
����������
�������

Citation: Sun, R.; Qin, G.; Li, G.;

Hu, J.; Xiong, J.; Xu, H. Abnormal

Conductive State Identification of the

Copper Rod in a Nickel Electrolysis

Procedure Based on Infrared Image

Features and Position Characteristics.

Appl. Sci. 2022, 12, 3691. https://

doi.org/10.3390/app12073691

Academic Editors: Hong-Zhong

Huang, Yan-Feng Li and He Li

Received: 4 March 2022

Accepted: 3 April 2022

Published: 6 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Abnormal Conductive State Identification of the Copper Rod in
a Nickel Electrolysis Procedure Based on Infrared Image
Features and Position Characteristics
Rui Sun 1 , Gang Qin 1, Gaibian Li 2, Jinbao Hu 2, Jingqi Xiong 1 and Huanwei Xu 1,*

1 School of Mechanical and Electrical Engineering, University of Electronical Science and Technology of China,
Chengdu 611731, China; rispper@uestc.edu.cn (R.S.); qingang6321@163.com (G.Q.); jqxiong@uestc.edu.cn (J.X.)

2 JinChuan Group Co., Ltd., Jinchang 737100, China; ligaibian@dingtalk.com (G.L.); hjbzwy@dingtalk.com (J.H.)
* Correspondence: hwxu@uestc.edu.cn

Abstract: In the nickel electrolysis industry, detection of the conductive state of copper rods is an
important part of production procedure management, as abnormal conductive states of the copper
rod result in a decline in the quality of the electrodeposited nickel plate. Conventional treatment
consists of manual detection and handing, which is inefficient and induces more problems, such as
the safety of the insulation. Because abnormal conductive states are only located between the copper
rod and busbar, it has obvious position characteristics, and abnormal conductive states also induce a
calorific difference in a particular area, which can be detected in an infrared image. We can use the
infrared feature and position characteristics to identify the abnormal conductive faults. This paper
introduces a method and practice for the identification of abnormal conductive faults in a conductive
copper rod in the nickel electrolysis procedure using computer vision theory, including infrared
image segmentation with position characteristics, infrared feature extraction, and conductive fault
identification with SVM (support vector machine). The result shows that the method can divide the
conductive states of the copper rod into abnormal heating conditions, normal operating conditions,
and open circuit conditions, with a 90% accuracy rate on the obtained samples.

Keywords: abnormal conductive; state identification; infrared image; position characteristics

1. Introduction

In the nickel electrolysis industry, nickel products are mainly produced through
the electrolytic refining process of the nickel sulfide anode in China. During the nickel
electrolysis procedure, the running state of nickel electrolytic cells is closely related to
the final quality of the cathode’s nickel precipitation. The conductive state of the copper
rod has a significant influence on the quality of the nickel plate. An abnormal conductive
state of the copper rod is mainly caused by some factors, such as excessive local contact
resistance, poor contact, and a short circuit, and it leads to differences in the surface
temperature distribution, which are manifested as abnormal heating conditions and open
circuit conditions. This exception can lead to a decline in the quality grade of the nickel
plate. Thus, it is extremely important to rapidly detect and manage abnormal conductive
states of the copper rods in the nickel electrolysis procedure.

Conventional manual inspection, which has low efficiency, high labor costs, and high
labor intensity, is still widely used in the nickel electrolysis industry. Different conductive
states lead to different surface temperature distributions of the copper rods, which can be
detected and identified in an infrared image. A reasonable solution is to identify abnormal
conductive states using infrared images and the AI (artificial intelligence) classification
method. On this basis, non-contact measurement and automation can be applied in the
nickel electrolysis industry
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In the field of nickel electrolysis, Wang [1] studied and simulated the relationship
between the current and surface temperature of a cathode copper rod, and the simulation
results verified the feasibility of detecting the conductive state of copper rods based on
infrared images. In addition to this case, less research and applications have focused
on fault identification in copper rods based on infrared images. However, this method
is commonly used in other fields, especially in the copper electrolysis field and electric
power field, which has important value as a reference for solving the problem about the
identification of the conductive states of copper rods in nickel electrolysis procedures.

In the field of copper electrolysis, Hu [2] proposed a Faster R-CNN (region-based con-
volutional neural network) convolutional neural network based on the focal loss function
to identify short-circuit faults in copper rods. The authors of [3] proposed an automatic
inspection system for the copper electrolysis procedure based on infrared images, which
can identify short-circuit faults using SVM (support vector machine) with infrared image
features, such as the mean gray, standard deviation, and Hu moment. The authors of [4]
used the differential LBP (local binary pattern) method for infrared image feature extraction
to reduce the influence of seasonal transformation and other factors, which improved the
robustness of the classification model. The authors of [5] collected infrared images of a
cathode copper bar of an electrolytic cell, obtained the surface temperature value, and
solved the current value with COMSOL. In the field of electric power, Liang [6] proposed
a method to identify the fault types of substation equipment using the relative temper-
ature difference method based on the relationship between the equipment failure and
temperature performance. The authors of [7] introduced methods for image preprocessing
and feature extraction based on the infrared image of an insulator string, and realized the
classification of insulator contamination grades using SVM. Then, Fu [8] used the decision
tree model, which has the advantages of fast learning and intuitive and accurate classifica-
tion, to identify deteriorated insulators. The authors of [9] introduced a transmission line
insulator fault diagnosis method based on the binary support vector machine classifier and
Bayesian optimization, which was used for the classification and recognition of the infrared
spectrum in the process of insulator flashover. The authors of [10] selected six components
of reciprocating compressors from an infrared image, and the average grayscale values
were calculated to form 6-dimension vectors to represent the temperature distribution.
Then, SVM was sued to diagnose the faults, with more than a 99% classification accuracy.
According to the existing research works, state identification using infrared image features
has mostly been used in long-distance monitoring or static detection while applications for
near-field online detection are rare. Fault identification using infrared image features can
reflect the temperature distribution and further identify the conductive states of copper
rods, which is feasible for the detection of the conductive state of copper rods based on
infrared images. Therefore, in this paper, this method is applied to identify the conductive
state of copper rods with near-field online detection.

A nickel electrolysis workshop contains a large number of nickel electrolytic cells.
Cathode and anode copper rods are placed alternately and equidistantly, which suspend
cathode and anode nickel plate, respectively, by hangers. The diameters of cathode and
anode copper rods are 35 and 45 mm, respectively. Both sides of the electrolytic cell have
insulated partitions and busbars. In the traditional manual detection procedure, workers
need to detect the conductive state of copper rods periodically by touching the copper rods
and observing sparks in the instantaneous short circuit between cathode and anode copper
rods. Figure 1 shows the nickel electrolytic cells and the conventional manual detection.

The conventional manual method has many disadvantages, such as low efficiency,
heavy workload, high labor intensity, insulating safety, and missed detection.
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Figure 1. The nickel electrolytic cells and the conventional manual detection.

2. Solution Method

In nickel electrolysis, cells are supplied by 12V-DC power. DC currents start from
anode busbars; pass through the anode hangers, anode plate, electrolyte, cathode plate,
and cathode hangers; and finally reach the cathode busbars. Figure 2 shows the current
distribution of conductive copper rods.

Figure 2. Current distribution of conductive copper rods.

We define the contact site between the copper rod and busbars as the “conductive end”,
and the contact site between the copper rod and the insulated partition as the “isolated
end”. Due to the current shunt of the anode hangers and the current converge of cathode
hangers, the current gradually decreases to 0 in the copper rod from the conductive end to
the isolated end. According to the simulation results of the relationship between the current
and temperature in conductive copper rods, which was studied by Wang [1] and Zhao [3],
from the conductive end to the isolated end, the temperature gradually decreases and
approaches the environmental temperature. Figure 3 shows the temperature distribution
of conductive copper rods.

Figure 3. Temperature distribution of conductive copper rods.

In nickel electrolysis, there are three main kinds of conductive states of copper rods,
namely the abnormal heating condition, normal operating condition, and open circuit
condition. Different thermal effects caused by the actual current lead to different conductive
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states, which lead to different surface temperatures of the copper rods. Figure 4 shows
infrared images of copper rods in different conductive states.

Figure 4. Infrared images of copper rods under different conductive states.

It can be seen that under the normal conductive state, the cathode rod presents a
uniform brightness in the infrared image, which is brighter than the anode rod; a lower
brightness in the open circuit state; and a higher brightness in the short circuit state. Due
to the difference in the temperature of the background (electrolytic area), misjudgment of
the direct temperature reaction of the conductive states may occur. It is more reasonable to
judge the conductive states by comparing the differences between adjacent areas.

In Figure 4, all copper rods are placed vertically in the infrared image, and the anode
rods are coarser than the cathode rods. As the background, the electrolytic zone consists of
electrolytes and pipes in cells, the mean temperature of which is higher than the copper
rods, busbars, and isolated partitions.

3. Infrared Image Segmentation

To reduce background interference, and ensure the effectiveness of infrared image
feature extraction, it is necessary to segment copper rod areas from raw infrared images.

3.1. Copper Rod Segmentation Based on the Otsu Algorithm

In the raw infrared images, obvious brightness differences between the copper rods
and electrolyte area exist, with obvious edges and contour features. Therefore, this paper
attempts to use global threshold methods for infrared image segmentation. The Otsu
algorithm is one of the most common global threshold methods and it searches for the
best global threshold by traversing the gray histogram, which maximizes the variance
between the background and foreground [11]. Figure 5 shows the results of the copper rod
segmentation in different conductive states based on the Otsu algorithm.

Figure 5. The results of copper rod segmentation based on the Otsu algorithm.

In Figure 5, some pipe areas are classified as foreground in the infrared image. Moreover,
the copper rod under the abnormal heating condition is not segmented well because it is
much brighter than the other copper rods and easily regarded as the electrolyte background.

However, the contour and edge of the cell wall area can be segmented well using the
Otsu method. So, the approximate vertical position of the cell wall edge can be located
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by searching for the position of the white-black jump points in a certain range from the
bottom of the binary image [12,13]. Figure 6 shows the searching result.

Figure 6. The approximate vertical position of the cell wall edge in different conductive states.

In Figure 6, the black lines represent the approximate vertical position of the cell wall
edge in the grayscale image. It only covers the areas of the copper rods, insulated partitions,
and busbars, and avoids the electrolyte areas being covered as much as possible. The areas
of the conductive states that we are focused on are below the cell wall edge lines.

3.2. Copper Rod Segmentation Based on the Region Growing Algorithm

The global threshold method has certain limitations because of the gray properties
of some areas, such as copper rods, pipes, and electrolytes, in grayscale images. The
gray properties in each copper rod area are similar. We can use the local region growing
algorithm to segment each of the copper rods in grayscale images.

3.2.1. Selection of Initial Seeds

In the grayscale image, all copper rods with a fixed width are placed vertically and
equidistantly, which are darker than the electrolyte area. The vertical gray mean shows
differences in x-axis direction and the copper rod areas have the characteristics of a low gray
mean. So, the initial seed selection for each copper rod can be determined by analyzing the
mean, variance, and jump-edge of the pixel set in the copper rod area [14].

In this paper, we trim a 320× 100 captured image from an original 320× 320 grayscale
image without isolated partitions and busbars. There are obvious differences between wide
copper rod areas and electrolyte areas.

Figure 7 shows the trimming procedure and distribution of vertical gray mean along
x axis.

Figure 7. The original grayscale image, the captured image, and the scatter plot of the relationship
between the horizontal position and vertical gray mean.

The initial seed selection for wide copper rods can be determined by traversing the
vertical gray mean on the x axis and analyzing the mean, variance, and jump-edge in the
scatter plot [15]. The algorithm steps used to search for the initial seed for the wide copper
rod is described as follows:
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(1) Traverse all horizontal positions in the captured image, calculate the vertical gray
mean at each position, and store it in array named verticalMean.

(2) According to the width of the wide copper rod, set a variable named WinSlideSize for
the sliding window length and initialize WinSlideSize to be equal to 20.

(3) Traverse array verticalMean, enter step (4), and start to search for the position of the
wide copper rod in the valley when the traversal results meet the following conditions:

verticalMean[i] ≤ 130
verticalMean[i]− verticalMean[i + 1] > 5
verticalMean[i + 1]− verticalMean[i + 2] > 5

(1)

(4) Traverse array verticalMean from the index i, and calculate the variance in the sliding
window named verticalMean [j:j+WinSlideSize]. When the variance is less than 5 for
the first time, record the position as the start. When the variance is greater than 5 for
the first time, the position is recorded as the end.

(5) The positions of the initial seed for the wide copper rod are (start + end)/2, which are
recorded in the array named WideRodPos. Then, return to step (3) and continue to
traverse until all initial seeds of all wide copper rods are found.

Figure 8 shows an illustration of all initial seeds for the wide copper rod after applying
the above algorithm. It also shows the initial seeds for narrow copper rods, which can be
selected using the same method.

Figure 8. Illustration of all initial seeds.

3.2.2. Growing Criteria and Stopping Condition

The growth criterion of the region growing algorithm is a comparison rule used to
determine the similarity between the seed and adjacent pixels or regions for extension to
a larger region [16,17]. The stopping condition is a condition used for stopping regional
growth if it does not match the growth criteria or exceeds the growth range [18,19]. In this
paper, the gray difference discrimination method is used as the growth criterion and the
limiting growth range condition is used as the stopping condition to segment each of the
copper rods in the infrared image.

Gray Difference Discrimination Method

The gray difference discrimination method is used to calculate the absolute value
of the gray value difference between the seed pixel and the neighborhood pixel. If it
is less than a threshold T, the pixel is classified in the region where the seed is located
for neighborhood extension at the seed position. Usually, four-neighborhood or eight-
neighborhood expansion methods are used [20–22]. Figure 9 shows an illustration of the
neighborhood expansion methods.
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Figure 9. Illustration of the neighborhood expansion methods, (a) 4-neighborhood expansion,
(b) 8-neighborhood expansion.

Limiting Growth Range Condition

Because, in infrared images, copper rods with a fixed width are placed vertically and
equidistantly, the growth area can be limited to roughly cover a single copper rod width.
Therefore, the position of pixel I(i, j) in different growth areas should match the following
conditions: {

0 ≤ i ≤ EdgePos + 50
x− 18 ≤ j ≤ x + 18

(2)

In Equation (2), x is the position of the initial seed for the copper rod on the x-axis, and
EdgePos is the position of the cell wall edge on the y-axis. Figure 10 shows an illustration of
the limiting growth range condition.

Figure 10. Illustration of the limiting growth range condition.

Figure 11 shows the result of the copper rod segmentation in different conductive
states based on the region growing algorithm.

Figure 11. Results of the copper rod segmentation based on the region growing algorithm.

3.3. Result of the Copper Rod Segmentation

To segment the border of the copper rod and eliminate the interference in the elec-
trolyte area as much as possible, the width of the boundary rectangle can be appropriately
contracted. Figure 12 shows the result of the copper rod segmentation.
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Figure 12. Result of the copper rod segmentation.

4. Fault Identification

After infrared image segmentation, we can analyze and extract infrared image features,
which are constructed as an infrared feature vector of the conductive copper rod. Then, a
classification model is chosen to identify the abnormal conductive states.

4.1. Infrared Feature Extraction

We obtained 120 rod sample segmentations from the obtained samples through in-
frared image segmentation, which were regrouped in 40 sample sets. Each set includes
three different samples and reflects three different conductive states.

In each set, brightness differences of the three sample segmentations exist, and uneven
gray distributions and gray gradient distributions under the abnormal heating condition
are observed. These different items can be described as follows:

(1) Gray mean (mean)

The gray mean reflects the average temperature of the copper rod. The higher the gray
mean is, the higher the temperature of the copper rod:

mean =
1

M× N

M

∑
i

N

∑
j

I(i, j) (3)

where M and N are the number of rows and columns of the copper rod sample gray image I.

(2) Gray standard deviation (std)

The gray standard deviation reflects the discrete degree of the surface temperature
distribution of the copper rod. The larger the value of the gray standard deviation, the
higher the dispersion degree of the temperature:

std =

√√√√ 1
M× N

M

∑
i

N

∑
j
[I(i, j)−mean]

2

(4)

(3) Mean gradient (G)

The mean gradient reflects the gradient variation of the copper rod surface temperature.
From the conductive end to the isolated end, the temperature in the copper rod gradually
decreases and approaches the environmental temperature. Gray gradient variation can be
quantified in rod sample segmentations and this gradient variation is obvious under the
abnormal heating condition but not clear under the other conditions. Figure 13 shows the
gradient variation in different directions.
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Figure 13. Gradient variation in different directions.

In Figure 13, the gradient variation in the y-axis direction is not obvious in all con-
ductive states, but in the x-axis direction, gradient variation is more obvious under the
abnormal heating condition than the others. So, the mean gradient of the sample seg-
mentations in the x-axis direction can be used as an infrared image feature and is defined
as follows:

G =
1

M× N

M

∑
i

N

∑
j

√
[I(i + 1, j)− I(i, j)]2 + [I(i, j + 1)− I(i, j)]2 (5)

To reduce the computation burden of the mean gradient, the result of the square root
is approximately replaced by the absolute value:

G =
1

M× N

M

∑
i

N

∑
j
|I(i + 1, j)− I(i, j)|+ |I(i, j + 1)− I(i, j)| (6)

(4) Deformation of Hu moments (H1, H2, H3 )

With the properties of translation, rotation, and scale invariant, the Hu moment is
calculated and used as an image feature to identify copper rods under different conductive
states [20]. For discrete two-dimensional images of M × N, the p + q order discretization
origin moment is defined as follows:

mpq =
M

∑
x=1

N

∑
y=1

I(x, y)xpyq (7)

To offset the influence of the change in the positon on the moment calculation in the
target area and make it translation invariant, the p + q order center moment is defined
as follows:

µpq =
M

∑
x=1

N

∑
y=1

I(x, y)(x− xc)
p(y− yc)

q (8)

In Equation (8), (xc, yc) is the gray centroid coordinate of the image target, xc =
m10/m00, yc = m01/m00.

The normalized center moments are defined as follows:

ηpq =
µpq

µ00r , r = p+q
2 (9)

On the basis of two-order and three-order normalized center moments, Hu moments
can be defined as follows (the first three of seven) [22]:

Φ1 = η20 + η02

Φ2 = (η20 − η02)
2 + 4η11

2

Φ3 = (η20 − 3η12)
2 + 3(η21 − η03)

2
(10)
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Actually, conventional Hu moments include seven invariant moments, but after com-
paring all rod sample segmentations, it is found that only the first three Hu moments
(Φ1, Φ2, Φ3) show obvious differences, which are used for the image feature in this paper.
Hu moments always have a large range and can be negative values. The parameter Hi is
defined, which is the natural logarithm value of the absolute values of Hu moments:

Hi = ln|Φi| i = 1, 2, 3 (11)

(5) Gray difference between the target copper rod and the isolated end of the adjacent
copper rod (D)

To reduce the influence of the environmental temperature on the identification results,
the gray difference can be used to identify differences in the infrared feature between the
target copper rod and the isolated end of the adjacent copper rod because the mean gray in
the area of the isolated end represents the current environmental temperature. D is defined
as follows:

D = mean1−mean2

mean1 = 1
M1×N1

M1
∑

i=1

N1
∑

j=1
I1(i, j)

mean2 = 1
40×N2

M2
∑

i=M2−40

N2
∑

j=1
I2(i, j)

(12)

where mean1 is the gray mean of the target copper rod area; M1 and N1 are the number of
rows and columns; mean2 is the gray mean of the adjacent copper rod area, which is used
for comparison; N1 is the number of columns; and the number of rows is limited to 40.

Figure 14 shows an illustration of the calculation method for the infrared feature D.

Figure 14. Illustration of the calculation method for the infrared feature D.

Table 1 shows the results of infrared feature extraction and the fault labels for part
of the rod sample segmentations. The fault labels for the abnormal heating state, normal
operation state, and short circuit state are set to 0, 1, and 2, respectively.

Table 1. Results of infrared feature extraction and the fault labels for the samples.

Mean std G H1 H2 H3 D Label

1 100.8 7.1 0.77 4.87 9.79 19.5 65.37 0
2 100.58 7.17 0.79 4.89 9.83 19.57 68.52 0
3 83.55 10.73 1.45 4.76 9.58 21.35 48.69 0
4 73.97 10.07 1.29 4.57 9.2 19.09 40.56 1
5 76.82 2.05 0.51 4.59 9.23 21.15 42.61 1
6 74.84 2.07 0.69 4.79 9.66 23.34 46.33 1
7 48.01 3.62 1.05 4.03 8.11 18.83 15.48 2
8 45.05 2.45 0.61 3.97 7.99 20.11 14.23 2
9 44.9 2.42 0.62 3.92 8.01 20.26 14.64 2
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4.2. States Identification Based on Support Vector Machine

In Table 1, there are obvious differences in the infrared feature for the mean, std, and
D, and setting a threshold seems to be an effective way to identify the conductive state
types of the copper rod. However, when we apply this method to the obtained samples, the
threshold identifying method cannot achieve an adequate accuracy. In general, SVM is more
suitable for applications to limited samples and multidimensional image features [23,24].

SVM is a classical machine learning model with strict mathematical proof and strong
interpretability, which has an excellent generalization ability on limited samples and
has been widely used in infrared image recognition [25]. For fault identification in the
conductive copper rod, SVM can reasonably predict and estimate the unknown dependency
between the infrared feature input and fault label output, which tries to search for the best
separating hyperplane in the infrared feature space.

This paper uses the soft margin support vector machine with RBF (radial basis func-
tion) to accomplish the fault identification task. SVM can tolerate some misclassification
samples and avoid overfitting to a certain extent [26]. The original constraint problem for
soft margin support vector machines is defined as follows: min 1

2‖w‖
2 + C

m
∑

i=1
ξi

s.t. yi(wTxi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , m
(13)

where x is the input sample feature vector, y is the classification label, w is the weight
distribution of SVM through iterative calculation, ξis the relaxation variable introduced for
each sample point, C is the adjustable penalty coefficient, and a is the Lagrange coefficient.

The dual problem of soft margin support vector machines is defined as follows:
max

m
∑

i=1
ai − 1

2

m
∑

i=1

m
∑

j=1
aiajyiyj(xi

Txj)

s.t.
n
∑

i=1
aiyi = 0, 0 ≤ ai ≤ C, i = 1, 2, . . . , m

(14)

As a kernel function, with the characteristics of less super-parameters, less calculation,
and a strong learning ability, RBF can not only implicitly map sample data points to
an infinite dimensional space but also calculate the product of high-dimensional feature
vectors in a low-dimensional feature space. RBF is defined as follows:

κ(xi, xj) = exp(−γ
∥∥xi − xj

∥∥2
), γ = 1

2σ2 > 0 (15)

In the SVM classification model, the parameter γ of RBF and the penalty coefficient C
of the soft interval SVM need to be adjusted. The parameter γ affects the distribution of the
sample data in the high-dimensional feature space. Moreover, the penalty coefficient C is
used to balance the size of the classification margin and accuracy of the model. To obtain an
SVM model with a strong generalization ability, in this paper, the grid search method and k-
fold cross validation method are used to identify the optimal super-parameter combination.
Figure 15 shows the accuracy distribution map of the SVM model with the 5-fold cross
validation method under different super parameter combinations. When C∗ = 1.4 and
γ∗ = 0.1, the classification accuracy of SVM reaches 92.1%.

Finally, this paper selects the above optimal hyper-parameter combination to verify
the performance of the SVM model for state identification using the obtained samples. Each
state type contains 40 sample data, in which 30 are selected as training sets. The remaining
samples form the test sets. After training, the classification accuracy of SVM reaches 90%
using the test sets. Table 2 and Figure 16 show the classification results of the models using
the test sets.
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Figure 15. Accuracy distribution map of the SVM model under different super-parameter combinations.

Table 2. Statistical table of the classification results using the test sets.

Conductive Conditions Number of Test Samples Correction Misclassification Accuracy Total Accuracy

Abnormal heating condition 10 7 3 70%
90%Normal operation condition 10 10 0 100%

Open circuit condition 10 10 0 100%

Figure 16. The classification results of the models using the test sets.

Only three copper rod samples under the abnormal heating condition are misclassified.
Due to copper rust on the surface of the conductive copper rod and an insufficient infrared
transmission effect, some sample images show irregular dark patches or texture, resulting in
similar infrared feature distances. Figure 17 shows the comparison chart of one misclassified
sample and the other two samples with the correct prediction.

Figure 17. The comparison chart of the misclassified sample (a) and other samples (b,c) with the
correct prediction.

Table 3 shows the results of the infrared feature extraction of these three samples.
Further infrared feature distances are observed between sample a and b, but the infrared
feature sample a is closer to that of sample c in the feature space, so the fault state of sample
a can easily be misclassified as a normal operating condition.
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Table 3. The results of infrared feature extraction of these three samples.

Mean std G H1 H2 H3 D

a 83.55 10.73 1.45 4.76 9.58 21.35 48.69
b 100.58 7.17 0.79 4.89 9.83 19.57 68.52
c 73.97 10.07 1.29 4.57 9.2 19.09 40.56

At present, this method of conductive state identification can achieve a 90% accuracy
on the obtained samples, so it has a certain practical significance for engineering applica-
tions. However, this method still has some defects and cannot identify individual samples
well due to the close feature distance among these samples. For infrared image feature
extraction, this paper mainly focuses on the global features of the sample while ignoring
the local features. In the future, we can make full use of the obvious gradient change in the
copper rod, and then introduce local features, such as the fluctuation amplitude, to increase
the discrimination between samples. Moreover, to improve the generalization ability of the
classification model, we need to expand the sample set and we can attempt to use models,
such as the deep learning network, to achieve a higher accuracy.

5. Conclusions

This study used the infrared image features and position characteristics of the copper
rod as much as possible, and realized image segmentation based on the local region growing
algorithm. After infrared feature extraction, SVM was trained to identify the conductive
state types, and the accuracy reached 90% on the obtained samples and matched the
automatic detection requirements. However, this method still has some defects because
the sample types are not comprehensive enough. Some misclassifications were identified
due to the close feature distance among individual samples. In the future, to improve
the generalization ability of the classification model, we need to expand the sample set
and attempt to introduce local features, such as the fluctuation amplitude, to increase the
discrimination between samples.
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