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Abstract: Stereolithography is known as one of the best Additive Manufacturing technologies in
terms of geometrical and dimensional precision for polymeric materials. In recent years, a lot
of studies have shown that the creation of ceramic resins, through a particular combination of
monomeric components and ceramic powders, allows to obtain complex shape geometries thanks to
the photopolymerization process. This review highlights the characteristics and properties of ceramic
resins, peculiarities of the ceramic stereolithography processes, up to the relationship between the
composition of the ceramic resin and the complexity of the post-processing phases. The comparison
of different studies allows outlining the most common steps for the production of ceramic resins, as
well as the physical and chemical compatibility of the different compounds that must be studied for
the good feasibility of the process.

Keywords: stereolithography; 3D printing; ceramic resin; additive manufacturing

1. Introduction

Additive Manufacturing (AM) encompasses a series of processes that enable the
making of three-dimensional (3D) parts by adding material, layer by layer, directly from
computer-based 3D model data. This alternative approach to conventional training pro-
cesses is attracting the interest of the ceramic industry in order to create geometrically
complex parts with an almost net shape without the use of expensive tools. Ceramic
materials are used in different fields, such as automotive, aerospace, biomedical, luxury,
electronics, casting molds and cores, thanks to their particular properties that make them
indicated for several applications: hardness, high strength, high fracture toughness, high
temperature and good thermal shock resistance. Implementation of AM technologies with
ceramic materials has been much slower than that for polymeric and metallic materials
due to the difficulty in making components with good resolution and mechanical prop-
erties comparable to conventional ceramic manufacturing processes [1]. Considering the
economic aspect, unlike conventional manufacturing processes used for ceramics such as
injection molding [2], the overall cost of manufacturing per piece with AM technologies is
independent of the geometric complexity of the component. This has brought the attention
of industries also in consideration of the fact that many applications of ceramic components
require low production volumes and therefore AM can become a particularly interesting
and economical solution to replace injection molding. A lot of studies report investigations
about different AM technologies application for ceramic parts manufacturing, such as fused
deposition modelling (FDM) [3], layer object manufacturing (LOM) [4], Stereolithography
(SLA) [5,6], and selective laser sintering (SLS) [7]. SLA process is the most interesting and
attractive in terms of geometrical and dimensional accuracy as well as surface quality, espe-
cially compared to all others AM technologies [8]. SLA process (Figure 1) converts liquid
materials into solid parts, layer by layer, by selectively curing them using a light source
in a process called photopolymerization. In the SLA process, light-reactive thermosetting
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materials called “resin” are used. When resins are exposed to certain wavelengths of light,
short molecular chains come together, polymerizing monomers and oligomers into rigid or
flexible solidified geometries. The parts produced, called green part, undergo a subsequent
UV curing cycle to completely solidify the outer surface of the part.
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Figure 1. Stereolithography process: (a) top-down and (b) bottom-up apparatus.

New applications to SLA processes have been investigated from 1990s, when several
studies on combination between ceramic powders and photo-sensitive resin leaded to
new characterizations of specific slurry whose features depend on chemical and physical
parameters of singular elements. The first limit in the production of ceramic slurry concerns
the rheological behavior. Rheological characterization allows a measurement of the viscosity
of the solution as a function of the shear rate. The ceramic solution for the SLA process is
closely related to the solid load of the composition. Ceramic resins are often non-Newtonian
fluids, so they are not characterized by a specific viscosity value, but there is a non-linear
relationship between the viscosity of the fluid and the shear rate (Figure 2).
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Figure 2. Flow curve. In rheology, the force is expressed as shear stress and the speed is expressed as
shear rate.

Griffith et al. [9] dispersed ceramic powders into an ultraviolet-curable solution with a
solid loading value around 45–55 vol.%. Rheological behavior needs to be investigated in
relation to parameters such as solid loading, dispersant, dye or other chemical components
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percentage. Low solid-loading ceramic slurry have been studied in relation to the high
shrinkage of the final part [10]. Bottom-up stereolithography systems (Figure 1b) are
characterized by an elevation of the part and consequently a separation from the resin
vat [11]. Through this movement, the surrounding resin can arrange on the bottom of
the previous polymerized layer. This step could be heavy for a too viscous slurry. For
top-down processes (Figure 1a), instead, a too viscous resin cannot achieve an efficient
recoating of the part, while the component is moving down. Different studies report that
an acceptable value of viscosity for a ceramic slurry is in a range of 2–5 Pa·s at shear rate of
30 s−1 [9,12–14].

2. Ceramic Resins for Stereolithography

Ceramic resins used in SLA 3D-printing needs several components to guarantee an
acceptable behavior in terms of rheology. Although the choice of diluent or dispersant
elements does not influence directly the dimensional or mechanical quality of final object, it
plays an important role in rheological characterization and in the solubility of solid particles
in resin [1,9,10,15,16]. Several studies investigated the correct proportion for each element:
photo-initiator [17], diluents [16], dispersants [16,18,19], ceramic powder [10].

2.1. Components of Ceramic Resins

Raw resins are characterized by a solution of three main components: monomer,
oligomer, and photo-initiator. In particular, photo-initiator (PI) can have two different
natures: cationic or free-radical [20]. The nature of ceramic powder brings to require specific
chemical properties of the different component used. The polarity of monomers/oligomers,
PI type, diluent, and dispersant fraction, need correct evaluations. The principal categories
of monomeric bases used for SLA resins are acrylates and epoxides. Distinctions between
these two classes are being made in relation to chemical reactions in which they are involved.
Acrylic monomers are characterized by a double carbon bond linked to a vinyl group; the
polymerization starts when a free-radical PI reacts with a double bond. Epoxydic monomers
react with a cationic PI, generating a chain reaction that brings to crosslinking. Acrylic and
epoxy monomers are the bases of two macro-categories of resins, respectively aqueous and
non-aqueous. Monomers are used not only to give particular characteristics to the final
object, but also because of their diluent behavior [6,21]. Monomers and oligomers have
got respectively a low and intermediate molecular weight and this parameter influence
the final viscosity of the slurry. The polarity of the monomeric/oligomeric base has great
importance for the correct dispersion of the solid phase [21]. Monomers and oligomers
are unable to aggregate spontaneously, the role of PI is to accelerate this chemical reaction
absorbing UV-light [6] (Figure 3).
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There are two different ways to catalyze the reaction, in the function of the nature of
PI [22]:

Free-radical PIs: when exposed to UV-light generates free radicals, which react
breaking the double bond carbons (C=C) of a particular molecule of monomer/oligomer;
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unpaired carbons react with other molecules carbons, starting to generate a long-chain
molecule. Macroscopically liquid resin polymerizes and evolve to solid state. This kind
of reaction is typical for acrylate-methacrylate bases. Two main types of free-radical re-
actions are known, α-cleavage and H-abstraction. In α-cleavage mechanism double bond
brakes and brings to formation of free radicals under the UV energy stimulation; instead,
in H-abstraction photo-initiator reacts when stimulated by energy source with a second
compound (a co-initiator) through hydrogen or electronical abstraction [20,21].

Cationic PIs: when exposed to UV-light generates Lewis or Bronsted acids through
photolysis, which attack intra-molecule bond starting a re-aggregating chain reaction. This
kind of phenomena take place with epoxy-based monomer. Lewis’s acids are generated
when a diazonium salt are stimulated by an ultraviolet source and the anionic phase
separate losing a halogen atom; the crosslinking starts when Lewis’s acids react with
cycloaliphatic epoxides [23]. Bronsted acids are formed from different bases of salts, such
as sulfur and phosphorous, compounds with an unshared pair of electrons. Typical onion
salts which generate Bronsted acids are Iodonium and Sulfonium salt [24].

In general, although free-radical photo-initiators are more diffused in ceramic resins
production because of their attitude with acrylic bases which are easier to use for a rheolog-
ical motivation, cationic photo-initiators do not need an inert atmosphere, because there are
no risks of process inhibition due to oxygen [24]. To give the ceramic resin a reduction in
viscosity, thinners are used. These, in addition to giving the resin a low viscosity, contribute
to the reduction of the refractive index (RI) [15]. Several diluents have been used in rather
high fractions to ensure a significant reduction in viscosity. Hinczewski et al. [16] found
that a 30 wt.% of thinner in an 80 wt.% alumina suspension leads to a three-fold reduction
in viscosity compared to the viscosity of pure suspension without diluent. Diluents also
help reduce the shrinkage of the polymeric phase, which is often cause by warping or
delamination [25]. Unlike dispersing compounds, diluents are often low molecular weight
monofunctional monomers, like 1,6-Hexanediol diacrylate (HDDA). Other diluents used
are water, 1-Octanol, Glycerol, Polyethylene glycol (PEG)+ [15]. Dispersants are generally
low volume, between 2–8% ceramic powder. The function of this kind of component is to
avoid a rapid sedimentation of the solid suspension, favoring the mixing phase in a correct
dispersion of the powder in solution. Another important role of dispersants is linked to the
tendency of particles to agglomerate. This problem could generate various difficulties in
the different phases of the process, from the covering of the vat during the passage between
two successive layers to the atypical characterization of the internal porosity of the final
part. The Wan der Waals attraction between particles increases with interparticle distance,
the role of the dispersant is to reduce this attraction through an adsorption mechanism [15].
The most commonly used ceramics such as alumina, zirconia, silica, have a hydroxyl group
on the surface of the particles which gives them a hydrophilic behavior that allows, based
on the size of the particles, to agglomerate easily [13].

2.2. Ceramic Resin Preparation

Several studies report the preparation method for a ceramic suspension for SLA
applications [17,18,26–35]. Although different parameters for processes as mixing or drying
have been used a common line guide can be found. The first preparation phase is powder
drying at temperature variable from 120 to 200 ◦C [26,34] for 6–10 h to remove all humidity
residuals. A solution of dispersant and ethanol (EtOH) allows correct physisorption
of dispersant to ceramic powder, through an ultrasonic mixing; successively a drying
at 40–60 ◦C [18,27,32,33] allows to remove EtOH, which is a volatile compound. The
correct dimension of ceramic particles is reached through sieving with a pre-selected mesh.
Monomer and diluent ratio needs to be selected in relation to solid loading of suspension;
a continuous stirring for 6–24 h [17,29,33,34] and a progressive addition of sieved powder
allows to obtain final ceramic slurry. Final degasification in the vacuum chamber removes
gas bubbles from suspension. Figure 4 resumes the suspension production process.
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3. Rheological Behavior of Ceramic Suspension

Several studies report that low solid loading suspensions are characterized by a shear-
thinning behavior [36–38], in contrast to high solid loading suspension, which shows a
shear-thickening behavior [25]. In literature, non-Newtonian fluids are often analytically
described by Herschel-Buckley’s model (Equation (1)):

τ = τY + K· .
γ

n (1)

where τ is the shear stress, τY is the yield stress of the material, K is the consistency index,
and n is the flow index. Flow index value represents fluid behavior: n = 1 represents
a Newtonian behavior, n < 1 represents a shear-thinning behavior, n > 1 represents a
shear-thickening behavior (Figure 5). Shear-thinning behavior is preferable for ceramic
suspension but for high solid loading suspension the need for compounds such as diluents
and dispersants increase.

Several studies [39–41] show a transition value of shear rate, over which the behavior
of the fluids transforms from shear-thinning to shear-thickening; this value is known in
literature as

.
γcr. This transition value is reached more easily for higher solid loadings [15].

Colloidal suspensions with high solid loading are often viscoelastic fluids, characterized
by a combined behavior between elastic responses to applied stresses and a pure viscous
flow. Viscoelastic characterization can be made through a sequence of dynamic oscillatory
measurements, with the purpose to find the stored/dissipated energy fraction through
an evaluation of the strain-stress feature [42]. Thixotropy is a property of some non-
Newtonian fluids, consisting of a variety of viscosity at a given shear rate over time;
a recovery of the original value of viscosity is reached when flow ceases. Evaluating
experiment of thixotropic behavior is reported by Goswami et al. [18]: they measured
apparent viscosity of the ceramic suspensions in the condition of upward and downward
shear rate sweep. In a shear rate variation cycle, quick restoration of apparent viscosity
denotes good stability of a suspension, and in general, the difference between the upward
cycle’s viscosity and downward cycle’s viscosity at a given shear rate can be measured
to evaluate the predominance of thixotropic behavior. A suspension is stable when the
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dispersion mechanism of the particles is efficient enough to limit or to avoid completely
flocculence, slowing down the sedimentation of solid parts. In SLA applications ceramic
suspensions need to be as stable as possible, to avoid differences in mechanical properties
of components having long process time. Solutions with a low solid fraction (ϕ < 1 vol.%)
are in the Stokes’ law validity field, according to which a single particle immersed in a
fluid undergoes actions of viscosity and gravity at the same time. Stokes’ law has been
even manipulated for suspension with high solid fractions, but his validity for colloidal
suspension is not anyhow guaranteed [43]. Gravitational actions are more negligible for
colloidal suspensions as finer the particles are; this situation is described by Brownian’s
motion, according to which viscosity is the main action on suspended particles. Brownian
motion, diffusion, and other phenomena favor the aggregation of particles, the creation of
large particles, and sedimentation [15]. Dispersants have an important role not only for
rheological motivation but also in guaranteeing the stability of the suspension. In particular,
through an adsorption mechanism, dispersants generate a series of hydrophobic chains
around particles, which contrast themselves avoiding aggregations. Evaluation of the
stability of suspensions can be made by measuring the level of a sedimented part after a
long period of stasis [41,44].
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4. Ceramic Suspensions and Effects on the Process

Effects of suspension’s solid loading influence several aspects of the process. Primarily
parameters such as yield stress or flow index change, rheological behavior is predominantly
influenced by the number of solid particles in suspension. In ceramic suspension for
SLA, maximum solid loading possible is often desired for different reasons, from the ease
of green parts post-process to a more controllable shrinkage effect. Krieger-Dougherty
analytical formulation is frequently used to obtain a model for relative viscosity (ηr) of
suspensions (Equation (2)):

ηr =
ηs

ηd
=

(
1− φ

φm

)−B·φm

(2)

where ηs and ηd are respectively viscosity of suspension and dispersion medium, φ is the
solid loading of suspension, φm is the maximum solid loading obtainable, B is the Einstein
coefficient. B and φm depend on the shape and size of particles, so a fit model to determine
them is necessary [17,26]. In literature, differences between Krieger-Dougherty model and
experimental data are quite low, demonstrating a good reliable of analytical formulation.
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Several studies confirm a raise of relative viscosity with solid loading incrementation, in
addition to a deviation from Newtonian behavior [13,18,19,26,28,44,45].

It is well known that particle size in ceramic suspensions is one of the most influential
aspects of fluid behavior and optical characterization. Larger particles are more difficult
to disperse in monomeric base than finer ones, it is due to a lower surface energy (lower
specific surface). Previously, the effect of particle size on suspension’s stability has been
investigated: Wan der Waals interactions and Brownian’s motion cause an agglomeration of
particles as finer they are. Ding et al. [46] studied effects of nanoparticles (40 nm) addition
to micro-particles (15 µm) silicon carbide (SiC) suspension, an interesting result has been
found. The viscosity of suspensions is heavily influenced by nano-particles addition,
while curing thickness showed a decrease. The influence of nano-particles addition on
stability of suspension is one of the most interesting aspects, because experimental tests
on sedimentation behavior showed a positive effect. Nanoparticles are arranged in the
interstices of micro-particles, making agglomeration, and consequently sedimentation,
more difficult. The creation of bimodal suspensions has a positive effect also in delaying
shear thickening behavior [47].

When a light source hits an object, different optical phenomena take place. The
scattering effect (Figure 6) is usually matched with absorption in energy transformation of
the source, competing for the attenuation light beam [48].
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Optical phenomena in which SLA ceramic suspensions are involved depend on dif-
ferent aspects: solid loading, particle size, RI of particle, RI of the medium, PIs and dyes
percentage, energy dose. The scattering effect occurs every time a solid particle dispersed
in a medium deviates a beam. A common approach is to consider the scattering coefficient
which quantifies the decrease of penetration depth (Dp) due to light deviation of particles.
The absorption model introduced by Tomeckova and Halloran [50] considers the two
different contribute of scattering effect and absorption in evaluating the reciprocal of Dp
(Equation (3)):

1
Dp

= S + A− φ·A = Ad (3)

where S is the scattering coefficient, which depends on particles size and distribution, the
difference between medium RI and particles RI. This coefficient is the reciprocal of scattering
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length, which is defined as the dimensional value over which photon propagation becomes
randomized [51]. φ is the volume fraction of ceramic, A is the absorption coefficient,
which depends on the concentration and molar extinction coefficient of inert dyes and
PIs (or other non-inert optical compounds), and Ad is the attenuation coefficient. In
highly dispersed ceramic suspensions scattering effect has a great impact in deviation
of light direction, modifying cure depth and penetration depth in relation to the square
difference between RI of particles and medium ∆n2 =

(
np − nd

)2 [52]. Many powders are
characterized by a high value of RI, so they have a short scattering length; combination with
modified mediums with a higher refractive index is practically advantageous. However,
refractive indexes are not constant in all spectrums of wavelengths, so a correct evaluation
through spectrophotometry of materials allows establishing the real RI contrast in a specific
stereolithographic application. Huang et al. [53] studied optical behavior of Si3N4 powders
after oxidation at different temperatures; oxidation leads to a decrease of RI of particles
through forming of amorphous phases, so a minor RI contrast with the medium is obtained.
Table 1 reports RIs and RIs contrast with the medium of slurries prepared for some studies
available in the literature.

Table 1. Refractive Index of most commons ceramic powders used for stereolithography. λ is the
wavelength of the irradiation.

Ceramic Powder Monomer PI Particle
Size (µm) RI ∆RI λ (nm) Ref.

Alumina

Acrylates Irgacure 651 0.8–4.4 1.7 0.16–0.23 351–364 [35]
PEAAM 1 + HDDA 2 DMPA 3 0.5–2.3 1.787 0.299–0.331 365 [32]
Acrylamide solution +

HDDA - 0.5 1.7 0.16–0.24 - [12]

HDDA - - 1.7 0.3 364 [54]
HDDA + PTTA 4 TPO 5 0.4–0.7 1.76 0.3 405 [29]

HDDA - 0.34–0.46 1.7 0.282–0.312 366 [55]

Zirconia

Acrylates Irgacure 651 4.2 1.85 0.31–038 351–364 [35]
PEAAM + HDDA DMPA 0.65 2.249 0.761–0.793 365 [32]

HDDA + PTTA + Acrylic - 0.2 2.27 1.5 - [56]
HDDA + TMPTA + IBOA 6

+ HEA 7 + HEMA 8 + PHEA
9 + IDA 10

TPO 1 2.2 0.682–0.758 405 [36]

Silica

Acrylates Irgacure 651 3.5 1.5 0.03–0.04 351–364 [35]
PEAAM + HDDA DMPA 2.25 1.564 0.076–0.108 365 [32]

HDDA - - 1.56 0.16 364 [54]
PEAAM + HDDA DMPA 2.25 1.564 0.076–0.108 353 [30]

HDDA - 2.29 1.56 - 366 [55]

Silicon nitride
Lithanit 720 11 - - 2.0167 0.5537 460 [57]

HDDA - 0.44 2.1 0.818 366 [55]

Silicon carbide PEAAM + HDDA DMPA 12.25 2.553 1.065–1.097 467–691 [32]

Lead zirconate
titanate (PZT)

HDDA Irgacure 184 1.68 2.5 1.04 350 [58]
HDDA - - 2.4 1 364 [54]

β-Tricalcium
phosphate

(β-TCP)
HDDA + OPPEA 12 TPO 0.7 1.627 0.103 405 [41]

Barium Titanate
(BT) HDDA Irgacure 184 1.27–2.09 2.4 0.96 350 [58]

1 Modified polyether acrylate, 2 1,6-Hexanediol diacrylate, 3 2,2-dimethoxy-1,2-phenylacetophenone, 4 Ethoxy-
lated pentaerythritol tetraacrylate, 5 2,4,6 Trimethylbenzoyl diphenylphosphine oxide, 6 isobornyl acrylate,
7 2-hydroxyethyl acrylate, 8 2-hydroxyethyl methacrylate, 9 2-phenoxiethyl acrylate, 10 isodecyl acrylate,
11 Commercial resin, 12 2-([1,1′-biphenyl]-2-yloxy) ethylacrylate.
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Known scattering theories such as Rayleigh-Gans or Mie are based on the assump-
tion that scattering takes place in very dilute suspensions, so they are not applicable to
high solid loading ceramic suspensions for stereolithographic applications. Variability
of the phenomenon, due to different aspects, makes analytical treatments difficult, so a
semi-empirical method is preferable [54,59]. Gentry et al. [60] investigated variation in
polymerization geometry due to scattering and absorption effect. They found that the
application of parameters as critical energy dose and attenuation factor in each direction to
quasi Beer-Lambert law leads to a correct evaluation of cure depth and cure width. Critical
energy dose is not influenced by volume fraction or in general by scattering effect, while the
geometry of absorbing area is strongly influenced by RI contrast and incident energy dose.

From the point of view of optical characterization, particle size is one of the most
important aspects which needs to be evaluated. Larger particles are involved in a less
frequent deviation of the light beam, scattering coefficient is consequently lower, cure depth
increases. Small particles, instead, cause a higher horizontal broadening in penetration
shape, removing suitable energy to vertical penetration. Ding et al. [61] demonstrated
this behavior by curing a ceramic suspension of SiC powder with different particle sizes
suspended in a hexanediol diacrylate (HDDA) base and measuring the resulting cure
depth. Absorbance value increase with particle size, a reduction in inter-particle size
leads promote an easier absorption of UV wavelengths [62]. Deviation of light beams
in polymerization causes an increase in the horizontal amplitude of energy distribution,
consequently, the cure width in case of scattering effect is larger than that without scattering.
The curing profile of raw resins is narrow, while in ceramic suspensions broadening
profile occurs. Cure depth suffers a decrease for a series of losses in energy, due to light
scattering or absorbing. One of the first consequences in cure with increase is the loss
of dimensional accuracy, precision scanning techniques are insufficient to ensure a good
quality of polymerization. Modification of particles size, solid loading or energy dose, PI’s
and/or dye’s concentration [63], are some of the possible ways to improve final part quality.
Cure width can have a greater entity than laser beam radius as shown in Figure 7. Several
studies demonstrated this relation measuring cure depth reached when different energy
doses are impressed to slurries with different particle sizes [34,35,51,59,62–64]. Variation of
energy dose is not interesting only for cure depth modification, but even for the particular
behavior on horizontal plane.
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5. Post-Processing of Ceramic Green Parts

Post-processing is one of the most critical steps of ceramic stereolithography produc-
tion. Different materials, solid loadings, or particle sizes give to post-processing a variability
that needs a careful evaluation, from the fragility of green parts in support removal to the
final shrinkage, porosity, and defects of the sintered part. Green parts are defined as the
polymerized object characterized by a mixture of the polymeric base and ceramic in solid
suspension trapped in a polymeric matrix. Removing objects from the building platform
is often a complicated step, in reason of the fragility of the green part. Optimization of
parts positioning on building platform and the addition of a separate interface between
supports and building platform simplifies this delicate operation. Supports removal could
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even cause defects on the object’s surface, but the positioning of them can be evaluated: if
the object contains surfaces on which dimensional precision is not required and they are
in a good position to support effectively the object, supports can be positioned on these
surfaces. Otherwise, a further finishing phase is necessary in order to guarantee a correct
dimensional precision of the part. The most important steps of post-processing of ceramic
green parts are debinding, through which polymeric binder is removed, and sintering, a
high-temperature treatment that confers to ceramic object better mechanical properties
(Figure 8).
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5.1. Debinding

The debinding process has the function to remove polymer binder from the green
body, leading to obtainment of a ceramic component with poor mechanical properties, high
internal porosity, and low density. It is characterized by an environmental atmosphere of
full argon [66], air [67], or vacuum [33]. Some studies [31,68,69] used a hybrid debinding
process, characterized by vacuum debinding at first, which guarantees an easier control
of temperature rate and evacuation of organic fumes, an air debinding subsequently. The
atmosphere of the process influences different features of the objects, from microstructural
and mechanical properties to physical behavior. Li et al. [70] compared these effects on alu-
mina samples processed under vacuum, argon, and air atmosphere. The characterization
has shown that debinding in air leads to a better mechanical behavior, while microstructure
showed differences compared to the samples treated in an argon atmosphere or under vac-
uum. This is probably due to the thermodynamical processes which take place during the
organic decomposition: exothermic reactions occurred under air atmosphere, endothermic
reactions under vacuum, and argon atmospheres. Wu et al. [33] demonstrated the increase
of relative density in samples treated with debinding in vacuum atmosphere, with respect
to samples processed with air atmosphere.

5.2. Sintering

Being a post-treatment shared between the most common ceramic manufacturing pro-
cesses, sintering has the purpose to improve the mechanical properties and microstructure
of the object set free from the polymeric binder. As in debinding treatments happens, even
in sintering, the final object is characterized by a volumetric shrinkage quite pronounced,
but being a not fully controlled process, anisotropies in shrinkage can arise [71]. Different
from debinding, during sintering treatment there is not a decomposition of an organic
phase, consequently, no issues in relation to evacuation of fumes from the core of the
object occur and the temperature rate can be higher in respect to debinding process. Even
in sintering working atmosphere and temperature influence mechanical properties and
microstructure of components. Li et al. [72] investigated the variation of mechanical and
microstructural behavior of alumina 3D-printed samples, in relation to the raise of sintering
temperature under argon atmosphere. Mechanical properties increased with sintering
temperature, while the microstructure of alumina samples showed different interesting
results. Internal pores present in all investigated samples are due to fumes evacuation
typical of debinding process, while the average grain size raises with process temperature
according to the diffusion mechanism which triggers. Another aspect that needs attention is
the increase of interlayer spacing with sintering temperature, which is linked to volumetric
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shrinkage and can constitute an important issue if combined with internal delamination in
terms of mechanical resistance. Delamination phenomena can be reduced with temperature
rate in debinding and sintering processes, but it is impossible to eliminate completely.

6. Effects of Post-Processing on Geometrical, Physical and Mechanical Properties
6.1. Volume Shrinkage and Interlayer Spacing

A major part of ceramic manufacturing technologies is distinguished for the character-
ization of volumetric shrinkage, but not all of them lead to the loss of a polymeric binder. In
SLA applications the maximum value of ceramic powder in proportion to the monomeric
base is wished, in reason to minimize as possible the post-treatment volumetric shrinkage.
Warping effects can occur during post-curing and thermal post-treatment (Figure 9).
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Geometric and dimensional quality of a manufacturing process is evaluated in function
of the respect of requirement also considering the post-treatment needed. Consequently, a
correct evaluation of the shrinkage in the three different axes is useful to provide characteri-
zation and to have as possible complete knowledge of the accuracy of the full manufacturing
process. Anisotropies generated from volumetric shrinkage and delamination derived from
pyrolysis are two of the main factors which concurs to modify the space between layers.
Li et al. [74] investigated the behavior of interlayer spacing in relation to the temperature
reached in the sintering process. The first decrease of interlayer space influenced by pre-
vious volatilization of polymeric binder is followed by an increase probably due to the
predominant impact of shrinkage with the rise of temperature. Pan et al. [75] highlighted
the decreasing trend of the interlayer spacing due to the increase of sintering holding time,
demonstrating the importance of this parameter in promoting adhesion between layers.

6.2. Dimensional Accuracy for Ceramic Resins

One of the most important aspects from a technological point of view is the dimen-
sional accuracy of the complete process. SLA process gives usually good dimensional
accuracy, but post-processing causes the loss of the polymeric binder, and consequently,
volumetric shrinkage leads to an uncertainty in the final dimension of printed parts. Dif-
ferent aspects can influence the proportion of volumetric loss. Debinding and sintering
phases give rise to volumetric shrinkage but each for different physical reasons. In de-
binding treatment, shrinkage is the consequence of the mass loss due to decomposition
of polymeric binder, so it can be expected a range of dimensional value for the final parts
through an evaluation of powder fraction. In the sintering phase, other aspects influence
the volumetric shrinkage occurring, such as the medium size of powder particles or final
temperature, and anisotropies are often expected [76]. Correlation between particle size
and maximum sintering temperature is important for the physical behavior of diffusion
phenomena triggered in thermal treatment [77]. Zhang et al. [78] showed that fine particles
and sintering additives combined in the resin mixture cause an increase of volumetric
shrinkage. Table 2 reports the values of volumetric shrinkage for different materials used
for SLA applications.
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Table 2. Evaluation of final shrinkage for ceramic resins used in literature.

Material D50 (µm)
Sintering
Dwelling
Time [h]

Maximum Sintering
Temperature [◦C]

Powder
Fraction

Shrinkage
[vol.%] Ref.

Alumina 1.05–10.34 2 1600 50 vol.% 12.9–21.43 [78]

Alumina 0.18 - 1650 50 vol.% 19.4–22.6 [79]

Zirconia (3Y-TZP) 0.6 2 1500 40 vol.% 25.0–27.3 [80]

Zirconia (3Y-TZP) 0.3 2 1500 49–50 vol.% 34–36 [81]

Zirconia (3Y-TZP) 0.6 2 1400–1600 40 vol.% >25 [82]

Zirconia (8YSZ) 0.2 1 1500 40 vol.% ~20 [56]

Zirconia (YSZ) 0.2 1 1500 40 vol.% ~20 [56]

Zirconia (PSZ) 0.82 5 1480 53 vol.% 21.7–22.3 [83]

Zirconia ~0.2 2 1600 45 vol.% 18.97–19.48 [84]

Zirconia (3YSZ) 0.318 1 1550 40 vol.% 23.15–23.8 [85]

β-Tricalcium phosphate (β-TCP) 0.7 2 1000 52 vol.% 8 [41]

Calcium Phosphate (CaP) 3.44 2 1100 50–63 wt.% 27.26–29.54 [86]

Hydroxyapatite (HA) 12 3 1100 45 wt.% 33.0–39.5 [87]

(Cf)/SiC 7 1 1650 21 vol.% 22.72–26.79 [88]

In Zirconia resins high solid loadings are usually heavy to obtain, not only for the
optical compatibility with the monomeric mixture but also for rheological reasons. Conse-
quently, dimensional shrinkage in the range of 18–36% is expected for relatively high solid
loadings and particle sizes typical for stabilized powders. Alumina resins allow a wider
range of solid loadings, thanks to a better rheological and optical compatibility with the
organic phase, but usually high solid loadings are preferred in order to reduce probability
in crack formation during post-treatment.

6.3. Bulk Density and Mechanical Properties

Sintering temperature influences the physical properties of ceramic components, first
of all, bulk density and porosity. Chi et al. [89] demonstrated that porosity decrease with
sintering temperature increase; this behavior is due to lowering of viscosity of liquid
phases, which fill empty pores and confer a higher density to the component. Different
liquid phases with different physical properties are generated in relation to the sintering
temperature and holding time. Consequently, also mean pore size decreases with sintering
temperature [90]. As a consequence of the increasing bulk density and decreasing of
porosity, flexural strength and hardness increase with sintering temperature and holding
time. Reduction of interlayer spacing improves the mechanical strength of components,
and it can be reached in a sufficiently high range of sintering temperature [74]. An et al. [79]
compared the hardness and microhardness of ceramic compounds manufactured with
additive technologies and with traditional manufacturing methods. The hardness of
ceramics obtained through additive manufacturing technologies seems to be higher in
respect to hardness obtained with other traditional technologies. Another important aspect
of mechanical characterization of ceramic manufacturing is the creep resistance: creep
deformation decreases with sintering temperature increase [91], giving to material a better
thermal-stress resistance.

7. Ceramic Resins Commercially Available

Nowadays a lot of ceramic resin for stereolithography applications are available.
The preparation of ceramic suspensions requires a high level of knowledge, as well as
specific instruments. For specific fields of industry and research, such as process details
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investigations, or educational fields, commercial resins offer a good opportunity in terms
of costs, time and skills required. Green body obtained by stereolithography processes
are ceramic-polymer composites, with physical and mechanical behaviors which can be
interesting to investigate. In Table 3 some examples of ceramic resins commercially available
and their main applications fields are reported.

Table 3. Commercial resins available in marketplace.

Resin Ceramic Component Application Fields Manufacturer

Porcelite® Porcelain Automotive, Aerospace, Engineering Tethon 3D 1

High Alumina Alumina Automotive, Aerospace, Engineering Tethon 3D

AdmaPrint A130 Alumina Electronics, Medical Admatec 2

LithaLox HP 500/350 Alumina Electronics, Textile, Thermal processes Lithoz GmbH 3

AdmaPrint Z130 Zirconia Electronics, Jewelry Admatec

LithaCon 3Y 210 Zirconia Cutting tools, Metal forming, Medical Lithoz GmbH

C900-Flex/ALN Aluminium Nitride Electronics, Thermal processes 3DCeram Sinto 4

LithaNit 770 Silicon Nitride Electronics, Medical Lithoz GmbH

C900-Flex/CORD Cordierite Optical parts for aerospace, Metrology 3DCeram Sinto

C900-Flex/HA Hydroxyapatite Medical 3DCeram Sinto

AdmaPrint B130 Hydroxyapatite Medical Admatec
1 (Omaha, NE, United States), 2 (Alkmaar, The Netherlands), 3 (Wien, Austria), 4 (Limoges, France).

But in usage of commercial resins, one of the first issues is the compatibility between
resin and the optical system used. Unknowledge of the exact nature of chemical com-
pounds does not allow to ensure good feasibility of process, because the wavelength of
the light source could be not perfectly compatible. Another problem is the unavailability
of suspension solid loading on commercial datasheets, bringing two main consequences.
First, it is not predictable whether the printer used can manage resin with unknown viscos-
ity, issues in layers recoating can occur. Secondly, the probability of cracks formation in
post-processing increases when percentages of mass losses in specific temperature ranges
during debinding are uncertain. Usage of commercial resins in experimental studies should
be matched to previous material analyses, in order to predict behavior in the different steps
of production process, such as rheological measurements, stability evaluations, thermal
analysis, and study on granulometry.

8. Conclusions

In this review, various aspects of the stereolithography process have been studied to
highlight the peculiarities that make it ideal for the production of ceramic components.
Unlike classic SLA applications, in ceramic stereolithography the basic materials are non-
Newtonian fluids, therefore a previous characterization of the resins, in terms of stability,
thixotropy, shear thickening-thinning behavior, allows to avoid various problems that
could occur during production, such as agglomeration or viscosity increase. Extinction
phenomena were presented in terms of dimensional quality and geometric precision, in
particular, the importance of the difference RI between ceramic powder and monomer
base was explained. In ceramic manufacturing technologies, post-treatment often includes
debinding and sintering processes. The removal of the binder is the most critical step
of the post-treatment, due to defects or delamination that could be generated during the
evacuation of the polymer units. Sintering gives mechanical consistency to components,
reducing internal and external porosity and increasing the density of parts. The solid
loading of a resin base and the post-treatment processes are closely related, it is necessary
to study the volumetric shrinkage of the final parts, in order to guarantee a free cracking
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component. Preparation of powder suspensions can be considered a great advantage in
terms of arrangement between the geometrical capability of stereolithography processes
and the obtainment of components with good mechanical or physical properties, not
only for ceramic components, but also for bio-compatible materials and metals. Usage of
different powder materials can open ceramic production fields to new borders of industry.
An important aspect that needs to be investigated is how to make this kind of technology
more sustainable, starting from chemical compounds used for resin preparation, until the
analysis of the environmental impact of post-processing operations.
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