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Abstract: Optimizing building performance and economic benefits through feedback in building
design is a hot topic in current academic research. However, few studies on prefabricated buildings
have been undertaken in this field. Meanwhile, the methodology used for achieving optimized
solutions is still poor. In this paper, genetic algorithms and correlation analysis are employed
and two parametric design methods—i.e., the floor plan generation method and the component
selection method—are proposed for the modularity of the prefabricated buildings. Taking a typical
high-rise building in Tianjin as an example, correlation analyses are performed on the basis of the
two proposed methods to enhance the depth of the optimized finding approach. The outcome of
this research demonstrates the feasibility of the proposed numerical approach, which can produce
the optimized floor plan and construction set under the local conditions. This also reveals that the
shape coefficient and window-to-wall ratio are strongly correlated with the energy performance
of a building, which can help architects to pursue optimized design solutions in the schematic
design process.

Keywords: building energy saving; prefabricated building; genetic algorithm; parametric design;
multi-objective optimization; correlation analysis

1. Introduction

The issue of global energy consumption is in the spotlight today. The U.S. Information
Administration presents a future scenario in which global energy consumption will increase
by nearly 50% over the next 30 years or so [1]. Building energy consumption accounts for
21.7% of the national energy consumption in China [2], and there is still work to be done to
reduce overall energy consumption in the building industry.

Cost limits, of course, are crucial factors in restricting building energy efficiency [3].
The optimization of energy efficiency without the consideration of cost may result in high
incremental costs and the inability to promote applications. As a result, energy usage and
cost should be considered throughout the optimization process.

Many earlier researchers have investigated this topic using the genetic algorithm
technique. I2n 2002, Caldas et al. used evolutionary algorithms on the DOE2.1E platform
to improve the arrangement and size of windows in public buildings to lower the yearly
energy consumption [4]. Ferrara et al. optimized near-zero-energy buildings to achieve
a low economic cost [5]. Thalfeldt et al. identified the design priorities for cold-climate
building facades [6]. However, related research has revealed that diverse optimization
targets have conflicting characteristics [7], suggesting that focusing on a single goal is
unsuitable in particular optimization schemes. As a result, an increasing number of
researchers are attempting to adapt the multi-objective optimum design technique to the
purpose of the architecture. With illumination and energy consumption as the optimization
targets, Khoroshiltseva et al. employed modeFRONTIER and Daysim to optimize the
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spacing and angle of the sunshade for the south window of an office [8]. To complete the
façade design while guaranteeing building performance, Mohammadjavad et al. exploited
the twin aims of lighting and heating to optimize the curtain wall design parameters
(surface angle) of an office building [9]. By using the Grasshopper platform, Cheng Sun
et al. achieved the performance optimization of a large public building focusing on energy,
cost, and daylight [10]. Shaoqing Gou et al. used the Energyplus and JEPlus platforms to
create an architectural design plan for a residential project in Shanghai to improve indoor
thermal comfort and lower energy consumption [11].

However, the basic models commonly employed in related studies are primarily used
for non-assembled buildings—i.e., the optimized solutions often find it difficult to meet the
standardization, modularity, and modulization needs of prefabricated buildings.

The trend of building industrialization has been evident in recent years. With the
deepening of the concept of green and sustainable development, prefabricated buildings
are receiving more and more attention from the domestic and international construction
community because of their standardization, energy efficiency, and economy [12–14].
Prefabricated building envelopes can be selected to have an appropriate envelope structure
based on the building orientation, climate conditions, and economic costs, among other
factors, in order to achieve low energy costs, thanks to their modular design, factory
manufacturing, and assembly construction [15]. The application of this approach to the
design process, as well as the successful combination of genetic algorithm and assembly
construction, is the focus of this study. In summary, the previous studies also had the
following shortcomings:

• Few scholars have applied the synergy of energy consumption and cost to prefabri-
cated buildings.

• The models of the former studies can mainly be divided into two categories: one
is a generic model with similar characteristics to that obtained from our research
(it is usually a city building and is used to propose some common optimization
conclusions [4,8–10]); the other is generally a specific model, usually for a public
building, and the findings primarily relate to the renovation and refurbishment of
the building [5,6,11]. However, there are numerous phases in the architectural design
process, including conceptual design, preliminary design, and detailed design [16].
In this article, we think that applying the two models to conceptual and preliminary
design is most beneficial.

• Many of the articles in this area end up focusing on the optimization results, while
in practice designers tend to make changes based on these. These articles tend to
lack any discussion of which parts need to be changed to have less impact on the
optimization results.

Therefore, this paper proposes two design methods based on the genetic algorithm
to take building energy consumption into consideration: a floor plan generation method
for the conceptual design process and a complement selection method for the prelimi-
nary design. The designer can then use the results of the optimization and parameter
correlation analysis as a theoretical basis to make further modifications to the computer-
aided optimization design. The total workflow of the two design methods is shown
in Figure 1.
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2. Methods
2.1. Optimization Method

The genetic algorithm (GA) was utilized as the optimization approach in this work; it
has been frequently used in similar papers in recent years [17]. Genetic algorithms, which
were researched and proposed by Professor Holland of Michigan University in 1975, are
based on the theory of biological evolution and incorporate the evolutionary concepts of
reproduction, hybridization, mutation, competition, and selection into the optimization
process to achieve global optimization [18]. Figure 2 depicts the optimization concept [19].
This study uses the Galapagos and Octopus plug-ins integrated with the Grasshopper
platform. Galapagos is a GA component that comes with the new version of Grasshopper
and can perform optimization solutions for a single objective with a simple operation,
fast computation, and easy convergence. However, it has the drawback of being able
to optimize solutions for only one goal. Developed by the University of Applied Arts
Vienna, Austria, and Bollinger + Grohmann Engineering, Germany, the Octopus plug-in
is a Grasshopper component that combines Pareto frontier solution sets and GA for the
optimization of multiple objectives. Pareto frontier solution sets can provide a basis for
analyzing the trade-offs made between design objectives [20].
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2.2. Correlation Analysis Method
2.2.1. Standard Regression Coefficient

The size of the absolute value of the standard regression coefficient, which is the
regression coefficient obtained after eliminating the impact between the objective and the
units of the parameters, directly represents the degree of effect of the parameters on the
objective [21]. Its regression model can be expressed as Function (1):

Y =
N

∑
i=1

βi
Xi − X

σX
+ ε (1)

where βi is the ith parameter’s standard regression coefficient, X is the ith parameter’s
mean, σX is the ith parameter’s standard deviation, ε is a constant, and N is the number
of parameters.

We need to test the problem of multicollinearity suggested by Frisch in 1934 over the
course of the investigation [22]. To detect multicollinearity, a variety of approaches are
used, including partial correlation coefficient, tolerance, variance inflation factor (VIF), and
conditional index [23]. The variance inflation factor measured by the SPSS software is used
to assess the aforementioned problem in this study. A result of greater than one and less
than ten generally suggests that the problem does not exist [24].

2.2.2. Pearson Correlation Coefficient

The Pearson correlation coefficient, which is used to estimate the correlation be-
tween X and Y variables, can be calculated using Function (2). The coefficient takes
values in the range of [−1, 1]: the closer it is to 1, the more likely the two variables are
positively correlated; the closer it is to −1, the more likely it is that the two variables are
negatively correlated; a value of 0 indicates that the two variables are uncorrelated. The
article was followed up with calculations conducted using SPSS to obtain the Pearson
correlation coefficient.

ρX,Y =
cov(X, Y)

σXσY
(2)

where cov(X, Y) is the covariance between X and Y and σX and σY are their respective
standard deviations.

3. Model, Parameters, and Objectives
3.1. Model

In this study, the thresholds of room bays, depths (Table 1), and the laws of arrange-
ment of each functional space (Figure 3) were summarized from several sets of house types,
which were based on the prototype of prefabricated high-rise (one-staircase, two-family)
commercial houses with a PC frame shear wall structure in Tianjin. After this, random
values in the parameter range were used to form the base floor plan.

Table 1. Building geometric parameter threshold.

Geometric Parameters Parameter
Thresholds

Bay depth of the living room (m ×m) (2.8–3.3) × (4.0–6.0)
Bay depth of the dining room (m ×m) (2.8–3.3) × (4.0–6.0)

Bay depth of the master bedroom (m ×m) (2.4–3.0) × (3.2–3.6)
Bay depth of the secondary bedroom (m ×m) (2.1–2.4) × (2.4–2,9)

Bay depth of the kitchen (m ×m) (1.5–2.1) × (1.95–3.1)
Bay depth of the bathroom (m ×m) (1.5–1.8) × (1.8–2.65)
Bay depth of the balcony (m ×m) (1.8–3.3) × (1.2–1.5)
Bay depth of the corridor (m ×m) —–
Window-to-wall ratio of each room 0.1–0.9

Interleaved length between each functional space (m) −1.8–1.8
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Following that, specific common attributes are assumed to finish the model’s develop-
ment, and their values are provided in Table 2. After the attributes are specified, a complete
3D building model (Figure 4) can be created, which is the default model used in this study.

Table 2. The value of the attributes used in the optimization process.

The Name of the Attributes Value

Height between floors 3 m
Number of floors 30
Envelope walls Default values of constructs and materials

Operation schedules, equipment load Related standards [25,26]
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3.2. Parameters
3.2.1. Parameters of the Floor Plan Generation Method

The control variables required for the floor plan generation method are the window-
to-wall ratio of each orientation, the bays and depths of each functional space, and the
interleaved length between them. The research object of this paper is the prefabricated
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building. One of the core tasks to promote the degree of industrialization of the building is
to adopt a modular coordinated system to achieve the universality and interchangeability
of the components [27]. Therefore, a novel qualification method that considers the modulus
of prefabricated buildings is proposed when defining the control variables of space types.
This method can reduce the range of control variables based on the modulus to enhance
the optimization efficiency and ensure the reasonable size of the prefabricated buildings.
The objective function can be seen in Function (3).

x = [x1, x2, x3, · · · , xn]
T

ki = [1, 2, · · · , bi−ai
jM ]

T

min yec = f (x) = f (x1, x2, · · · , xn)

s.t.
{

am ≤ xm ≤ bm m ∈ {1, 2, 3, 4}
xi ∈ {x|x = ai + jM·ki}

(3)

where x is the vector of control variables; ki is the step vector of xi control variables; xm is
the window-to-wall ratio for each orientation; am and bm are the minimum and maximum
values of the corresponding window-to-wall ratio; xi is the interleaved length of the bay,
depth, and spaces, i ∈ {5, 6···n}, m; j is a constant in dimensional transformation which
is used to expand the step length of the building modulus in a single transformation,
j ∈ N+; and M is the basic modulus of the building at the dimensional transformation of
the prefabricated building (M = 0.1 m), bi−ai

jM ∈ Z.

3.2.2. Parameters of the Component Selection Method

The parameters used in this optimization are the material of the insulation layer, the
thickness of the insulation layer, and the construction of the wall components, which can
be divided into qualitative and quantitative indexes. The range of values shown Table 3 are
determined by summarizing after researching manufacturers.

Table 3. Ranges of the component selection method’s parameters.

Parameters of Components Ranges

Material of insulation layer {Extruded polystyrene, expanded polystyrene,
foamed polyurethane, rock wool}

Construction of components {External insulation, internal insulation,
sandwich insulation}

Thickness of insulation layer in
each direction (m) 0–0.5

In the optimization process of the component selection method, the physical prop-
erties and cost of each material are considered as attributes, assuming that they are
constant throughout the construction phase. The specific attributes are shown in Table 4.
In the optimization process, material and construction are qualitative indicators, and
there are few desirable types. The optimal solution can be selected using the exhaus-
tive method. On the basis of this solution, the thickness of the insulation material for
each orientation is used as the optimization variable, while the total building energy
consumption and total cost of insulation material are used as the optimization objectives
for the next optimization step.
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Table 4. The value of the attribute of the optimized process.

Material Density
kg/m3

Specific Heat Capacity
J/kg·◦C

Heat Transfer
Coefficient
W/(m2·K)

Material Price
CNY/m3

Extruded polystyrene 35 1380 0.033 450
Expanded polystyrene 25 1380 0.042 280
Foamed polyurethane 30 1380 0.027 650

Rock wool 150 1220 0.0045 260

3.3. Objectives
3.3.1. Objective of the Floor Plan Generation Method

The goal energy consumption in the floor plan generation design technique is confined
to the use phase, since most buildings consume around 70% of their total energy over
their whole life cycle during their use phase [28]. Lighting energy consumption and
equipment energy consumption are not affected by control variables [29]. The annual
energy consumption (yec) per unit area of the building optimized in this study can be
calculated using Function (4):

yec =
Eh + Ec

A
(4)

where Eh is the annual heating energy consumption of the buildings, kWh; Ec is the annual
cooling energy consumption of the buildings, kWh; and A is the gross floor area of the
buildings, m2.

3.3.2. Objective of Component Selection Method

gec is the same as the expression of yec in the floor plan generation method. Instead,
only the cost of materials used during the construction phase is considered. The changes
in the dimensions of the structural material will affect the energy use of buildings. We
assume that the structural material cannot be changed during the selection process, which
means that the cost of the structural material is constant for the same floor plan. In order
to simplify the calculation, the material cost during construction is considered only as the
insulation construction cost (gic), which can be expressed through Function (5).

gic =
4

∑
i=1

CidiSi (5)

where i from 1 to 4 are the four orientations of the buildings; Ci is the price of the insulation
board used for each facade orientation, CNY/m3; di is the thickness of the insulation
board used in each direction of the external wall, m; and Si is the total area of each facade
orientation, m2.

The optimization objective function can be expressed as Function (6).

x = [x1, x2, x3, · · · , xn]
T

min g = g(x) = {gec(x), gic(x)}
s.t. x ∈ B = {x|hs(x) ≤ 0, s = 1, 2, · · · , p}

(6)

where x is the vector of control variables; g is the vector of objectives; and hs(x) is the sth
constraint of the vector x, from which the feasible domain B is formed.

After completing the above settings, we can obtain the details of the changes in
parameters and properties for each phase of the complete workflow, as shown in Figure 5.
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4. Results and Discussion

Two design methods were applied on the above case and then the correlation between
some parameters or attributes with the energy consumption was analyzed.

4.1. Optimization Results

In the floor plan generation method, the specific range of values for window-to-wall
ratio, bays, depths, and interleaved length parameters could be determined using Function
(3). In this case, j = 3. The threshold was adjusted appropriately according to the limitation
of bi−ai

jM ∈ Z. Finally, the bays, depths, and interleaved lengths were limited to a small
range of values. The Galapagos parameters were set as stated in Table A1 during the
optimization process, and convergence was mostly obtained at around 80 iterations, with
the optimization ending after around 120 generations. Table 5 shows a comparison of the
model before and after the plan optimization with improved energy consumption as the
aim. Table A1 in the Appendix A shows the detail of optimization technique used. It can be
seen that after the optimization, the building energy consumption and interleaved length
between each functional space are reduced.
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Energy consumption (kWh/m2) 86.18 18.11

In the optimization of the component selection method, the model was inherited from
the previous optimization step without any modification and then the enumeration method
was used to optimize the material and structure. The Octopus parameters were set as
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stated in Table A3 during the optimization process. The step size of the thickness in the
optimization process was 0.05 m and the distribution was between 0 and 0.15 m. The
curves of the energy consumption and cost for different insulation materials with different
constructions is shown in Figure 6.
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The energy-cost charts for the four orientations show the same pattern. Rock wool
board material and polystyrene board material were closer to the 0-coordinate point of the
coordinate system—i.e., they were better than the other insulation materials in terms of their
reducing energy consumption and cost. Considering the cost of fire protection, rock wool
board was selected as the optimal material in the next dual-objective optimization. From
Figure 6, it can be seen that the two innermost curves are for sandwich insulation, which
indicates that the effect of sandwich insulation is better than that of external insulation and
internal insulation. Thus, sandwich insulation was chosen as the construction method for
the optimization determination.

The thickness was selected as the optimization object, and basic convergence was
achieved after 10 iterations. The Pareto frontier solution set (Figure 7) was derived
after reaching the maximum number of iterations, and correlation plots between in-
sulation thickness, total energy consumption, and total cost for each orientation were
derived (Figure 8).

From the Pareto frontier solution set, it can be seen that the cost kept increasing and
the total energy consumption kept decreasing as the total thickness increased within a
certain thickness range, in accordance with the objective law.
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4.2. Correlation Analysis Results
4.2.1. Correlation Analysis of Floor Plan Generation Method

Eleven influencing factors were selected as variables for regression analysis from the
parameters that may affect energy consumption—namely, interleaved length, east window
wall ratio, south window wall ratio, west window wall ratio, north window wall ratio, east
exterior wall area, south exterior wall area, west exterior wall area, north exterior wall area,
shape coefficient, and aspect ratio. After exporting 3680 sets of data from the optimization
process and eliminating 3 sets of invalid data, we obtained 3677 sets of valid data. The
validity of the selected variables was first determined by testing the multicollinearity; if the
variance inflation factor (VIF) of each variable was tested to be less than 10 (Table 6), this
meant that each variable had a certain degree of independence. A significance test was then
performed, yielding an overall p-value of 0.0001 less than 0.05—i.e., the proposed model
was valid at a 95% confidence interval. Additionally, the p-value for each variable (Table 7)
was less than 0.05—i.e., each variable was significant at a 95% confidence interval. The
larger the standard regression coefficient of a variable is, the more important the variable
is under the same condition. The variables are ranked in Table 7, and it can be seen that
parameters such as the shape coefficient and the window-to-wall ratio are more important
than the area of the exterior walls of each orientation—i.e., when making adjustments, the
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radiant area of the walls and windows of each orientation can be appropriately altered
while controlling the shape coefficient and the window-to-wall ratio.

Table 6. VIF value of each parameter.

Aspect
Ratio

East
Window-to-
Wall Ratio

West
Window-to-
Wall Ratio

Interleaved
Length

South
Window-to-
Wall Ratio

South
Exterior

Wall Area

Shape Co-
efficient 1

North
Exterior

Wall Area

North
Window-to-
Wall Ratio

West
Exterior

Wall Area

East
Exterior

Wall Area

VIF 7.79 5.71 5.61 5.33 4.62 4.37 4.21 3.94 3.67 2.22 2.2

1 Shape coefficient: the ratio of the exterior area of a building in contact with the outdoor atmosphere to the
volume it encloses.

Table 7. Standard regression coefficient of each parameter after standard regression.

Shape Co-
efficient

North
Window-to-
Wall Ratio

South
Window-to-
Wall Ratio

West
Window-to-
Wall Ratio

East
Window-to-
Wall Ratio

Interleaved
Length

South
Exterior

Wall Area

Length-
Width
Ratio

North
Exterior

Wall Area

East
Exterior

Wall Area

West
Exterior

Wall Area

p-value 0 0 0 0 0 0 0 0 0 0 0.012
Coefficient 0.492 0.221 0.209 0.168 0.142 0.071 0.0465 0.029 0.020 0.015 0.004

4.2.2. Correlation Analysis of Component Selection Method

In the phase of correlation analysis, only the relationship between the percentage of
the thickness of the insulation in each orientation to the total insulation thickness and the
total energy consumption is required, given that the types of material and construction
have already been determined (Table 8).

Table 8. Comparison of the model before and after the generation of building shape.

Thickness of Insulation Layer in Each Direction/Total Thickness Pearson Correlation

East ratio −0.427
West ratio 0.361
South ratio −0.252
North ratio 0.318

A negative correlation could be observed between the insulation thickness in the
east/south directions and total energy consumption—i.e., increasing the proportion of
the insulation in the east and south directions will decrease the total energy consumption;
conversely, increasing the proportion of the insulation in the west and north directions will
increase the total energy consumption. From a correlation point of view, in order to reduce
the total building energy consumption, the insulation of east- and south-oriented buildings
should be appropriately increased and the insulation of west- and north-oriented buildings
should be reduced under a certain cost limit.

5. Conclusions

1. Simulation-based single-objective or multi-objective optimization can be performed
for prefabricated buildings. Unlike traditional buildings, the building modulus and
component selection need to be considered in the optimization process. This not
only meets the demand for the standardization of prefabricated buildings, but also
increases the speed of optimization computation through reducing the number of
values taken from parameters.

2. A novel, modular parametric modeling approach was proposed and applied in the
floor plan generation method. After this, the optimal generation of prefabricated high-
rise buildings in Tianjin was completed based on this method. The correlation between
each parameter and energy consumption was also studied, and it was concluded
that the shape coefficient and window-to-wall ratio are the main factors affecting the
energy consumption of the buildings in Tianjin.

3. A preliminary component selection method based on computer simulation was
proposed—i.e., the component selection for the prefabricated building was mainly
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carried out to determine the construction of exterior walls, the selection of insulation
materials, and the thickness of the insulation layer. By optimizing the generated
models, it was finally concluded that sandwich insulation constructions and rock
wool board insulation materials should be selected for buildings in Tianjin. According
to the correlation analysis, the thickness of the insulation material in the east and
south directions should be increased under a certain cost limit in order to reduce the
total energy consumption of buildings.
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Appendix A

Table A1. Parameter setting of Galapagos.

Project The Maximum Number of
Iterations Population Size Multiplier of

Initial Boost

Value 120 30 2
Project Proportion of retained elites Crossover ratio
value 5% 75%

Table A2. Tianjin area floor plan generation process results.
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Energy consumption
(kWh/m2) 18.73 18.66 18.55 18.11

Table A3. Parameter setting of Octopus.

Project The Maximum Number of
Iterations Population Size Multiplier of

Initial Boost

Value 50 60 50%
Project Ratio of variation Crossover ratio
Value 50% 80%
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