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Abstract: This work deals with the control of flexible structures as underactuated systems. The invari-
ant control method performs the control of a flexible robot as a representative of an underactuated
system with zero dynamics. The control input is separated into two parts. The arbitrary part of the
control input is designed to control the directly actuated part of the dynamic system. The invariant
part of the control is selected to steer the system zero dynamics in the desired way. The harmonic
functions create the base for the invariant part of the control function. The residual vibration cancella-
tion is the target of the presented invariant control strategy. The harmonic function frequencies are
overtaken from the so-called natural motion, amplitudes are the results of the optimization process.
The main target of this paper is to show the invariant control approach and its application to the
system with flexible elements.

Keywords: control design; dynamics; harmonic analysis; mechanical systems; robot control;
underactuated systems

1. Introduction

This paper deals with the control of flexible structures as underactuated systems.
The definition of underactuation should be based on the number of blocks in the Brunovsky
canonical form [1]. The invariant control—its idea is presented in [2]—is used for flexible
robot trajectory tracking with minimal residual oscillations. The desired trajectory is
parametrized, exact input–output linearization is applied to the system coordinates (modal
coordinates are excluded), and outputs are substituted by function of parametrization
variables. This transformation assures that the robot endpoint follows the desired trajectory.
Zero dynamics (system flexibility) oscillations are realized only in the perturbation of
parametrization variables. The invariant control, based on the harmonic functions [3],
is applied to the model of a flexible robotic arm, and its parameters are obtained using
predictive optimization.

Many authors have already investigated the control of underactuated mechanical
systems. Neurodynamic programming, as a main part of the control in [4], is used for
the control of the ball and beam system. In [5], a method of adding the actuators to the
underactuated joints and running the swing-up motion with optimization minimizing the
action of the added actuators is used. Sliding mode control extended with fuzzy logic
is introduced in [6] to control the motion of overhead crane. An approach with optimal
control is used in [7]. The adaptive approach used for tracking control is presented in [8].
Partly stable controllers derived using the dynamic model of the manipulator create basis
for the optimal switching sequence control in [9]. An energy-based approach used in the
design of stabilizing controllers is presented in [10]. Friction forces are used in the energy
control strategy in [11]. Authors in [12] introduce an averaging theory for controlling the
systems with and without drift terms. In [13], the trajectory tracking controller is used for
following the upward trajectory created from the downward simulation (similar to the
natural motion in [14] and the natural oscillations in [15] of a parallel robot) and stabilizing
trajectory. An active disturbance rejection control is designed in [16] for a pendubot system.
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The walking-like trajectory tracking of an acrobot is continuously developed in [17]. A
3D bipedal gait walking robot is presented in [18], and the development of humanoid
motion design is investigated in [19]. The robust sliding mode control is developed for
stabilizing and trajectory tracking of a ballbot system in [20], and the wheel-legged biped
robot motion is stabilized using active arm manipulator in [21]. The dynamic balancing of
quadruped robot with optimal controller is presented in [22], and a different quadruped
robot design is presented in [23]. Ref. [24] presents linear quadratic regulator applied to
control vertical take-off and landing (VTOL) multi-rotor vehicle with passive rotor tilting
mechanism. A control based on a function approximation technique using the variation of
an approximated square system is presented in [25,26]. The cyclic control using sinusoids
for nonholonomic systems is presented in [27] (stabilization), and motion planning is
presented in [28]. The control of a wheeled, inverted pendulum is transferred into dynamic
trajectory planning with a boundary value problem in [29]. State feedback fuzzy system
controller, based on H∞, is investigated in [30]. The underactuated mechanisms in the
gravity field can be controlled in their equilibrium positions (see [31]), but there are always
singularity points between these equilibrium states. To move the mechanism through this
region (see [32]) is a challenging task, and the work in [14] shows one possible way to
overcome it.

The investigation of system flexibility as a system underactuation is usually inves-
tigated with linearized stiffness; the authors of [33] deal with dynamic coupling of such
underactuated manipulators. Modelling flexibility in underactuated systems by a rotational
spring is presented in [34], and a similar flexibility model is investigated in [35], where
the spring stiffness is varied, and a point stabilization control is developed. A model with
linear springs is investigated in [36], where input–output linearization is performed along
with a PID controller. Sliding mode control is used to control the flexible robotic arm in [37].
The current work aims to introduce the invariant control strategy to the structures with
compliancy (chain of flexible robotic arms). The nonlinear system with flexible modes is
obtained using the procedure presented in [38].

An invariant control is presented in [2]. The application of such control to the un-
deractuated system (double pendulum, double pendulum on a cart) is shown in [14,39].
The current work does not include the flexible structures and does not deal with trajec-
tory tracking. This paper aims to introduce the control strategy to the structures with
compliancy—in our case, the flexible robotic arm. Another contribution of the paper is in
its presentation of a control strategy which forces the undesired movements of the system
into the desired system endpoint trajectory.

The paper is organized as follows. The exact input–output linearization is presented in
the Section 2 for underactuated systems. Next, the coordinates are separated into actuated
and unactuated. Then, consecutive output parameterization is introduced. Section 2.1
introduces invariant control with harmonic functions and the natural motion used for
the Eigen frequency evaluation. Section 3 introduces the presented method to flexible
robotic arm: modelling and parameterization with input–output linearization is applied to
the flexible robot. Next, the particular control application to the flexible robotic arm and
simulation results are presented. Section 4 concludes the work.

2. Materials and Methods

The control of underactuated, flexible structure using invariant control is presented.

2.1. Exact Input–Output Linearization with Parametrization

Let us consider a nonlinear dynamic system (Eigen equations of motion):

M(q)q̈ = F(q, q̇) + B(q)u (1)

where the matrix M[n × n] is an inertia matrix; q[n × 1] are coordinates describing the
system; q̇ and q̈ their time derivatives; F[n× 1] is a matrix containing forces dependent on
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velocities and external forces besides control inputs; B[n× k] is the control input distribution
matrix; the vector u[k× 1], k < n contains the control inputs.

The state vector q could be rewritten without loss of generality in the following way:

q =

[
qa
qz

]
(2)

where qa has the same dimension as the rank of matrix B. Remaining z coordinates in
vector qz represent not directly actuated states (zero dynamics). This coordinate selection
is generally not unique. The system (1) could be rewritten as follows:

MI
aa(q)q̈a + MI

az(q)q̈z = FI
a(q, q̇) + Ba(q)u (3)

MI
za(q)q̈a + MI

zz(q)q̈z = FI
z(q, q̇) + BI

z(q)u (4)

where the matrix Ba[a× a] is the largest regular sub-matrix of the matrix B with the rank
a (the actuator redundancy is not covered, so a = k). The number of qz coordinates is
z = n − a. The matrix dimensions in (3) and (4) are dependent on the lower indexes,
and matrix BI

z has dimensions [z× a]. Let us consider the vector of system outputs y of
the same dimension as the vector qa. There is a relation between system outputs and
system coordinates:

y = f(qa, qz) (5)

with a vector f[a× 1] representing the dependence of the output on the system coordinates
qa and qz. There exist the inverse relation f−1, such that the coordinates qa and its second
time derivative can be uniquely determined:

qa = f−1(y, qz) (6)

q̈a = Jy(y, qz)ÿ + Jz(y, qz)q̈z + S(y, ẏ, qz, q̇z) (7)

where Jy[a× a], Jz[a× z] and S[a× 1] are matrices resulting the time derivatives. The out-
puts y are often parametrized, especially in robotics applications. The parametrized trajec-
tory is defined:

P = y = P(p(t)) (8)

with the following output acceleration:

ÿ = Jp(p)p̈ + T(p, ṗ) (9)

where vector P[a× 1] is output parametrization and Jp[a× p], T[a× 1] are time derivative
resulting matrices with p equalling the number of parameters. The inputs u are expressed
from (3) and substituted into (4), and then the second time derivative of qa, much like y
from (7) and (9), are substituted, and the final set of equations is obtained:

Maap̈ + Mazq̈z = Fa + Bau (10)

Mzap̈ + Mzzq̈z = Fz (11)
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where

Maa = MI
aaJyJp

Maz = MI
az + MI

aaJz

Mza =
(

MI
za − BI

zB−1
a MI

aa

)
JyJp

Mzz = MI
zz + MI

zaJz − BI
zB−1

a

(
MI

az + MI
aaJz

)
Fa = FI

a −MI
aa
(
S + JyT

)
Fz = FI

z −MI
za
(
S + JyT

)
−

− BI
zB−1

a

(
FI

a −MI
aa
(
S + JyT

))
.

The new input variable w is equal to the second time derivative of parameters vector
p in order to provide input–output linearization. Then, the system inputs u are derived
from the (10) and (11):

u = B−1
a

(
Maa −MazM−1

zz Mza

)
p̈+

+ B−1
a

(
MazM−1

zz Fz − Fa

) (12)

with an assumption of the invertibility of Mzz, which is always fulfilled for flexible mechani-
cal systems.

2.2. Invariant Control

In this section, the control variable w is assembled. There is a dynamic system to be
controlled (derived from the previous section):

p̈ = w (13)

q̈z = M−1
zz (Fz −Mzaw). (14)

The input variable w directly influences parameters of p. However, how can the zero
dynamics coordinates qz be controlled? The proposed way is to split the input variable into
arbitrary part wA, which controls the parameters p, and invariant part wI , which controls
coordinates qz, with specific influence on parameters p.

w = wA + wI (15)

The arbitrary part is assembled to reach the final configuration at time, T. The invariant
part must satisfy invariancy conditions (16). Hence it modifies parameters p and their time
derivatives only inside the interval (0, T). The invariancy conditions are the following:∫ T

0
wI dt = 0∫ T

0

∫ t

0
wI dtdt = 0.

(16)

If the input variable (15) is substituted into the (13), and the system of equations is
integrated from t = 0 to t = T, then the following is obtained:

ṗ(T)− ṗ(0) =
∫ T

0
wA dt +

∫ T

0
wI dt =

∫ T

0
wA dt

p(T)− p(0) =
∫ T

0

∫ t

0
wA dtdt +

∫ T

0

∫ t

0
wI dtdt =

=
∫ T

0

∫ t

0
wA dtdt

(17)
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From (17), it is obvious that parameters p and their time derivatives at the end (final)
time depend only on the arbitrary part of the control (15). The arbitrary part wA could be
arbitrarily chosen, just to fulfil the end position and velocities of the parameters p. After the
selection of the arbitrary part of the control, it is a time-dependent part, and (14) changes
into (18).

q̈z = M−1
zz (Fz −Mza(wA(t) + wI)) (18)

The invariant part of the control must fulfil the conditions of (16), and the control
coordinates qz from (18) must reach the desired states at the end time, T. The suitable
functions are the following harmonic functions:

wI = ∑
i

Ai sin (2π fit + φi) (19)

The parameters Ai, φi of harmonic functions (19) are obtained from the optimization
process, and the frequencies, fi, are based on the so-called natural motion.

2.3. Natural Motion

According to [14], natural motion is derived from the vicinity of an unstable equilib-
rium to the vicinity of a stable equilibrium. The motion takes place in the gravity field with
dissipative members instead of actuators. It is helpful to rearrange the formulation for
the flexible systems. For obtaining the natural motion, it is used the simulation with zero
invariant part wI , controlled only with the arbitrary part of the control wA. The system is
moved from the initial position to the end position, where the system stays, and residual
(zero dynamics) vibrations are exerted.

All system states are recorded during the motion, and the frequencies, fi, are obtained
from the frequency analysis of the recorded behaviour.

3. Results

The present section introduces the presented procedure with invariant control to the
flexible robotic structure.

3.1. Model of Flexible Robot

A flexible robot is modelled as a double pendulum with flexible arms. It consists
of two flexible beams, interconnected by a revolute joint, and coupled to the base frame
with the second revolute joint. Every beam has flexibility modelled by three modes. There
are actuators in each revolute joint. The model covers the mass of the actuator, and the
endpoint is loaded by extra mass. The system is situated in the gravity field, see Figure 1.

Eigen equations of motion of the flexible double pendulum are obtained using the
procedure derived in [38]. The implementation is presented in [40]. The Eigen equations of
motion are in the following form:

M(x)ẍ = F(x, ẋ) + B(x)
[

u1
u2

]
(20)

where

x =



ϕ1
ϕ2
δ11
δ12
δ13
δ21
δ22
δ23


B =



1 −1
0 1
0 0
0 0
0 0
0 0
0 0
0 0


Furthermore, matrix M is an inertia matrix, vector F covers velocity-dependent forces,

gravity forces, and damping forces, and u1, u2 are actuator moments. Beam k endpoint
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position is determined by angular rotation ϕk and beam deflection dk. Beam deflection is
obtained according to the following equation:

dk =
3

∑
i=1

dki =
3

∑
i=1

Φkiδki (21)

where δki are dimensionless modal coordinates and Φki are coefficients of modal parameters
beam deflection at particular point. The angular deflection of the first beam endpoint is
needed for the determination of the second beam position. This endpoint angular deflection
is indicated as θ, and generally

θk =
3

∑
i=1

Ψkiδki (22)

where Ψki are coefficients of modal parameters, beam angular deflection at particular point.
Angle θ1 is the relative angle between the un-deformed shape of the first beam and its
endpoint angular deflection (or endpoint tangent to deformed beam shape).

Figure 1. Model of robot with two flexible arms.

3.2. Input–Output Linearization with Output Parametrization

It is necessary to split the state vector x into xa and xz according to (2). The claim on
the regularity of submatrix Ba derived from matrix B in (20) directly implies the splitting
of vector x:

xa =

[
ϕ1
ϕ2

]
xz =



δ11
δ12
δ13
δ21
δ22
δ23

 (23)
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The flexible double pendulum endpoint coordinates x2 and y2 are system outputs
y, and it corresponds with the length of vector xa. Input–output linearization can be
accomplished. Outputs are obtained using the following relations:

y =

[
x2
y2

]
= R2(x, Φ11, . . . , Φ23, Ψ11, . . . , Ψ23) (24)

The coordinates in the vector xa are now changed to the
[

x2
y2

]
end effector (double

pendulum endpoint) coordinates. Equation (24) is used to obtain
[

ϕ1
ϕ2

]
coordinates and

its time derivatives according to (6) and (7) to be substituted into (20). Following one
dimensional parametrization (typically endpoint trajectory, see (25)) ensures the endpoint
position and leaves free movement along this parameter. Then, the zero dynamics control
actions use this free parameter for realizing its unwanted movements.

y =

[
x2
y2

]
= P2(p(t)) (25)

The system inputs u =

[
u1
u2

]
are obtained from (12), but the following procedure

could also be used. Outputs functions (24) and their parametrization (25) are the second-
time derivate:

R̈2 =

[
ẍ2
ÿ2

]
=

∂R2

∂x
ẍ +

d
dt

(
∂R2

∂x

)
ẋ (26)

P̈2 =

[
ẍ2
ÿ2

]
=

∂P2

∂p
p̈ +

∂2P2

∂p2 ṗ2 (27)

In (26), the coordinates acceleration ẍ are substituted from (20), and outputs accel-
eration ẍ2, ÿ2 are replaced from (27). The control inputs are obtained from the resulting
alternative expression: [

u1
u2

]
=

(
∂R2

∂x
M−1B

)−1
(

∂P2

∂p
p̈ +

∂2P2

∂p2 ṗ2−

− ∂R2

∂x
M−1F− d

dt

(
∂R2

∂x

)
ẋ

) (28)

The right-hand side of (28) also depends on the state vector x and its time derivative
ẋ. Therefore, inputs could also be evaluated according to (12) in the form with only p and
xz coordinates.

The advantage of such a strategy is that flexible robot endpoint never leaves the
prescribed trajectory, and zero dynamics (xz) control actions are realized only along the
parameter, p.

3.3. Control of Flexible Robot

The task is to move the flexible robot endpoint along the circle arc, see Figure 2.
The circle centre is in the joint between the base frame and the first arm. The radius
is r in (29), and the circle parameter p is angular position measured from the robot’s
initial position.

r =
√

L2
1 + L2

2 + 2L1L2 cos
π

4
(29)
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Figure 2. Flexible robot endpoint trajectory.

At first, the arbitrary part of the control (wA) is prepared. According to (13), the input
is the second time derivative of parameter p. Design of arbitrary part of the control is based
on the parameter p behaviour. The initial position and end position have velocities and
accelerations selected to be zero. Such conditions satisfy a fifth-order polynomic in function
p, see Figure 3. Movement duration is one of the free parameters, but it will be determined
by the desired speed of the robot endpoint.

Figure 3. Behaviour of parameter p (endpoint angle) and its time derivatives ṗ and p̈.

3.3.1. Natural Motion Frequencies

Natural motion is performed only with arbitrary part of the control wA with the
duration of 1 s. When the robot reaches the end position, residual vibrations are measured,
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see Figure 4, left. It is evident that all system coordinates vibrate at just one natural
frequency ( fN = 4.2915 Hz), and this is verified by the frequency analysis in Figure 4,
right. For the different simulation times, the resulting natural motion frequency is the same.

Figure 4. Natural motion: residual vibrations. (a) Coordinates of time behaviour; (b) power spectra
density with significant Eigen frequency of 4.2915 Hz.

3.3.2. Invariant Control Parameters

The invariant part of the control is constructed according to (19). The optimization
process is performed to obtain the number of intervals fN

−1, natural frequency multipli-
cation factors ki for obtaining particular fi, phase φi, and corresponding amplitudes Ai.
The phase φi = −0.5π is same for all frequencies fi.

The objective function OF aims to fulfil the prescribed trajectory endpoint position
and velocity. Physical coordinates ϕi and modal coordinates δjk at end time should be
ideally equal to the trajectory endpoint static position and their time derivatives (velocities)
should be zero, see (30).

OF = a1 ∑
i
|ϕi(tEND)− ϕiEND|+

+ a2 ∑
j

∑
k

∣∣∣δjk(tEND)− δjkEND

∣∣∣+
+ a3 ∑

i
|ϕ̇i(tEND)|+ a4 ∑

j
∑
k

∣∣∣δ̇jk(tEND)
∣∣∣

(30)

The optimization process minimizes the objective function in (30), where a1, . . . , a4 are
variable weights, tEND is prescribed movement end time, ϕiEND and δjkEND are prescribed
movement endpoint coordinates.

The extensive optimization brings three frequency multiplication factors k1 = 1, k2 = 0.5
and k3 = 2.5, with resulting frequency fi = ki fN , the 16 intervals of fN

−1, and amplitudes
Ai shown in Table 1.
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Table 1. Amplitudes.

A1 A2 A3

1 −0.0256 0.0504 0.0050
2 −0.0251 −0.0502 0.0051
3 0.0253 0.0500 0.0050
4 0.0255 −0.0506 −0.0050
5 −0.0253 0.0523 −0.0050
6 −0.0264 −0.0494 −0.0050
7 0.0251 0.0514 0.0051
8 0.0263 −0.0407 0.0051
9 −0.0251 0.0050
10 −0.0252 −0.0051
11 0.0253 −0.0051
12 0.0251 −0.0050
13 −0.0253 0.0050
14 −0.0252 0.0050
15 0.0244 0.0050
16 0.0225 −0.0050
17 −0.0050
18 −0.0051
19 0.0051
20 0.0051
21 0.0052
22 −0.0050
23 −0.0050
24 −0.0051

3.4. Simulation

The applied control forces the robot endpoint to move along the desired trajectory.
The difference between the control methods (computed torques method and invariant
control) is in the behaviour of the zero dynamics movements from the end time of motion.
The computed torque method cannot effectively cancel out zero dynamics oscillations
after reaching the final position. The invariant control implies slightly different claim on
the system torques u1 and u2 than the computed torque method, but after reaching the
final time, the system is still. The influence of invariant control to the desired parameter p
behaviour is on Figure 5. The amplitude of the parameter, p, invariant control modification
is significantly low in comparison with the desired motion change.

Figure 5. Trajectory parameter p behaviour (upper part) for the 16 fN
−1 time interval and its invariant

control modification ∆p (bottom part).
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Figures 6 and 7 show the behaviour of u1 and u2 input torques, respectively. The u1
plot of Figure 6 shows the first input torque needed for satisfying the desired motion. There
are two curves, one is dedicated for the computed torques method, and the second one
corresponds to the torque claim of the invariant control. In the cut is the detailed behaviour
after the prescribed motion final time. Invariant control modifies input torque so that
there is no residual vibration of zero dynamics, contrary to the computed torque method.
The second part of Figure 6 graph ∆u1 shows the difference between computed torques
and invariant control u1 behaviour. The red curve represents modification of computed
torques u1, claimed due to the invariant part of the control, and the blue line shows the
residual (zero dynamics) vibrations of the system with control using the computed torques
method. The corresponding behaviour of u2 input torque is shown on Figure 7.

Figure 6. System input torque u1 behaviour for two types of control—computed torques and invariant
control and their difference.

The advantage of invariant control is that the system moves from one equilibrium
to another equilibrium position. The input torque is modified within 5% of the reference
torque (computed torque method serves as the reference). The movement within parameter,
p, is the only disadvantage of the invariant control, but it is of small amplitude, as shown
on Figure 5 (bottom).
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Figure 7. System input torque u2 behaviour for two types of control—computed torques and invariant
control and their difference.

4. Conclusions

The control of a flexible robot as a representative of underactuated system with zero
dynamics is performed using invariant control method. The basis of invariant control are
harmonic functions, which are used for feedforward control of particular flexible system.
The harmonic functions provide smooth motion as is needed for vibration cancellation
when reaching the desired position. Presented here is an invariant control of flexible
underactuated structure in connection with observing the desired trajectory.

The control strategy uses motion frequencies inspired by so-called natural motion.
The residual oscillations provide the natural motion frequency, which is used to cancel
out unwanted vibrations. The control input is separated into two parts. The arbitrary part
of the control input (wA) is designed to control the directly actuated part of the dynamic
system. Theinvariant part of the control (wI) is selected to steer the system zero dynamics
in the desired way. The invariant part of the control fulfils the invariant conditions with
respect to overall control input behaviour. The amplitudes of chosen periodic functions are
obtained by optimization process with the final position in objective function. The achieved
accuracy depends on the optimization process inputs, the trajectory length, and the number
of used frequencies. The control parameters are predicted using the optimization process
and resulting tracking accuracy is the same for the same trajectory.

The main aim of this work was to present the functionality of an invariant control
approach to a system with flexible elements. Further research will focus on the extension
of the invariant control by feedback to avoid the optimization process. The proposed
concept will be enhanced by the model predictive, wave-based or sliding mode control to
secure missing feedback. To fulfil the invariance conditions (16) the control strategy will
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be formulated in discrete form.. The presented control can be practically applied in serial
robotics, i.e., robotic manipulators or machine tools.
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