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Abstract: The fifth-generation (5G) network is the current emerging technology that meets the increas-
ing need for higher throughputs and greater system capacities. It is expected that 5G technology will
enable many new applications and services. Vehicle-to-everything (V2X) communication is an exam-
ple of an application that is supported by 5G technology and beyond. A V2X communication system
allows a vehicle to be connected to an entity, such as a pedestrian, another vehicle, infrastructure, and
a network, to provide a robust transportation solution. It uses many models and strategies that are
usually based on machine learning (ML) techniques, which require the use of a vehicle dataset. In
this paper, a real vehicle dataset is proposed that was generated in the city of Los Angeles (LA). It
is called the Vehicle dataset in the city of LA (VehDS-LA). It has 74,170 samples that are located on
15 LA streets and each sample has 4 features. The LA dataset has been opened to allow researchers
in V2X and ML fields to use it for academic purposes. The main uses of the VehDS-LA dataset are
studies related to 5G networks, vehicle automation, or ML-Based vehicle mobility applications. The
proposed dataset overcomes limitations experienced by previous related works.

Keywords: 5G; Google Maps; IoV; ITS; Los Angeles; machine learning; V2X; vehicle dataset

1. Introduction

The fifth generation is the current generation of cellular networks and aims to make
significant improvements in service quality to enhance reliability, throughput, delay, and
connectivity [1]. Some examples of 5G emerging applications are smart houses, intelligent
transportation, health monitoring, and the Internet of Things (IoT) [2]. The IoT is an
emerging revolution that associates physical things to the Internet [3]. The Internet of
Vehicles (IoV) is a subset of the IoT in which vehicles are connected to the internet and
can send and receive data [4,5]. Vehicle-to-everything technology is an evolution towards
the IoV era and the Intelligent Transportation System (ITS). V2X aims to enhance road
safety, the reliability of communications, and traffic efficiency [6,7]. There are four kinds of
V2X communications, as shown in Figure 1: vehicle-to-vehicle (V2V), vehicle-to-pedestrian
(V2P), vehicle-to-infrastructure (V2I), and vehicle-to-network (V2N). An ITS provides end
users with comfort and safety by employing many models and strategies, the majority of
which are based on machine learning techniques [8].

Machine learning (ML) is a branch of artificial intelligence (AI) that allows computers
to learn from data without having to be explicitly programmed [9,10]. ML techniques have
recently received a lot of attention and the future prospects for this technology are extremely
bright [11]. There are three types of learning techniques, i.e., supervised, unsupervised, and
reinforcement methods. Supervised learning uses labeled data to perform a specific learning
task, while unsupervised learning uses unlabeled data [12]. Reinforcement learning is a
kind of learning that uses reward signals to make the computer learn; the learner is not
taught which actions to take, but it must try to see which ones give the most rewards [13].
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Building an effective ML model needs data features that are closely associated with each
other and with the prediction target [14].

Vehicle-to-Vehicle (V2V)
Vehicle-to-Pedestrian (V2P)

Vehicle-to-Infrastructure (V2I)

Vehicle-to-Network (V2N)

Figure 1. Types of vehicle-to-everything communications.

A smart city is an urban area that utilizes advanced technologies to make life easier
for its citizens [15,16]. Smart cities focus on improving the quality of services provided
to individuals through the management of public resources, convenience, maintenance,
and sustainability [17]. They can overcome issues related to the fields of health, education,
environment, governance, economic, and transportation [18,19]. By 2025, it is expected
that there will be 88 smart cities around the world. Based on the global smart cities index,
the top ten smart cities in terms of smart infrastructure, economy, and governance are
London, New York, Paris, Berlin, Tokyo, Los Angeles, Singapore, Seoul, Chicago, and
Hong Kong [20]. Three of these top cities are located in the United States of America.
New York is one of the largest cities in the world and it has many attractions for tourists
and a diversity of cultures, as 40% of its residents come from other countries [21]. Los
Angeles lies in Southern California and it is the United States’ second-largest city in terms
of population [22,23]. Chicago is located in northeastern Illinois and it is the third largest
city in the United States in terms of population [24,25].

In the field of transportation, a very limited number of real vehicle databases is
available for scientists and engineers to perform academic research related to V2X and
machine learning. The existing databases require effort, time, and equipment to collect data
samples. In addition, the resulting data lack location accuracy and up-to-date versions.

The main contribution of this paper is proposing a real vehicle dataset, called VehDS-
LA that was generated accurately using Google Maps in the city of Los Angeles, California.
The database has 74,170 samples that are located on 15 LA streets and each sample has
4 vehicle features. This paper introduces a general mechanism in generating vehicle
datasets for smart cities based on Google My Maps. The main uses of the proposed dataset,
which was collected in the smart city of LA, are studies related to 5G networks, automation,
and driverless vehicles, together with ML-based vehicle mobility applications.

The rest of this paper is arranged as follows. Section 2 discusses related works on
generating real vehicle datasets. Section 3 illustrates the proposed LA vehicle dataset
in terms of how it was created, its contents, and its representation of it on the LA map.
Section 5 concludes the paper and highlights suggested future directions.
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2. Literature Review

In this section, works on generating vehicle datasets to be used in many fields are
discussed and their limitations are given.

2.1. Related Work

In [26], Jensen et al., who are researchers at the Aalborg University department of
Development and Planning, recorded a vehicle dataset during an intelligent speed adap-
tation project called INFATI. The dataset was generated in February and March 2001 in
Aalborg, Denmark. It is non-commercial and is available free of charge for researchers.
Each vehicle was equipped with a Global Positioning System (GPS) receiver in addition
to a small computer. When vehicles were moved, their GPS location was sampled every
second. When vehicles were parked, no sampling was generated. The process of collect-
ing vehicle information took more than a month. The generated datasets were saved in
Universal Transverse Mercator (UTM) format. Figure 2 shows the vehicle samples on the
INFATI dataset. In [27], the authors found that the resolution of the INFATI dataset was
low and inconsistent.

Figure 2. Illustration of vehicle samples of the INFATI dataset.

In [28], Cho and Kim introduced a vehicle dataset which is based on real data that were
recorded on 13 February 2017 in the city of Los Angeles. It was created for research purposes
to investigate the movement of vehicles in a real-world environment. The database includes
128,199 samples, distributed over 64 comma-separated values (CSV) files. Figure 3 depicts a
snapshot from one of these cvs files and Figure 4 shows the locations of the vehicle samples
on the LA map. Five kinds of sensors have been used: GPS, orientation, acceleration,
gyroscope, and magnetic field sensors. A platform called MediaQ was utilized to achieve
vehicle sample collection, organization and sharing of the recorded dataset. The MediaQ
platform includes a server and an application for smartphones. It can be used to record
videos in MP4 format. Figure 5 shows how a smartphone was mounted during the data
recording process using the MediaQ application. The driving time to collect the data took
about 22.4 h and the driving distance was 1177.4 km [23].
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Figure 3. The vehicle dataset introduced by Cho and Kim in LA.
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Figure 4. Illustration on the LA map of vehicle samples collected by Cho and Kim.



Appl. Sci. 2022, 12, 3751 5 of 20

Figure 5. Smartphone mounted on a vehicle dashboard to generate the vehicle dataset.

In [27], Alzyout et al. proposed a real vehicle dataset in Jordan in 2019. An Android ap-
plication called Ultra GPS Logger (UGL) was used to collect the samples, using a Samsung
Galaxy S Duos 2 S7582 smartphone, as shown in Figure 6. The vehicle sample generation
process took about eight months (from January to August). Once per second, vehicle
information was collected, recording GPS position, speed, direction, and distance between
successive positions. The dataset covered a distance of around 6600 kilometers.

Figure 6. Using the Ultra GPS Logger application on an Android smartphone.

2.2. Limitations of the Related Works

The limitations of Cho and Kim’s dataset, which was collected in LA, are the following:

• Most of the vehicle samples are located on freeways, such as Harbor, Passadena, and
Santa Ana, as shown in Figure 4. The distribution of vehicle samples should not focus
on a particular type of street.

• The geographical distance between two consecutive samples is large around 20 m,
as shown in Figure 7. A large space between samples is undesirable when applying
machine learning techniques.

• The driving time for collecting the LA vehicle dataset was long (around 22 h).
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• The recording process of the dataset required considerable effort, equipment, and
tools (i.e, five types of sensors, MediaQ platform, smartphone, and a vehicle smart-
phone holder).

• The database includes samples that are not moving (i.e., vehicles with a speed of
0 km/h).

Figure 7. The distance between two consecutive geographical points.

In general, based on the previous works on recording vehicle datasets represented in
this section, we find the following limitations:

• The long time and huge effort required to record vehicle dataset samples.
• The need for equipment in the vehicle during the collecting process, such as GPS

receivers, computers, and smartphones.
• The accuracy of the resulting samples is not guaranteed and it may deviate from the

road on which the vehicles moved.
• Difficulty in updating and adding new samples to the resulting dataset, whereas, after

some years, changes may occur to the streets on which the data were collected.

Consequently, there is an urgent need to provide a general and simple mechanism
to generate a vehicle dataset that considers different types of roads. In addition, the
geographic distance between samples should be small, so that the dataset can be used to
train a good machine learning model. In fact, Google Maps is a powerful mapping service
that can be utilized to develop a new mechanism in generating vehicle datasets.

3. The Proposed Vehicle Dataset
3.1. Dataset Generation Method

In this paper, a real vehicle dataset in the city of Los Angeles is proposed. The VehDS-
LA was generated by utilizing Google Maps and the MATLAB R2021b simulator. The
database production process is divided into two main phases, as shown in Figure 8.

• Phase 1: Creating Driving Routes: This phase was implemented through Google Maps.
It includes three steps:

– Step 1: Creating a new map of the city of Los Angeles.
– Step 2: Adding driving routes for all the selected streets (15 streets in this study).
– Step 3: Exporting a Keyhole Markup Language (KMZ) file for each driving route.

An example of the contents of a KMZ file is shown in Figure 9.
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Phase 1: Creating Driving Routes Phase 

Phase 2: Generating Vehicle Dataset Phase

Step 1 Step 2 Step 3

Exporting the dataset as CSV 

file.

CSV
KMZ

Reading the KMZ files.

KMZ
KMZ
KMZ
KMZ

Generating extra vehicle samples with 

four features.

Step 1 Step 2 Step 3

Figure 8. The phases of generating the proposed vehicle DS.
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Figure 9. An example of the contents of a KMZ file.

• Phase 2: Generating the Vehicle Dataset: This phase was performed using the MAT-
LAB simulator. This phase has three steps:

– Step 1: Reading the KMZ files and converting them into structure objects.
– Step 2: Generating extra vehicle samples so that the distance between two samples

is small (0.25 m in this study). For each vehicle sample, four features were
assigned: (1) latitude coordinate, (2) longitude coordinate, (3) vehicle speed, and
(4) vehicle azimuth. The speeds were generated randomly in the range from 10 to
40 km per hour (km/h).

– Step 3: Exporting the proposed VehDS-LA as a comma-separated values (CSV) file.

3.2. LA Vehicle Dataset Characteristics

The generated LA vehicle dataset has 74,170 samples that are located on 15 LA streets.
Figure 10 shows the locations of the proposed vehicle samples on the LA map. Each sample
has four vehicle features: latitude coordinate, longitude coordinate, vehicle speed, and
vehicle azimuth. The azimuth refers to the angle between the vehicle direction and north.
Figure 11 displays an overview of the proposed VehDS-LA. A description of the vehicle
dataset fields is given in Table 1. Figure 12 gives a snapshot of the proposed dataset.

Table 1. Description of the proposed LA vehicle dataset fields.

Field Name Description Values

‘STREET_NAME’ Name of LA street where
vehicle is located.

‘San Pedro St’, ‘S Hill St’, ‘N Hill St’,
‘Flower St’, ‘S Hope St’, ‘E Olympic
Bivd’, ‘E 3rd St’, ‘W 3rd St’, ‘E 6th St’,
‘W 6th St’, ‘E 9th St’, ‘W 9th St’, ‘James
M Wood Blvd’, ‘S Los Angeles St’, ‘N
Los Angeles St’

‘LAT’ Latitude coordinate
of vehicle. [34.03 to 34.056]

‘LON’ Longitude coordinate
of vehicle. [−118.27 to −118.24]

‘AZIMUTH’
Angle between vehicle
direction and north
in degrees.

[0 to 342.74]

‘KSPEED’ Speed of vehicle in km/h. [10 to 40]
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Figure 11. An overview of the proposed LA vehicle dataset.
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Figure 12. The proposed LA vehicle dataset.

3.3. The Advantages of the Proposed Dataset

The following list presents the advantages of the proposed VehDS-LA dataset com-
pared to related dataset generation works:

• Generating the database does not require a long time, as in the related works, where it
took days and months.

• The accuracy of the positions of vehicle samples which were produced based on
Google Maps and the MATLAB simulator. It was verified that the samples are located
on the LA streets without any deviation.

• There is no need to install special equipment and devices in the vehicle, such as a GPS
receiver, small computer, or smartphone.

• The number of dataset samples is large and each sample has four features, which are
the most important features of a vehicle for traffic simulation purposes.

• The method of generating the proposed VehDS-LA dataset introduces a general
mechanism that can be followed in generating new databases in any region of the
world on the basis of Google Maps.

In fact, the VehDS-LA dataset is based on the current state of the selected streets of Los
Angeles city. After a few years, the database may need to be updated according to future
street-related information.

3.4. The Uses of the VehDS-LA Dataset

The proposed VehDS-LA is appropriate for use with applications related to 5G tech-
nology, machine learning techniques and transportation systems. The main uses of the
VehDS-LA are:

• 5G network studies: A heterogeneous ultra-dense network is a 5G-enabling technol-
ogy that consists of a high density of small cells in addition to the legacy Long-Term
Evolution (LTE) macro cells. HUDN aims to meet the requirements of increased ca-
pacity, low latency, and distributed traffic load with low installation cost [23,29]. The
major issues associated with 5G HUDNs are cell selection, interference mitigation, and
resource allocation [30]. Cell selection refers to the process of choosing the serving base
station to which a vehicle will connect. The conventional approach of selecting cells is



Appl. Sci. 2022, 12, 3751 11 of 20

based on the received signal strength indicator (RSSI) value. In fact, this approach is
inefficient in 5G HUDNs due to the existence of a large number of cells with different
distribution and sizes [31]. Figure 13 shows the cell selection issue in an HUDN, where
a red vehicle should select a serving cell, and RSSI values are not enough.
HUDNs suffer from two types of interference: co-tier and cross-tier interference.
Co-tier interference occurs between homogeneous cells, while cross-tier interference
happens between heterogeneous cells [32], as shown in Figure 14. The proposed
VehDS-LA dataset can be used in studies related to 5G HUDNs.

?!

Figure 13. Cell selection issue in HUDNs.

Figure 14. Interference issue in HUDNs.
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• Automation and driverless vehicles studies: Nowadays, vehicle automation is be-
coming a solution that is used to provide road safety and to prevent accidents [33].
The Society of Automotive Engineers (SAE) defines six levels of vehicle automation,
as illustrated in Figure 15. The first three levels, i.e., levels 0 to 2, require driver
attention. On the other hand, levels 3 to 4 give part of the responsibility for driving
and monitoring roads to the vehicle itself, while level 5 provides full automation of
vehicles [34]. Thus, the proposed dataset includes the essential vehicle features, i.e.,
geographical latitude and longitude coordinates, azimuths, and speeds of vehicle
samples, which can be used in research related to vehicle automation.

1
Driver 

Assistance

2
Partial 

Automation

4
High

Automation

5
Full

Automation

3
Conditional 

Automation

0
No

Automation

Figure 15. The levels of vehicle automation.

• ML-based vehicle mobility studies: ML techniques provide remarkable opportuni-
ties in several fields, including transportation [35]. A good machine learning model
needs a large number of samples to train the ML model [36]. Recent works that
focus on vehicle movement issues, including [2,37], relied on solving research prob-
lems using machine learning algorithms, such as artificial neural networks (ANN)
and support vector machine (SVM), Naive Bayes (NB), and Tree-based techniques.
Figure 16 represents the process of building a machine learning model that is based
on supervised learning to solve a vehicle mobility issue. The building process passes
through many phases: data cleaning, data labeling, data dividing, ML model training,
and ML model testing [2].

– Data cleaning: In this phase, data that will not be used to solve the research
problem are removed [38].

– Data Labeling: This refers to the process of tagging vehicle samples so that the
ML model can learn from it [39].

– Data Dividing: This refers to splitting the dataset into two parts: training and
testing sets. The dataset is usually divided into 80:20 or 70:30 ratios [40].

– ML Model Training: The training set is used train the ML model.
– ML Model Testing: The test set is used to evaluate the performance of the trained

ML model.

Research that is based on solving vehicle mobility problems using ML algorithms can
utilize the proposed database. It provides a sufficient number of vehicle samples, i.e.,
74,170 samples, that can be used for ML model training and testing. Moreover, the
accuracy of the locations of vehicle samples was verified without any deviation.
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ML Model Training

Data Cleaning Data Labeling Data Dividing

ML Model TestingML Model Testing

Figure 16. Building a machine learning model.

• Intelligent transportation system studies in the LA smart city: Smart city and intel-
ligent transportation system are recently developed concepts [41]. The term ITS is
defined as a comprehensive system that consists of vehicles and transportation in-
frastructure and it performs communication, controlling, and information processing
in smart cities to facilitate their environmental sustainability [42,43]. The proposed
VehDS-LA can be used for studies related to ITS in the downtown of the city of Los An-
geles, as shown in Figure 17. Our VehDS-LA includes information of vehicle samples
in terms of their real-world geographical locations, as well as the vehicles’ movement-
related information in terms of directions and speeds based on the infrastructure of
LA streets. Therefore, studies related to vehicle-to-vehicle, vehicle-to-pedestrian, and
vehicle-to-network communications in LA city can utilize the vehicles information
stored in our proposed dataset.

Los Angeles 

City

Intelligent Transportation System

Figure 17. Using the proposed vehicle dataset in ITS studies in LA city.

• SDN-based vehicular networks studies: Software-defined networking is one of the
most recent network architectures that aims to facilitate the network management task
and to enhance the utilization of network resources in an efficient way [44,45]. The
architecture of SDN is made up of three components, which are data plane, control
plane, and application plane [46]. The data plane comprises network devices that
are responsible for forwarding data [47]. The control plane is made up of a set of
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SDN controller(s) to control and manage operations of the whole network [48]. The
application plane consists of end user applications that interact with SDN controller(s)
to perform specific tasks [49,50]. Southbound interface is used to perform the commu-
nication between the data and control planes based on a standardized protocol [51].
Northbound interface is utilized to establish the communication between the control
and application planes [48]. Figure 18 shows the architecture of SDN-based vehicu-
lar networks, where vehicle samples of our proposed VehDS-LA can be utilized to
construct a vehicular network. The studies that are focused on SDN-based vehicular
networks can benefit from our proposed dataset in performing vehicle mobility man-
agement and supervision tasks by SDN, where realistic vehicle location coordinates
and movement-related information exist.

Data Plane

Control Plane

Application Plane

Southbound Interface

SDN-Based Vehicular Networks

Northbound Interface

SDN Applications

SDN Controllers

Figure 18. Using the proposed VehDS-LA in SDN-based vehicular network studies.

3.5. Ethical Issues

The proposed VehDS-LA dataset is available for research purposes on the GitHub
website [52]. When the proposed dataset is used for academic or research purposes, there
are no proprietary or copyright restrictions. However, this paper should be cited in the
references list, indicating the title of the article, names of authors, publication year, journal
information, volume number (issue number), and page range.

4. Using the Proposed VehDS-LA to Perform Cell Selection in 5G Networks

In this section, the proposed VehDS-LA was used to perform the cell selection process
in 5G networks. The distribution of 5G small base stations (BSs) depends on a dataset that
was published by data.LAcity.org (accessed on 22 February 2022) [53]. The dataset contains
information about 5G small BSs in the city of Los Angeles, which are attached to street
lights. To model the network and to accomplish the cell selection process, MATLAB 2021b
simulator was used because it provides a powerful platform. The simulation parameters,
which are used in this work, are shown in Table 2. Path loss is modeled based on a model
called urban microcell-line-of-sight (UMi-LOS) (street canyon), which is described in the
3rd-Generation Partnership Project (3GPP) technical report 38.901 version 16.1 [54].

data.LAcity.org
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Table 2. Simulation parameters.

Simulation Parameters Values

Transmit power (dBm) 30

Path loss model (dB) 3GPP UMi Model

Carrier frequency (GHz) 28

Number of 5G small BSs 198

Small BS height (meters) 10

Small cell radius (meters) 600

RSSI threshold (dBm) −90

Handover delay (ms) 50 [55]

Simulation time (sec) 500

Handover (HO), which is the process of transferring the connection from one BS to
another [56], is performed based on the strongest value of the received signal strength
indicator (RSSI). Figure 19 displays the average number of horizontal handovers, which
occur between small BSs, under various vehicle speeds. Sojourn time of vehicles inside a
serving small cell is shown in Figure 20. The results demonstrate that there is an inverse
relationship between the sojourn time and the number of horizontal handovers. As the
vehicle speed increases, the sojourn time decreases and the number of horizontal HOs
will increase.
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Figure 19. Average number of horizontal handovers under various speeds.
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Figure 20. Average sojourn time under various speeds.

If the sojourn time of a vehicle within a small cell is less than the handover delay, HO
failure happens. Unnecessary handover occurs when the sum of HO latencies to move into and
out of a 5G small cell is longer than the sojourn time in the small cell [31]. Figures 21 and 22
show the averages of the number of HO failures and unnecessary HOs, respectively.

Average Number of HO Failures
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Figure 21. Average number of HO failures under various speeds.
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Average Number of Unnecessary HOs
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Figure 22. Average number of unnecessary HOs under various speeds.

5. Conclusions and Future Work

In this paper, we have proposed a real vehicle dataset, called VehDS-LA, that is
designed for researchers and scientists in the field of V2X and machine learning. It is
available on the GitHub website and it is characterized by its ability to take advantage
of the power of Google Maps and MATLAB to produce a database with high location
accuracy of vehicle samples. The vehicle samples are located on 15 streets in the city of Los
Angeles. Each sample has four features; namely, latitude and longitude coordinates, speed,
and azimuth. The total number of samples in the dataset is 74,170. The proposed dataset
overcomes the limitations of related vehicle datasets in terms of generation time, vehicle
location accuracy, effort savings, and the absence of requirements for special equipment
and devices. The proposed dataset can be used as the basis for a new line of future research
related to 5G networks, ML-based vehicle mobility applications, automation and driverless
vehicles, ITS in the LA smart city, and SDN-based vehicular networks.
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Abbreviations
A list of the abbreviations that are mentioned in this paper is given in following table.

Abbreviation Meaning
3GPP 3rd-Generation Partnership Project
5G Fifth Generation
AI Artificial Intelligence
ANN Artificial Neural Networks
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BSs Base Stations
CSV Comma-Separated Values
GPS Global Positioning System
HO Handover
IoT Internet of Things
IoV Internet of Vehicles
ITS Intelligent Transportation System
KMZ Keyhole Markup Language
LA Los Angeles
ML Machine learning
NB Naive Bayes
SAE Society of Automotive Engineers
SDN Software-Defined Networking
SVM Support Vector Machine
UGL Ultra GPS Logger
UTM Universal Transverse Mercator
V2I Vehicle-to-Infrastructure
V2N Vehicle-to-Network
V2P Vehicle-to-Pedestrian
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything
VehDS-LA Vehicle Dataset in the city of LA
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