, which can transfer the information of
nodes and their mutual constraints Table 1.

Table 1. Basic Symbols Description.

Symbol Describtion

xt State of node T
ψt(xt) Potential function of node T
ψtu(xt, xu) Paired potential function between node T and node U
mut(xt) Message from node U to node T
mi

ut(xt) The message passed by node U to node T in the I-th iteration
Bt(xt) Belief function of node T
Bi

t(xt) Belief function of node T in the ith iteration
Gt Neighbor node of node T
G0

t The neighbor node of node t that is not the anchor node
N (µ, Σ) Multi-dimensional gaussian distribution
U(a, b) Uniform distribution
z Normalization factor
αk The weight of the K-th Gaussian distribution in the Gaussian mixture model
θk Parameters of the kth Gaussian distribution in the mixed Gaussian model,

including µk and Σk
γ Characteristic function, which indicates the source of the sample. The di-

mension is K-dimension, when sample J comes from the K-th Gaussian
distribution, γjk = 1, and the rest γjn|n 6=k

= 0
G(α, µ, Σ) Gaussian mixture model
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The positioning problem is modeled as a probability graph model problem, and the
posterior distribution of node positions is the positioning result we want.

P(X |D) ∝ P(D|X )P(X )

=

 ∏
(r,t)∈E

p(drt|xr, xt)

(∏
v∈Vt

pv(xv)

)
(1)

Among them, p(drt|xr, xt): It means the probability density of distance measurement
of drt based on the node position estimation of xr, xt. Let us assume that drt = ‖xr − xt‖+
omegart, where ωrt ∼ N (0, σij) represents the measured noise, we can obtain:

p(drt|xr, xt) =
1√

2πσ2
rt

exp
{
− (drt − ‖xr − xt‖)2

2σ2
rt

}
(2)

pv(xv) indicates the probability density of the location of the node. In the cooperative
localization problem, the marginal probability of posterior distribution is the position
estimation of nodes.

p(xv|D) ∝
∫

p(X|D)dX \ xv (3)

where X \ xv represents the set of all variables in x except xv.

2.2. Belief Propagation

The BP method is an accurate reasoning method, and the core process is belief calcula-
tion and message calculation. The belief of node A is the probability distribution density of
variable A value.

The message from node A to node B is the probability distribution density of variable
B’s possible values from the perspective of node A. The renewal of the belief of node B is
the aggregation of information transmitted by node B to all neighboring nodes.

U sends a message to node t:

mut(xt) =
∫

xu
ψtu(xt, xu)

Bu(xu)

mtu(xu)
dxu (4)

T receives the message from the surrounding nodes and starts belief calculation:

Bt(xt) = zψt(xt) ∏
u∈Gt

mut(xt) (5)

where ψu(xu) is the node potential function, ψtu(xt, xu) is the paired potential function of
two nodes, and z is the normalization factor.

When the BP method is applied to the location problem, we consider the location
problem based on distance. In this problem, the potential function of nodes ψt(xt) is the
probability density function of nodes in different positions.

ψt(xt) = pt(xt) (6)

The paired potential function ψtu(xt, xu) between two nodes is the probability density
function of two nodes based on the distance. The combination Formula (2) is:

ψtu(xt, xu) = p(dtu|xu, xt)

= z exp
{
− (dtu − ‖xu − xt‖)2

2σ2
tu

} (7)
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LBP, which can be applied to a graph with loops, adds iteration based on BP. The
message from node u to node t in the i-th iteration is:

mi
ut(xt) =

∫
xu

ψtu(xt, xu)
Bi−1

u (xu)

mi−1
tu (xu)

dxu (8)

The belief update of node t in the i-th iteration is:

Bi
t(xt) = zψt(xt) ∏

u∈Gt

mi
ut(xt) (9)

3. Methodology

Since the viable solution to the positioning problem is in continuous space, directly
dividing the feasible space and calculating the probability wastes much computational
power. To lower the computation complexity and communication requirements, NBP uses
particles to represent potential functions. Nevertheless, the amount of data to transmit is
still huge Figure 1.

Figure 1. Localized anchor nodes are represented by the red five-pointed star, while unlocalized
target nodes are represented by the blue circle. Each node sends its opinion of the distribution of the
neighborhood node on the basis of its belief and measured distance.

This paper proposes a simple belt propagation and variation expectation–maximization
(SBPVEM) method to realize the cooperative localization of nodes. The algorithm consists
mainly of Simplify Belief Propagation (SBP), high-aggregation sampling, and variation
expectation–maximization (VEM). The concrete operation of the algorithm on the node is
shown in Figure 2.
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Figure 2. SBPVEM intra-node data flow. The node receives neighbors belief Bi∈G and computes
potential function Ψ between nodes under the constraints of distance measurement. The belief B̃ can
be obtained by multiplying all the neighboring Ψ. B̃ is complicated, by high-aggregation sampling
and variation expectation–maximization, a GMM B is obtained to represent B̃.

3.1. Simplify Belief Propagation

According to the message update formula, the message mut transmitted by node U
to node T is the accumulation of the product of the potential function between two nodes.
There is an aggregation of messages transmitted by node U to neighboring nodes except T
on the possible values of each node U. Here, the information transmitted by the T node
to the U node is removed to prevent the confidence of the T node from being used many
times, resulting in overconfidence of the node. However, the approximation of LBP to
BP shows that the repeated use of node confidence will not affect the expectation of node
positioning, so here, we simplify the message from node U to node T as follows:

mi
ut(xt) =

∫
xu

ψtu(xt, xu)Bi−1
u (xu)dxu (10)

Because of the equivalence of the solution, we can make:

mi
ut(xt) = Bi−1

u (xu) (11)

Ψut(xt, xu) =
∫

xu
ψtu(xt, xu)mi

ut(xt)dxu (12)

B̃i
t(xt) = kψt(xt) ∏

u∈Gt

Ψut (13)

In this way, we disassemble the SBP problem into three steps: The first step, the same
as that shown in Formula (11), is to broadcast the belief of the node as the message of
the node to all neighboring nodes. Secondly, according to the Formula (12), the potential
function Ψ between the target node and the neighbor node is calculated based on the
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belief of the source node and the constraint between the two nodes. In Step 3, based on
Formula (13), the target node calculates the belief estimate of its own positioning B̃ based
on the potential function.

Assuming that the Gaussian mixture model can express the potential function of
nodes, the Gaussian mixture model results from the superposition of multiple Gaussian
distributions.

G(α, µ, Σ) =
n

∑
k=1

αkN (µk, Σk) (14)

Among them,N represents Gaussian distribution, and µk and Σk are the parameters of
the k-th Gaussian distribution. The formula of multi-dimensional Gaussian distribution is:

N (µk, Σk) =
1

2π
√

det(Σk)
exp−

1
2 (x−µk)

TΣ−1
k (x−µk) (15)

The potential function of nodes is:

Bi
u(xu) = Gu(α, µ, Σ) (16)

Formulas (14) and (16) are brought into (12), and there are:

Ψut(xt, xu)

=
K

∑
k=1

αk

∫
xu

ψtu(xt, xu)Nu(µk, Σk)dxu
(17)

According to Formulas (7) and (15), ψtu(xt, xu) can be regarded as one-dimensional
Gaussian, and Nu(µk, Σk) can be regarded as part of the integral that can be understood
as the paired potential function ψtu, the expectation under the probability Nu(µk, Σk). For
the convenience of calculation, we can directly bring the paired potential function between
nodes into the belief distribution of nodes. Let xs be the equivalent variable:

xs =
xu − µ

|xu − µ| (|xu − µ| − d) (18)

in which |xu − µ| − d considers the distance constraint between nodes and transforms the
two-dimensional problem into one-dimensional. xu−µ

|xu−µ| keeps the directionality of the node
position and restores the one-dimensional distance to a two-dimensional direction. Bring
the equivalent variable xs into the two-dimensional belief distribution of nodes and obtain:∫

xu
ψtu(xt, xu)Nu(µk, Σk)dxu

= z exp

(
−

xsΣ−1
k xs
2

)

= z exp

−
[

xu−µ
|xu−µ| (|xu−µ|−d)

]
Σ−1

k

[
xu−µ
|xu−µ| (|xu−µ|−d)

]
2


(19)

The results are shown schematically in Figure 3. Bring Formula (19) into (17) and
obtain the potential function obtained by fusion node potential function and paired poten-
tial function.
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Figure 3. Node potential function under different distributions. (a) indicates belief of node a (Na),
where µ = [0.5, 0.5], σ = [0.1, 0.1], ρ = 0; (b) indicates the potential function Ψac with disac = 0.35;
(c) indicates belief of node b (Nb), where µ = [0.5, 0.5], σ = [0.1, 0.1], ρ = 0.8; (d) indicates the
potential function Ψbc with disbc = 0.35.

3.2. High-Aggregation Sampling

In SBP, all nodes transmit the position belief of the node itself. However, the belief of
nodes is the aggregation of paired potential functions based on mixed Gaussian, and its
form is very complicated. For the convenience of expression, we can consider approxi-
mating the accurate distribution of nodes by sampling and re-fitting. We propose a highly
condensed sampling method, which can simultaneously reduce the amount of calculation,
improve the sampling efficiency, and improve the effectiveness of samples.

Sampling is divided into five steps: uniform sampling in sampling space, probability
calculation, node filtering, resampling, and importance sampling.

(1) Determine the sampling space and obtain uniform sampling x̃ ∼ U(x_min, x_max)
in the space.

x_min = max{[x_min; max(xg − dg)]} (20)

x_max = min{[x_max; min(xg + dg)]} (21)

(2) Apply the belief of the node B̃ to the sampled sample particles, and obtain the
particle probability P(x̃)

(3) Filter Pgate for nodes with particularly low probability to obtain effective nodes xgate.

xgate = x̃ i f P(x̃) > Pgate (22)

(4) When the number of valid samples is insufficient, resample by sample expansion
and random walk.
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Expand the sample by copying the sample:

x̃gate =

xgate; . . . ; xgate︸ ︷︷ ︸
f loor(η)

; (23)

where η = n/size(xgate),n is the total number of samples of the node.
Through random walk of the expanded samples, resampling of the samples is realized.

xtem = x̃gate + βη̃σv (24)

among η̃ = max{3, η}, the combination of η̃ and σ is used to limit the distance traveled.
v is used to indicate the direction of random walk. In a two-dimensional environment,
v = [cos(θ), sin(θ)]β ∼ U[0, 1] means uniform sampling in distance. θ ∼ U[0, 2π) means
uniform sampling in angle.

(5) Importance sampling of the obtained new particles.

xsample ∼ P(xtem) (25)

In this algorithm, uniform sampling is used to obtain sufficient effective particles,
which ensures the expressiveness of the samples as a whole. Stepping uniform sampling
by importance sampling can realize the approximation of distribution by particles.

3.3. Variation Expectation Maximization

The EM method is a parameter solution method of the Gaussian mixture model, which
is usually used to solve a low-dimensional model with a known number of components.
However, it is impossible to determine in advance how many Gaussian models are needed
to achieve proper fitting for strange shapes. In order to better fit the possible positions of
nodes, this paper proposes a variable expectation–maximization method, which can adapt
to the fitting situation with an uncertain number of Gaussian components. In this paper, we
consider initializing the results using a Gaussian mixture model with enough components
and then filter the Gaussian distribution used for fitting by component filtering, leaving
the part with higher responsiveness as the selected model Algorithm 1.

In the Gaussian mixture model shown as Formula (14), αk is the weight of the k-th
Gaussian distribution, αk ∈ [0, 1], and ∑k

k=1 αk = 1. We introduce the hidden variable γjk
to indicate whether the j-th sample comes from the K-th Gaussian distribution. When the
j-th sample comes from the k-th Gaussian distribution, γjk = 1; otherwise, γjk = 0. When
the weight of the k-th Gaussian distribution is more significant, the more samples from the
kth Gaussian distribution there will be. On the other hand, the more samples from the k-th
class, the heavier the weight of the k-th class. The relationship between the hidden variable
γjk and the weight αk is:

p(γjk = 1) = αk (26)

Because γj× = [0, . . . 0, 1, 0, . . . 0] for every sample j is a 1-of-K hot unique code, it can
be written as follows:

p(γj×|α) =
K

∏
k=1

α
γjk
k (27)

After specifying the classification, there are:

p(yj|γjk = 1, µ, Σ) = N (yj|µk, Σk) (28)
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Algorithm 1: Parameter fitting based on VEM
Input: Sampling sample xsample, initial category number K, initial Gaussian

mixture model parameters α0, µ0, Σ0, threshold divergence KLgate, iteration
number n_iter

Output: α, µ, Σ
initialization;
while n < n_iter do

n = n + 1
E step:
Using the current parameters, calculate the response matrix γ̂jk based on
Formula (36)

M step:
Calculate the weight of the component αn based on Formula (37)
Filter the components based on Formula (38) and obtain αpick,µpick and Σpick
γ̂jk = γ̂jk̂pick

Update the expected µn based on Formula (39)
Update the covariance σn based on Formula (40)
Check step:
while n=n_iter do

Calculate KL divergence between two distributions: KL(q‖p)
if KL(q‖p) > KLgate then

n=0
else

break
end

end
end

The joint probability of all samples considering sampling:

p(γ|α) =
N

∏
j=1

K

∏
k=1

α
γjk
k (29)

In case of multi-sample and multi-classification:

p(y|γ, µ, Σ) =
N

∏
j=1

K

∏
k=1
N (y|µk, Σk)

γjk (30)

The likelihood probability under the given distribution parameters is:

P(y, γ|α, µ, Σ) =
K

∏
k=1

α
nk
k

N

∏
j=1

[
N (yj|µk, Σk)

]γjk (31)

Among them, nk = ∑n
j=1 γjk is used to represent the number of nodes from the k-th

Gaussian distribution and can represent the intensity weight of the k-th component in
the calculation.

αk =
nk
N

(32)

For the convenience of calculation, log-likelihood can be taken:

log P(y, γ|θ) =
K

∑
k=1

(
nk log αk +

N

∑
j=1

γjk log
[
N (yj|θk)

])
(33)
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where:
log
[
N (yj|θk)

]
= − log(2π)− 1

2
log(|Σk|)−

1
2
(y− µk)

TΣ−1
k (y− µk) (34)

The goal of the EM algorithm is to find the distribution parameters that can make the
sample appear the most expected. Through two steps of expectation and maximization, it
is realized iteratively. The expectation is to calculate the expectation of hidden variables
under the current observation data and parameters. Maximizing is to find the parameters
that can maximize the expectation of the currently hidden variable.

Given the observation y and the current parameter θi, the expectation of conditional
distribution of hidden variable γ is:

Q(θ, θ(i)) = Eγ

[
logP(y, γ|θ)|Y, θi

]
=

K

∑
k=1

(
nk log αk +

N

∑
j=1

γ̂jk log
[
N (yj|θk)

])
(35)

in which θ is the real parameter of distribution, θ(i) is the distribution parameter calculated
in the I-th iteration, and γ̂jk = Eγ

[
γjk

]
γ̂jk =

αkN (yj|θk)

∑K
k=1 αkN (yj|θk)

(36)

γ̂jk indicates the possibility that sample J is in the k-th component of the Gaussian
mixture model. [γ̂jk] is called the responsivity matrix. When there are more samples from
the k-th possibility, the weight of the k-th component will be more significant.

αk =
nk
N
≈∑

j
γ̂jk (37)

When K is extensive, many components make up the Gaussian mixture model.
However, there will be some components that do not play a vital role. In order to re-
duce the amount of further calculation, it is necessary to screen the components of the
Gaussian model.

k̂pick ← αk > τ
1
|α| (38)

where τ is the scaling factor. When the weight αk of the k-th component in the mixed
Gaussian model is greater than τ 1

|α| , the kth component will be selected to enter the next
iteration; otherwise, it will be deleted. In the iterative process, the number of components
can be controlled through continuous selection.

The parameters that can maximize the current expectation can be determined by derivation.
Extreme values can be solved by making the partial derivative of the mean value zero:

µk =
∑N

i=1 γ̂jkyj

∑N
i=1 γ̂jk

(39)

You can obtain the updated Σk:

Σk =
∑N

j=1 γ̂jk(yj − µk)
T(yj − µk)

∑N
j=1 γ̂jk

(40)

3.4. Summary

The proposed method contains three steps: simplified belief propagation, high aggluti-
nation sampling, and variation expectation–maximization. A simplified belief propagation
algorithm is proposed as the overall reasoning framework by modeling the cooperative
localization problem as a graph model. The high-aggregation sampling and variation
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expectation–maximization algorithm is applied to sample and fit the complicated distribu-
tion. The overall flow is depicted in Algorithm 2.

Algorithm 2: Cooperative localization based on SBPVEM method
Input: Position of anchor point, distance estimation between nodes
Output: Location estimation of target nodes
initialization;
while i<i_iter do

i = i+1
for t ∈ Vt do

1. Receive the belief of neighbor nodes.:Bu|u∈Gt
= mi−1

u|u∈Gt

2. Based on the Formula (12), calculate the potential function ψut(xu, xt)I
3. Calculate the aggregate B̃i

t of the potential functions of neighboring
nodes based on Formula (13) 4. Using (20)–(25), the feasible spatial
sampling of the node is xi

sample

5. Based on VEM, fit the sampling results to Bi
t = g(α, µ, σ)

6. Broadcast your own location distribution mi
t = bi

t
end

end

The point-to-point message transmission between nodes is turned into the node’s
position estimation broadcast in simplified belief propagation. Before importance sampling,
high-aggregation sampling adds a filter layer to improve efficiency by clustering particles
in high-probability intervals. Finally, the particle is fitted into a Gaussian mixture model
with an unknown number of components using variable expectation maximum.

4. Experiment and Results
4.1. Setting Up

To verify the algorithm, we use static numerical experiments in 2d with a range of
20 m × 20 m. Consider the following three connection scenarios to gradually increase the
difficulty of locating the target node: two anchor nodes, one anchor node, and no anchor
node. NBP [10], SPAWN [9], and PVSPA [16] are compared to SBPVEM.

The RMSE of the position error is calculated to evaluate the accuracy of different
algorithms.

err =
1
N
‖xgt − xpre‖ (41)

where N indicates the number of nodes to be located. xgt ∈ RN×2 is a vector composed of
the ground truth positions of all nodes to be located. xpre ∈ RN×2 is a vector composed of
the predicted positions of all nodes to be located.

err =
1
N

N

∑
i=1
‖xi

gt − xi
pre‖ (42)

where xi
gt = [pi1

gt, pi2
gt] is the ground truth position of node i. xi

pre = [pi1
pre, pi2

pre] is the

predicted position of node i. ‖xi
gt − xi

pre‖ =
√
(pi1

gt − pi1
pre)

2 + (pi2
gt − pi2

pre)
2 is the Euclidean

distance between the ground truth position and the predicted position of the node i.

4.2. Connection Scenario 1: Two Anchors

In connection scenario 1, four anchor nodes and two target nodes are set up with each
target node connecting to two anchor nodes, and the target nodes connecting to each other.
Figure 4 depicts the location distribution (a), communication relationship between nodes
(a), positioning error of various algorithms (b–e), and overall positioning error to constrast
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(f). The four algorithms can achieve nice positioning and convergence after two iterations,
as shown in Figure 4f.

(a) Setting (b) PVSPA (c) SPAWN

(d) NBP (e) SBPVEM (f) Error

Figure 4. Location results of connection scenario 1. (a) exhibits the setting of scenario 1. Anchors
are represented by cyan nodes, whereas yellow nodes represent targets. Blue dotted lines link two
nodes with communication. PVSPA, SPAWN, NBP, and SBPVEM iterative positioning results and
corresponding positioning errors are shown in (b–e). (f) comparing the prediction errors of various
algorithms in the iterative process.

4.3. Connection Scenario 2: One Anchor

In connection scenario 2, three anchor nodes and three target nodes are set up,
with each target node connecting to one anchor node, and the target nodes connecting
to each other. Figure 5 depicts the location distribution (a), communication relationship
between nodes (a), positioning error of various algorithms (b–e), and overall positioning
error to constrast (f). As the diagram depicts, SBPVEM can obtain accurate locate results
equivalent to SPAWN and NBP. Nevertheless, PVSPA can hardly reduce the position error.
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(a) Setting (b) PVSPA (c) SPAWN

(d) NBP (e) SBPVEM (f) Error

Figure 5. Location results of connection scenario 2. (a) exhibits the setting of scenario 2. Anchors
are represented by cyan nodes, whereas yellow nodes represent targets. Blue dotted lines link two
nodes with communication. PVSPA, SPAWN, NBP, and SBPVEM iterative positioning results and
corresponding positioning errors are shown in (b–e). (f) comparing the prediction errors of various
algorithms in the iterative process.

4.4. Connection Scenario 3: No Anchor

In connection scenario 3, three anchor nodes and six target nodes are set up. Three
of six target nodes connect with one anchor, while others only connect with neighbor
target nodes. Figure 6 depicts the location distribution (a), communication relationship
between nodes (a), positioning error of various algorithms (b–e), and overall positioning
error to constrast (f). There was no efficacious message in iteration 1 transmitted to target
nodes with no anchor neighbor, resulting in their first prediction near the center. After two
iterations, all three algorithms except PVSPA improve prediction accuracy. PVSPA makes
locating even worse.
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(a) Setting (b) PVSPA (c) SPAWN

(d) NBP (e) SBPVEM (f) Error

Figure 6. Location results of connection scenario 3. (a) exhibits the setting of scenario 2. Anchors
are represented by cyan nodes, whereas yellow nodes represent targets. Blue dotted lines link two
nodes with communication. PVSPA, SPAWN, NBP, and SBPVEM iterative positioning results and
corresponding positioning errors are shown in (b–e). (f) comparing the prediction errors of various
algorithms in the iterative process.

5. Discussion

Considering the bandwidth requirement, the required bandwidth of SPAWN is pro-
portional to grid divisions, for its message is the probability of the grid. The data amount of
NBP are proportional to the number of particles used to express potential function. SBPVEM
and PVSPA fit the given distribution before sending parameters as messages, so their re-
quirement in bandwidth is small. In summary, CSPA � CNBP � CSBPVEM ≈ CPVSPA.

SBPVEM and PVSPA reduce the communication bandwidth. Experiments show that
the SBPVEM algorithm can sufficiently cope with the challenging environment that the
PVSPA algorithm cannot handle. SBPVEM can obtain accurate node localization while
reducing bandwidth requirements and has a better expressive ability than PVSPA.

6. Conclusions

This paper proposes the SBPVEM method for the distributed cooperative localization
of sparse anchor targets. A simplified belief propagation method is proposed as the overall
reasoning framework by modeling the cooperative localization problem as a graph model.
The high-aggregation sampling and variation expectation–maximization algorithm are
applied to sample and fit the complicated distribution.

SBPVEM can obtain accurate node localization in a challenging environment while
reducing bandwidth requirements. Our work solves the self-localization problem of dis-
tributed nodes under the condition of a minimal number of anchor nodes, makes coopera-
tive localization with sparse anchor nodes in wireless sensor networks a reality, and lowers
the cost in large-scale applications.
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