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Abstract: Accurate real-time rotor position is indispensable for switched reluctance motors (SRM)
speed and torque control. Traditional position sensors add complexity and potential failure risk to the
system. Owing to the added advantages of high stability and low cost, the position sensorless method
of SRMs has been extensively studied to advance its use in vehicles and construction machinery.
This paper presents an overview of position sensorless control techniques from the perspective of
whether the method requires the establishment of complex mathematical models. Various types of
methods are compared for performance, such as speed regulation range, algorithm complexity, and
requirement of the pre-stored parameter. A discussion is presented concerning current trends in
technological development, which will facilitate the research addressing potentially effective methods
for position estimation in SRM drive systems.

Keywords: additional components; hybrid detection method; position sensorless control; magnetic-
model-based; switched reluctance machine (SRM)

1. Introduction

The switched reluctance motor (SRM) is considered to be one of the best potential
motors due to its simple structure, high efficiency, outstanding fault tolerance, and flexible
control methods [1–5]. It limits general application in that its doubly salient structure leads
to large torque ripple and noise. However, with the rapid development of control theory,
finite element analysis (FEA), and power electronics, SRMs are gradually being used in
vehicles and other fields [5–10].

At present, switched reluctance motors are widely used in many industrial fields,
such as mild-hybrid BSG drives, hybrid vehicles, construction machinery, and aerospace
engines, etc., [11–16]. To fully discover the potential advantages of SRM, fault-tolerant
control research [17–20], global optimization considering driving cycles and manufactur-
ing fluctuations [21–25], minimum torque ripple control [26–29], and position sensorless
control [30–34] have all been extensively studied. The sensorless approach has attracted
much attention because it enables the SRM to have the advantages of low cost, low risk,
and is not limited by hardware.

For the SRM drive system, the position signal of the rotor is indispensable. However,
the position sensor carries a potential risk of failure and limits the speed regulation per-
formance due to the limitation of the sensor resolution [35–45]. To eliminate the negative
effects, increasing position sensorless methods have emerged with the deepening of theo-
retical research on SRMs. As shown in Figure 1, the number of published articles on SRM
position sensorless methods is increasing. We have to admit that this is a hot spot, and it is
necessary to analyze and review the related theories and technologies.
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switched reluctance *AND sensorless OR position estimation. This initial search yielded 
432 papers. Articles were limited to peer-reviewed journal articles in English. Titles and 
abstracts were read to narrow the list of studies and ensure they met the following criteria: 
the study had to be an experimental manipulation under field or laboratory conditions 
linking SRM. Finally, according to these criteria, 311 studies were retained for our system-
atic review. 

Current signal, rotor position, and voltage signal are important feedback signals in 
the control of SRM drive system. The waveform of the current is especially important for 
speed/torque control [46–49] and position sensorless control [50,51]. In different speed 
ranges, the current output of the motor is very different. As the speed of the output in-
creases, the current gradually enters the form of a single pulse. At low speed, the current 
will be chopped, and the output of torque and rotational speed will be controlled by con-
trolling the range of the chopper. In the medium and high speed segments, the motor 
needs to output higher power, and the effective value of the current needs to be increased. 
The motor will control the output of speed and torque by controlling the turn-on angle 
and turn-off angle, i.e., control the power output by the motor. 

Position sensorless technology has attracted much attention and has been widely 
studied. Such technology can improve the stability of switched reluctance motors to adapt 
to complex application environments. The sensorless technology has been rapidly pro-
moted via the development of power electronics technology, finite element simulation 
technology [39–43], flux linkage measurement methods, and control theory. New position 
sensorless methods are constantly being proposed, which is more coincidental with the 
requirements of higher position detection accuracy, wider speed regulation range, and 
better versatility [52–62]. 

Figure 2 shows the classification of position sensorless methods. In this paper, the 
classification is based on whether or not the methods require a priori parameters of the 
motor to build a model. Position sensorless methods are mainly divided into three broad 
categories: magnetic model-based methods [63–128], magnetic model-free methods [129–
149], and hybrid detection methods [150–166]. These methods have their own unique ad-
vantages, which are driving the sensorless technology to be more efficient. 

Figure 1. Number of studies published before Jan. 2021 that experimentally examined the position
sensorless methods for SRM.

We collected the research to complete our review via a search of ISI Web of Science
up to December 2021. The following Boolean search terms and modifiers were employed:
switched reluctance *AND sensorless OR position estimation. This initial search yielded
432 papers. Articles were limited to peer-reviewed journal articles in English. Titles
and abstracts were read to narrow the list of studies and ensure they met the following
criteria: the study had to be an experimental manipulation under field or laboratory
conditions linking SRM. Finally, according to these criteria, 311 studies were retained for
our systematic review.

Current signal, rotor position, and voltage signal are important feedback signals in
the control of SRM drive system. The waveform of the current is especially important for
speed/torque control [46–49] and position sensorless control [50,51]. In different speed
ranges, the current output of the motor is very different. As the speed of the output
increases, the current gradually enters the form of a single pulse. At low speed, the current
will be chopped, and the output of torque and rotational speed will be controlled by
controlling the range of the chopper. In the medium and high speed segments, the motor
needs to output higher power, and the effective value of the current needs to be increased.
The motor will control the output of speed and torque by controlling the turn-on angle and
turn-off angle, i.e., control the power output by the motor.

Position sensorless technology has attracted much attention and has been widely
studied. Such technology can improve the stability of switched reluctance motors to
adapt to complex application environments. The sensorless technology has been rapidly
promoted via the development of power electronics technology, finite element simulation
technology [39–43], flux linkage measurement methods, and control theory. New position
sensorless methods are constantly being proposed, which is more coincidental with the
requirements of higher position detection accuracy, wider speed regulation range, and
better versatility [52–62].

Figure 2 shows the classification of position sensorless methods. In this paper, the clas-
sification is based on whether or not the methods require a priori parameters of the motor to
build a model. Position sensorless methods are mainly divided into three broad categories:
magnetic model-based methods [63–128], magnetic model-free methods [129–149], and
hybrid detection methods [150–166]. These methods have their own unique advantages,
which are driving the sensorless technology to be more efficient.
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Figure 2. Classification of control methods of position sensorless.

The main work of this paper is to sort out the rotor position estimation method of
SRM from the perspective of technology development. The main contribution is to classify
different types of sensorless methods and summarize them, demonstrate the process of
development of sensorless methods, and essentially explore and categorize a multitude of
methods. A comparative analysis is made addressing the feasibility, generality, and speed
regulation range of these methods. The sensorless methods with outstanding performance
and future research directions are screened out.

2. The Composition of SRM Drive System
2.1. Structure of an SRM System

A typical SRM drive system, shown in Figure 3, is composed of a controller, inverter,
motor body, power supply, and various sensors. The motor converts the electric energy
provided by the DC power supply into mechanical energy to drive the load. The controller
generates the corresponding driving signal through the feedback signal of the sensor
to control the motion state of the motor. It is extremely important to detect accurate
and effective rotor position signals for SRM control. The position sensorless method can
significantly increase the stability of the system. These methods estimate the rotor position
by adding hardware, a magnetic model, or control algorithm.

The converter is important to the SRM system because of the sampling of phase
current, bus current, and phase voltage. As shown in Figure 4, the A phase of the three-
phase half-bridge converter is used as an example to illustrate the process of converter
operation. Figure 4a is the circuit topology of a single-phase half-bridge, which consists
of two controlled switches, SA1 and SA2, and two diodes, DA1 and DA2. The converter
has three modes: magnetization, zero freewheeling, and demagnetization. As shown in
Figure 4b, when winding A needs to establish a magnetic field, SA1 and SA2 are turned
on. In the freewheeling mode, only SA1 or SA2 is turned on, as shown in Figure 4c. When
winding A no longer needs to establish a magnetic field, SA1 and SA2 are turned off at the
same time, which will force the current commutation of winding A to achieve the purpose
of eliminating the magnetic field. Meanwhile, the voltage across the winding is the negative
phase voltage -Udc.
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2.2. Mathematical Model of SRM

The motion state of the SRM can be controlled as long as the windings of each phase
are driven according to certain principles. Figure 5 shows the change of the electromagnetic
state of a 12/8 three-phase SRM during the rotation of one rotor pole pitch. The first state
is that the salient poles of the rotor are aligned with the center of the grooves of the stator
as shown in Figure 5a. The rotor turns 22.5◦ counterclockwise to reach the second state.
At this time, the rotor salient poles are aligned with the center of the stator salient poles.
In [0◦, 22.5◦], the inductance of this phase gradually increases from minimum to maximum
due to the decrease in reluctance. After that, the inductance will decrease until it turns
another 22.5◦ to reach the third state. As shown in Figure 5b,c, the static curves of flux
linkage and torque under different currents can be obtained by finite element analysis.
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The motor conforms to the law of electromagnetic induction in the process of operation.
The motor has m phases, and each phase winding satisfies Equation (1). As shown in
Figure 5, the flux linkage of SRM is very nonlinear due to its structure. The flux linkage
model can be fitted mathematically, but the accuracy of this method is greatly limited.
Generally, the magnetic link information is obtained by the three-dimensional look-up table
(LUT) method.

ek = −
dψk
dt

(1)

where ψk, ek, and t represent the flux linkage, induced electromotive force, and time of the
kth phase winding, respectively, and k = 1, 2, . . . , m.

There is a mapping relationship between the flux linkage ψk, the rotor position angle
θph, and the phase current ik. The relationship between the flux linkage and the inductance
Lk is shown in the following formula.

ψk(θph, ik) = Lk(θph, ik)ik (2)

where Lk and ik represent the phase inductance and phase current, respectively. θph is
rotor position.

According to Kirchhoff’s voltage law, each phase loop conforms the voltage balance equation.

Uk = Rkik +
d(ik · Lk)

dt
(3)

where Uk and Rk represent the phase voltage and phase resistance, respectively.
The mechanical balance equation can be obtained via the relevant mechanics theory.

Te = J
dω

dt
+ TL+Dω (4)

where Te and TL represent the electromagnetic torque generated by the motor and load
torque, respectively. J and D are the const parameters of the moment of inertia and viscous
friction coefficient. ω is the actual speed of the motor.
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The relationship between these physical quantities is the basis of the control research
for SRM, not only for the rotor position estimation control, but also the design of the
motion control algorithm [52,53]. The speed control algorithm determines the output
performance of the motor, including torque quality, speed regulation range, and robustness.
Common speed control methods include current chopping control (CCC), angle position
control (APC), voltage chopping control (VCC) [54–57], direct torque control (DTC) [58,59],
and direct instantaneous torque control based on torque sharing function (TSF) [60–62].
Another type of control algorithm is the signal fault tolerant and position sensorless control
algorithm, which is designed to enhance the stability of the hardware layer. There is an
inevitable connection between speed control and position-free fault-tolerant control. The
position sensorless control provides the rotor position signal for the control algorithm,
and the control algorithm can also provide the required physical quantities for some rotor
position estimation methods.

Meanwhile, we can discover new methods in these essential electromagnetic and
mechanical equations to improve the performance of the motor drive system, which will be
reflected in many position estimation methods. The most closely related to the rotor position
is the flux linkage and inductance, which motivates a large number of magnetic-model-
based methods. At the same time, the magnetic-model-based method is also undergoing
in-depth development to solve the difficulty involved in magnetic model establishment.

3. An Overview of Recent Development in Position Estimation Methods of SRM

We have reviewed related methods to facilitate a clear understanding of the develop-
ment of different methods so that we can find some characteristics and future development
directions of position estimation. We will introduce various categories of position estima-
tion methods, which are selected from papers with experimental result verification, and can
quantify the performance of the method, such as speed regulation range or estimation error.

3.1. Magnetic-Model-Based Position Sensorless Methods

Equation (2) shows that the rotor position estimation has a direct mapping relationship
to flux-current and torque-current. A large number of methods have been proposed based
on magnetic models and magnetic equations [44].

3.1.1. Based on Flux-Current-Position Methods

There is a mapping relationship between the rotor position and the flux-linkage-
current, which determines that this is a direct and effective rotor position direction. This
kind of method consists in using various features to generate new flux-linkage-based
methods, on the one hand building more accurate models, and on the other hand using
fewer prior parameters to reduce pre-storage.

During the operation, the calculation of the flux linkage satisfies the following Formula (5).

ψk(t) = ψk(0) +
∫ t

0
(Uk − Rkik)dt (5)

where ψk(0) represents the flux linkage value at the initial moment.
Methods based on 3D LUT [63–65] and flux linkage modeling [66–73] are used to

obtain the position signal by obtaining current and flux linkage information. Then, to
gradually reduce the dependence on the pre-storage, the magnetic characteristics, such
as the flux linkage and inductance increment of the SRM, are decomposed into the rotor
position and the appropriate amount of phase current, and a one-to-one correspondence
between the flux linkage and the rotor position can be established. The position estimation
is carried out within the wide speed range. However, the dependence on speed and torque
control strategy is extremely strong [74,75]. Using only a one-phase current sensor and
virtual voltage to build a flux linkage model to estimate the rotor position can perform
rotor position estimation in a wide speed range [76]. However, the stability of the method
is worth exploring due to the severe nonlinearity of the flux linkage.
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On the other hand, to compensate for the limitation brought by model accuracy,
based on numerical method [77,78], quadrature flux estimators [79], Kriging interpolation
model [125], and compensation error method are used. Recently, the accuracy of the
method has been further improved by eliminating the errors of the flux linkage modeling
by compensating errors online and estimating the winding resistances [80,81]. The accuracy
of position estimation is enhanced by the special flux linkage curve of position [82–84].
These methods indirectly contribute to the accuracy of rotor position estimation.

3.1.2. Based on the Inductance Model Methods

Inductance and flux linkage are the same as the most important essential character-
istics of electric machines. Therefore, they have been extensively studied to promote the
development of indirect position estimation. The calculation of the inductance has a simpler
calculation method than the flux linkage, as can be seen from Equation (3). Inductance has
a direct balance relationship with voltage and current, so various inductance-based meth-
ods have been proposed. These methods are intensively studied in inductance modeling,
inductance acquisition methods, and considering the inductance–position relationship to
indirectly obtain the rotor position.

As shown in Figure 6, the phase inductance is the largest at the aligned position θa
of the stator and the rotor and the smallest at the misaligned position θu. Generally, three
special positions are selected for parameter fitting to establish a mathematical model of the
inductance. The inductance model based on the Fourier series is shown in (6).

Lk(θph, ik) = L0(ik) + L1(ik) cos(Nrθph) + L2(ik) cos(2Nrθph) (6)

where L0, L1, and L2 are the parameters to be fitted and Nr represents the number of rotor
poles.
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Based on the inductance model of first switching harmonics via Fourier series to reduce
the need for controller memory and interpolation [85,86]. The online calibration [87,88],
considering mutual inductance [89], and considering magnetic saturation [90,91] were used
to enhance the accuracy of the inductance model.

In terms of the method of inductance acquisition, the rotor estimation method based
on the inductance modeling-current model is incremental inductance [92] utilizing the con-
duction phase measurement, and the motor performs well in the low speed range. Phase
inductance information is obtained based on pulse injection, and then the combined vector
quadrature decomposition method is combined with the inductance partition method
to eliminate position sensors [93]. Further, many scholars have found various relation-
ships between the inductance characteristics and the rotor position to effectively detect
the rotor position. After rotor position failures are detected, an inductance slope-based
method is used to supplement the missing signal [94,95]. After that, a method based on
phase-inductance vector coordinate transformation was proposed and improved [96,97].
Unbalanced inductance will cause the traditional inductance feature-based and inductance
modeling-based methods to reduce the accuracy of position estimation, and even fail to
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drive the motor, as shown in Figure 7. Further, to improve the general applicability of
rotor position estimation, a detection method considering inductance imbalance is ap-
plied [98]. As shown in (7), by establishing the relationship between the inductance and the
current, the zero-crossing law of the slope at the inflection point of the inductance can be
found [99–101]. Such a feature is efficient for localization of the rotor position θov without
the need for additional sensors and additional circuitry. U0− = ωL0−

di0−
dθph

+ ωi0−
dL0−
dθph

U0+ = ωL0+
di0+
dθph

+ ωi0+
dL0+
dθph

(7)
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3.1.3. Based on Intelligent Control Algorithm

Intelligent control algorithms have outstanding performance in dealing with non-
linearity [102–104]. For the position estimation of SRM, the advantage of this type of
algorithm is that the nonlinear modeling of flux linkage and inductance is accurate, and
the disadvantage is that the algorithm is difficult to design and needs to measure a large
number of motor parameters.

In [105–107], the fuzzy logic control algorithm replaces the traditional three-dimensional
look-up table method and mathematical modeling method. This reduces the amount of
pre-stored data. Figure 8 shows the rotor position estimation scheme based on the principle
of the neural network. Complicated fuzzy rules and complex offline training limit its use.
Figure 8a shows the block diagram of the neural network application, which takes the
phase current and phase voltage as input, calculates the rotor position, and then outputs
it. The input layer, hidden layer, and output layer constitute a functional neural network,
as shown in Figure 8b. A neural network is trained based on the relationship between
flux linkage and current position to form a nonlinear SRM mapping relationship [108–111].
The established neural network model only needs to use the sampled current/voltage for
rotor position estimation [112]. After that, the neural network is improved to improve the
performance of rotor estimation, such as back-propagation neural network (BPNN), by
adding a pretreatment section that refines the input layer to improve performance [113].
Although neural networks have outstanding advantages in terms of model accuracy, they
all require a large number of actual measurement data samples to have sufficient accuracy.
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3.1.4. Observer-Based Methods

Compared with intelligent algorithms, the development of modern control theory
provides a new method of position control. The state equation of the system can be
established, and the observer can be constructed to measure the physical quantity that is
not convenient to measure directly. The flux observers, position observers, and sliding
mode observers are also used to obtain the rotor position indirectly [114–117]. Generally,
such algorithms have the advantages of torque- and speed-independent control algorithms,
no pre-stored large amounts of data, and wide applicability to speeds. More deeply, this
kind of position estimation control needs to set more parameters, which is its disadvantage.

dψk
dt = −Rkik + Uk

dω
dt = − 1

J Dω− 1
2Jψk

T dL−1
k (θph)

dθph
ψk

dθph
dt = ω

ik = L−1
k (θph)ψk

(8)

where J and D are the moment of inertia and viscous friction coefficient of the motor,
respectively. w is the rotational speed.

The basic equations satisfied by the SRM system are shown in (8). Hence, many
studies will design different observers based on different control theories, such as sliding
mode control and nonlinear state observers. This class of position sensorless methods is
an application of modern control theory [37,118]. The performance of advanced control
algorithms is highlighted in the efficient aspects of speed regulation, torque regulation, and
position estimation [118].

Based on the general nonlinear magnetizing model (GNMM) was applied to estimate
the rotational speed and the position of the rotor [127]. With the introduction and devel-
opment of sliding mode control theory, sliding mode observers have been designed and
improved to improve performance [121–126]. Early position estimation methods based
on sliding mode observers used linear models, which limited their accuracy. With finite
element modeling and nonlinear fitting improving the accuracy of flux linkage and torque
calculations, a second-order inductance model based on the Fourier model is used in a
typical second order sliding-mode observer to observe the rotor position. Later, scholars
improved the performance by improving the approach control law to force the rotor posi-
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tion estimation error to converge to the sliding mode surface [124,126]. In order to solve the
rotor position error caused by nonideal measurement noises and flux linkage calculation
errors, as shown in Figure 9a, a nonlinear state observer (NSO) is designed to indirectly
measure the rotor position with special position detection. In addition, a comparison
between the linear observer and the proposed observations was made in terms of position
estimation and speed estimation, as shown in Figure 9b [128]. The observer has outstanding
performance in the medium- and high-speed range. The observer design is also more diffi-
cult, but it can reduce the need for motor parameters and is not limited by the speed range.
The discovery of modern control theory is a direction full of potential opportunities.
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Methods that require the use of electromagnetic quantities are the most mentioned. It
is obvious that this is an important direction for the future development of location-free
methods. Through the above introduction, Table 1 shows the characteristics of these types,
the current development, and the future development direction. The observer advantage
here is huge due to the speed-independent torque control strategy. Due to the complex
design of the artificial intelligence algorithm, it does not have an obvious advantage in
rotor position estimation.

Table 1. Prediction of the development of existing methods.

Methods Versatility Improved Future

Based on flux-current-
position method CCC, APC and VCC Reduced pre-stored parameters increase general Versatility

Based on flux-current-
position method CCC, APC, VCC and TSF Inductance characteristics are

fully utilized Enhance real-time

Based on intelligent
control methods ALL Improve neural network structure Reduce complexity

Observer-based methods ALL Adopt the observer with strong
anti-interference Effectiveness at low speed
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3.2. Magnetic-Model-Free Method Position Sensorless Methods

To decouple the rotor position from the flux linkage/inductance, some methods
without the use of models are proposed for various speed and torque control strategies and
without pre-stored flux linkage/inductance.

3.2.1. Additional Component-Based Methods

A circuit is designed to measure the voltage required for rotor position estimation, and
the rotor position can still be estimated under the premise of considering self-inductance
and inductance. The resonant circuit has a good real-time rotor position estimation, cal-
culated as the resonance peak as shown in (9) [139]. However, the real-time performance
of the rotor position is not ideal. To reduce the predefined inductance parameters, the
method based on the bootstrap circuit using bootstrap circuit can effectively detect the
initial position of the rotor [140,141].

UR =
Uk

1 + jQ[( f1/ f0)
2 − 1]

(9)

where f0 = 1/(2π
√

LC), Q = 1/(2π f1RC), R and C represent the resistance and capac-
itance in the circuit respectively, and L is the inductance of the characteristic position
in the motor.

As shown in Figure 10, a method based on series inductive coils was proposed [142].
The excitation winding detection coils are independently wound on the stator teeth. Ac-
cording to the different structure of the winding, there are three structures, NNNN, NNSS,
NXSX, which are designed to estimate the position of the rotor with the corresponding
signal conditioning circuit. Since it is not affected by the winding, this method has the ad-
vantages of high detection accuracy, independent control algorithm, and wide speed range.
However, it will also increase the risk of the system due to the addition of new accessories.
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3.2.2. Methods Based on Pulse Injection

The pulse injection method is divided into pulse injection into the excitation phase
and pulse injection into the non-conduction phase. The theoretical basis that these methods
follow is shown in Formula (10).

Uk ≈ L(θph)
∆i
∆t

(10)

where ∆i and ∆t are the current change rate and time interval of the detection coil, respectively.
The pulse injection method for startup is relatively mature. In [129–132], an initial

position estimation method based on non-conducting phase pulse injection was proposed
for the first time. To eliminate the start-up hysteresis, a method of injecting short-duration
pulses into all phases was proposed [133]. Later, many studies combined current waveforms
to achieve operation over a wider speed range. A general low-speed position sensorless
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based on the principle of phase-locked loop was proposed [134]. There are few pulse
injection methods in the high-speed range, and the pulse injection will affect the torque
control of the motor. A single-pulse and integrator circuit was combined to broaden the
position estimation, addressing the operating frequency limitations of power devices. Non-
operating phase injection pulses was proposed [136]. The required pulses are injected
into the motor windings via the existing inverter. High-frequency pulse injection was
utilized [131]. Different algorithms are used at different velocity stages.

As shown in Figure 11, a position estimation method based on high frequency sinu-
soidal signal injection has been proposed [137,138]. The high-frequency sinusoidal signal
vhf is superimposed on the driving voltage Vref and compared with the high-frequency
triangular wave to generate a SPWM wave signal to drive the inverter, and indirectly
obtain the rotor position by responding to the current waveform. No pre-stored magnetic
parameters and strong versatility are the advantages of this method. However, the speed
regulation range and the execution frequency of power devices represent great challenges
for this type of method.
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3.2.3. Methods Based on Electromagnetic Characteristics

This type of method does not require mathematical modeling or a three-dimensional
look-up table like the model-based method, but uses certain characteristics of the motor to
perform position detection.

Current is an inescapable variable for all rotor position estimates. The rotor position
can be extracted by the characteristics of current, which has a good versatility in low
speed and start-up [143]. The critical position is based on the chopping current time
width [144], based on the lowest point of the inductance [145], and on the inductance start
to rise point [146]. Using the current gradient sensorless (CGS) scheme method [147] of the
current slope in the wide speed range, the rotor position estimation performance remains
stable. One of the more typical formulas uses the slope of the current to detect the position
of the minimum inductance. The basic Equation (7) is satisfied on the left and right sides
of the minimum inductance point. Equation (12) is obtained by subtracting (7), and the
special point of the inductance is obtained by derivation of the rotor through the current.

di0−
dθph

− di0+
dθph

= i0+
dL0+/dθph

Lmin
> 0 (11)

where i0− and L0− represent the current and inductance values approaching the left of the
inductance inflection point, respectively. i0+ and L0+ represent the current and inductance
values approaching the right of the inductance inflection point.

The traditional inductance slope zero-crossing detection has a large number of interfer-
ence signals. The crossing point of motional electromotive force (MEF) and the transformer
electromotive force (TEF) are detected as a characteristic position, as shown in Figure 12a.
The experimental results in the literature verify the correctness of the principle as shown in
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Figure 12b. To use fewer sensors, the bus current is decomposed, and the current gradient is
then used to estimate the rotor position [149]. The theoretical basis is to expand Equation (3)
to obtain Equation (12).

Uk = Rkik + Lk
dLk
dt

+ ik
d(·Lk)

dt
= Rkik + EMEF + ETEF (12)

where EMEF and ETEF represent motional electromotive force and transformer electromotive
force, respectively
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As the rotational speed increases, ETEF much larger than EMEF affects the position-free
estimation at high speed. The accuracy of this method is high in the low and medium speed
range. The feature point-based method is efficient and, in particular, has good performance
in a specific speed range. However, because the position corresponding to the feature
quantity is less, this will limit the speed regulation performance and real-time performance
of the motor.

3.3. Hybrid Detection Position Sensorless Method

In recent years, a variety of position-free control strategies have been mixed to form
a method for full speed range estimation. Such methods combine multiple magnetic
features and use different methods for position estimation at different velocity ranges to
meet performance.

3.3.1. Strategies Based on a Mix of Multiple Sensorless Approaches for Full Speed Range

Hybrid control algorithms are very common in control because they can comprehen-
sively utilize the advantages of multiple parties [150–153]. Active fault-tolerant techniques
are proposed to deal with position sensor failures. The method of pulse injection is ap-
plied [155]. This method is the most widely used, and the pulse injection method is cited
as the starting method in many approaches [94,148]. Four-phase operation is of great
significance for SRM to meet more applications. In [123], a state observer and a pulse
injection-based inductance detection method are combined to enable the motor to perform
well in the starting and full speed range. Position sensorless methods based on fewer
current sensors were proposed [149,153,160]. The main contribution of these methods is to
reduce the current sensor, and the position scheme will be based on the characteristics of
inductance and current. There are position sensorless control methods for diagnostic fault
tolerance after position sensor failure [94,95,101,155].
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This type of hybrid rotor position estimation method demonstrates a relatively out-
standing performance in the local speed range, but in-depth research on other mature
methods directly cited has not been performed. However, how to smoothly connect differ-
ent methods needs to be paid attention to, especially in the case of sudden load or variable
speed conditions.

3.3.2. Hybrid Detection Method Based on Multiple Features

Another hybrid method is to use multiple means to estimate the rotational speed
and locate the special position to make up for the shortcomings of the traditional single
method. Pulse injection is combined with flux linkage [156,157]. Multiple inductive
features [158,159]. Mutual inductance-based methods [164,165] are proposed to obtain the
rotor position based on the induced voltage generated by the mutual inductance effect
between the motor phases, which is a typical hybrid detection technique. During SRM
operation, the mutual inductance voltage is formed between the conducting phase and
the non-conducting phase, by detecting the change accompanying the mutual inductance
voltage when the rotor position changes. After that, the rotor position is estimated by
combining the characteristics of the inductance. However, the back EMF can adversely
affect the accuracy of the estimation. In [166], a high frequency pulse is injected into the
tail of the excitation current. The current waveform and flux linkage waveform are shown
in Figure 13. During the start-up and low-speed phases, the inductance is divided into
multiple regions, a linear region of which is selected for rotor position estimation. In
the medium and high speed regions, the excitation current flux linkage and the current
generated by the injection pulse are compared for rotor positioning. This method enables
four-phase operation for the full speed range and start-up phase.
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This type of scheme deserves further study, and its unique advantage is that it can
make up for the inherent shortcomings of the original method by introducing new meth-
ods. It has huge advantages in speed regulation range, four-phase operation, and no
pre-stored parameters.
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The differences between the various methods can be easily obtained by comparing the
Table 2. In general, some methods are effective and widely used in certain speed ranges,
e.g., pulse injection in the start-up phase, inductance-based methods in the mid-to-high
speed range, and observer-based, add-on-based methods in the full-speed range. In order
to find a control strategy without pre-storage, in the full speed range, independent of the
speed/torque control strategy and with high position estimation accuracy, it is extremely
important to study the electromagnetic characteristics and control theory of the motor to
obtain the rotor position signal indirectly.

Table 2. Comparison of the various sensorless methods.

Categories Speed Range Pre-Stored
Parameters Advantages Shortcomings

Pulse injection methods Startup and low speed Small Accurate, easy to
implement

Negative torque
ripple generation

Additional components methods Whole-speed Without Universal versatility Introduced new
components

Electromagnetic-characteristics-based methods Whole-speed Small Simple, effective and
stable

Poor real-time
performance

Flux-current-
based methods

Traditional Medium and
high speed Large Good real-time

performance
Poor versatility,
huge calculation

Developed Whole-speed Medium Without additional
components Poor versatility

Inductance-
based methods

Traditional Medium and
high speed Medium Small amount of

computation

Large estimation
error, difficult

modeling

Developed Whole-speed Medium Small amount of
computation

Poor real-time
performance

Intelligent-control-based methods Whole-speed Medium
Universal versatility,

Good real-time
performance

Difficult
algorithm design

Observer-based methods Whole-speed Without Good robustness,
universal versatility

Poor accuracy in
low speed, difficult
algorithm design

Strategies based on a mix of multiple methods Whole-speed Medium Accurate location
estimation

Requires switching
algorithm

Hybrid method based on multiple features Whole-speed Small Various methods,
easy to implement

Poor real-time
performance

4. Future Directions

By summarizing and reviewing the existing literature, the method of rotor position
estimation has been developed rapidly. There are also more requirements for the target of
rotor position estimation. In addition to the known position sensorless method to ensure
the estimated rotor position is accurate and real-time, there is a deeper understanding such
that the development direction focuses on the following aspects.

4.1. An Accurate Rotor Estimation Solution in Whole-Speed Range

Position sensorless technology for the full speed range is an ongoing goal. Many
methods demonstrate accurate position estimation in part of the velocity range, which is
also of great significance for the development of position sensorless methods. However,
this limits the practical application of the algorithm in that the motor is required to be in
the full speed range. It is necessary to seek rotor position estimation methods in a wider
speed range.

4.2. Reduce Coupling between Position Estimation and Control Methods

For motor motion control, current chopper control (CCC), angle position control (APC),
and voltage chopper control (VCC) are relatively mature control algorithms. Many position
estimation methods are extremely dependent on these control strategies, which is weak
compared with traditional position sensors. Many new controls, such as direct torque con-
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trol (DTC) and torque sharing function (TSF) [154,160–162], have outstanding performance
in reducing torque ripple and vibration noise, and the current waveforms produced by
these methods are completely different due to different control strategies [134,135]. This
forces the position estimation methods to be able to adapt to these new control strategies.

4.3. Reduce the Need for Prior Parameter Storage

The gradual reduction of the motor a priori parameter requirements can reduce the
pressure on microcontrollers with small storage capacity. Of course, we also have to
realize that some key motor parameters are instructive for estimating rotor position. The
validation of prior parameters restricts the application of location-free methods to SRMs
with large parameter differences. Moreover, many motor parameters may be changed by
the interference from the environment and working conditions, which is a huge risk to the
long-term effectiveness of the algorithm.

4.4. Smooth Switching between Different Speed Stages

The motion process of conventional SRM is mainly divided into the start-up, low-
speed, and high-speed stages. How to effectively switch between different sensorless
methods is a technical point worth paying attention to [166]. For example, in [133], the
pulse injection method is combined as the algorithm for the start-up phase. However, it
does not indicate how to switch.

4.5. High Stability under Heavy and Changing Loads

It is well known that drastic changes in load can challenge the robustness of the control
algorithm. In the experiments of some literature, it is easy to observe that the estimation
accuracy will be lower than the light load when the load is abruptly changed. How to
effectively improve the accuracy of rotor position estimation is a worthy research direction
under various working conditions.

The principles of various types of sensorless methods have been introduced in detail,
and their development has been teased out. The direction of the entire sensorless devel-
opment is elucidated based on the current development direction. It is important to see
what changes can be made in the future for each type of method. Table 3 presents future
applications and future developments of the various methods summarized. From a practi-
cal application point of view, hybrid and observer-based methods enable a decoupling of
speed/torque control strategies and position estimation in the full speed range.

Table 3. Prediction of the development of existing methods.

Methods Features of Application Future Development

Pulse injection methods Outstanding startup performance Hybrid with other methods

Additional components methods Similar to the novel position sensor Smaller additional components

Flux-current-based methods Excellent real-time performance More accurate analytical models

Inductance-based methods Simple detection of special positions Enhance real-time

Intelligent-control-based methods For the acquisition of electromagnetic values Mate position sensorless method

Observer-based methods Outstanding real-time performance,
decoupling from speed control strategy Improvements at startup and low speed

Hybrid method Suitable for whole-speed Smoother mode switching

5. Conclusions

This paper reviewed the developments in the position estimation of SRMs, with a
focus on the application of position sensorless methods. Via the discussions, it is found
that there are many obvious constraints and potential opportunities for the sensorless
technology, with the development of advanced control theory and the in-depth study
of electromagnetic signature by FEA. Besides the requirements of efficient rotor position
estimation in the whole-speed range, there are some challenging objectives for the design
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of sensorless control, including high detection accuracy, high robustness, and improved
algorithm versatility. To address these constraints, some advanced control theories, such
as sliding mode observers and hybrid solutions that fuse multiple methods, are used for
position estimation. Due to their excellent suitability for modeling nonlinear characteristics,
reduced dependence on motor parameters and application in a wider speed range are
expected in the future.
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