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Abstract: In this paper, we propose a fully convolutional neural network based on recursive recurrent
convolution for monaural speech enhancement in the time domain. The proposed network is an
encoder-decoder structure using a series of hybrid dilated modules (HDM). The encoder creates
low-dimensional features of a noisy input frame. In the HDM, the dilated convolution is used to
expand the receptive field of the network model. In contrast, the standard convolution is used to
make up for the under-utilized local information of the dilated convolution. The decoder is used to
reconstruct enhanced frames. The recursive recurrent convolutional network uses GRU to solve the
problem of multiple training parameters and complex structures. State-of-the-art results are achieved
on two commonly used speech datasets.

Keywords: speech enhancement; time domain; hybrid dilated convolution; recurrent convolution

1. Introduction

Speech enhancement refers to the technology of removing or attenuating noise from
noisy speech signal and extracting useful speech signal. Speech enhancement technology is
widely used in automatic speech recognition, speech communication system, and hearing
aids. Traditional monaural speech enhancement methods include spectral subtraction [1],
Wiener filtering [2], and subspace algorithm [3].

In the past few years, supervised methods based on deep learning have become
the mainstream for speech enhancement. In these supervised methods, time-frequency
(T-F) features of noisy speech are extracted first, and the T-F features of clean speech are
extracted to represent the target. Training targets can be divided into two types; one is the
masking-based, such as the ideal binary mask (IBM) [4] and the ideal ratio mask (IRM) [5].
The other is the spectral mapping-based, such as the log power spectrum feature used
in [6]. Methods [5,7,8] based on T-F domain have certain limitations. Firstly, these methods
require preprocessing, which increases the complexity. Secondly, these methods usually
ignore the phase information of clean speech and use the noisy signal phase to reconstruct
the time domain signal. Some previous studies have proved that phase is very important
to improve speech quality, especially in low SNR [9].

For the above reasons, researchers have proposed a variety of speech enhancement net-
works based on time-domain [10–12]. Fu et al. [13] proposed a fully convolutional network
and proved that the network is more suitable for speech enhancement in the time-domain
than a full connection network. Then, a text speech model named WaveNet [14] directly
synthesizes the original waveform. Rethage et al. [15] proposed an improved WaveNet
model for speech enhancement based on WaveNet, which uses residual connection and
one-dimensional dilated convolution. After that, Pandey et al. [16] combined a time convo-
lution module and codec for speech enhancement in the time-domain, in which the time
convolution module also uses one-dimensional dilated convolution.
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One-dimensional dilated convolution can improve the receptive field of the network
model. However, when one-dimensional dilated convolution is used for time-domain
speech enhancement tasks, there is a problem as local information cannot be fully utilized.
The reason is that when the dilation rate is greater than one during the convolution, holes in
dilated convolutions lead to local information loss. Therefore, a hybrid dilated convolution
module is proposed to combine dilated convolution with conventional convolution.

The end-to-end speech enhancement algorithm directly processes the original wave-
form of the speech, avoiding the low calculation efficiency and “phase inconsistency”
problems based on the time-frequency domain-speech enhancement algorithm and also
achieves a better enhancement effect. However, whether based on end-to-end or non-end-
to-end speech enhancement algorithms, these models have a large number of trainable
parameters. Recently, recursive learning mechanisms have been applied to a variety of
tasks, such as single-image de-rain [17] and image super-resolution [18]. The principle of
recursive learning is to train the network recursively using the same network parameters,
similar to a mathematical iterative process in which the entire process of mapping the
network model is handled in several stages. Thus, through recursive learning, the network
parameters can be reused at each stage, and we can explore the network at a deeper level
without using additional parameters. Inspired by recursive learning, this paper proposes a
speech enhancement algorithm based on combining a hybrid dilated convolution module
and recursive learning. The contributions of this article can be summarized as:

1. Proposed hybrid dilated convolution module (HDM), which consists of dilated con-
volution and conventional convolution;

2. Proposed recursive recurrent speech enhancement network (RRSENet), which uses a GRU
module to solve the problem of multiple training parameters and complex structures;

3. Extensive experiments are performed on dataset synthesized by TIMIT corpus and
NOISEX92, and the proposed model achieves excellent results.

The remainder of this paper is structured as follows. Section 2 describes the related
work on speech enhancement, RNN, and dilated convolution. Section 3 formulates the
problem and proposes the architecture. Section 4.3 presents the experiment settings, results,
and analysis. Some conclusions are drawn in Section 5.

2. Related Work
2.1. Speech Enhancement

Spectral subtraction, Wiener filtering, and subspace algorithm are the three most classic
traditional monaural speech enhancement methods. Spectral subtraction methods [1,19–22]
firstly obtains the noise spectrum to be processed by estimating and updating the noise
spectrum operation in the non-speech segment. After that, the enhanced speech spectrum
will be estimated through the subtraction operation. Finally, the speech spectrum is con-
verted into a speech waveform. Although the spectral subtraction method is relatively
simple, there will be problems such as voice distortion and music noise, and this type of
method is suitable for the case of stable noise. The effect of suppressing non-stationary
noise is relatively poor.

The Wiener filtering algorithms [2,23–26] originated during the Second World War.
It was proposed by the mathematician Norbert Wiener to solve the military air shooting
control problem. It is mainly used to extract the required clean signal from the noisy
observation signal. The Wiener filtering algorithm has a history of nearly 80 years, and
its ideas have undergone many variations after decades of development. The essence of
the Wiener filtering algorithm is to extract the signal from the noise and use the minimum
mean square value of the error between the estimated result and the true value of the signal
as the best criterion. Therefore, the Wiener filter is the optimal filter in the statistical sense
or the optimal linear estimator of the waveform. However, the Wiener filter method has a
general ability to handle non-stationary noise, which will cause voice distortion.
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The principle of the subspace algorithms is to decompose the vector space of the
observed signal into a signal subspace, a noise subspace, and estimate the clean speech by
eliminating the noise subspace and retaining the signal subspace. The process of subspace
decomposition is to perform KLT transformation on the noisy speech signal, then set the
KLT coefficient of the noise to 0, and finally obtain the enhanced speech through the inverse
KLT transformation. The subspace method generally does not cause the problem of voice
distortion and can maintain the quality of the enhanced voice. Its disadvantage is that it
removes less noise and the enhancement effect is also not very good.

Compared with traditional speech enhancement algorithms, the algorithms [27–31]
based on deep learning have obtained a relatively obvious improvement in performance
and effect. With the development of deep neural network (DNN), which has promoted
the rapid development of related research in the field of speech enhancement, researchers
have proposed many DNN models to solve the problem of speech enhancement [28].
Computational inefficiencies and phase inconsistencies exist in non-end-to-end algorithms,
so the researchers performed speech enhancement directly in the time domain. Most of the
end-to-end algorithms use one-dimensional dilated convolution to improve the network’s
extraction of contextual information from the original speech waveform, and to a certain
extent, the enhancement effect of the network model is improved.

2.2. Recurrent Neural Network

Recurrent neural networks (RNNs) [32] are excellent for sequence information pro-
cessing. The core is to use the current information of the sequence and the current output
information to infer the information of the next output, which can improve the prediction
of the output. In Deep neural networks (DNNs) [29–31] the assumption of independence
between input and output features is a very poor assumption for most tasks. In the RNN,
the neural unit operates on the elements of the input sequence in the same way, that is, the
current input and the previous output of the neuron are combined as the current output.
RNN can reduce the complexity of the network model and facilitate training by using the
states of the current neuron and the states of the previous neurons. Given the characteristics
of RNN, it is an indispensable tool when solving natural language processing tasks, such
as speech recognition, speech modeling, and machine translation. Short-term memory
affects the performance of RNN when dealing with longer text or speech, and RNN loses
information at the beginning of each sequence. Long short-term memory (LSTM) [33] and
GRU [34] with a simpler structure were created to solve the short-term memory problem
of RNN, and these two network structures are more commonly used when dealing with
sequence tasks. Both of these network structures have a gate mechanism, also known as
a memory mechanism, which can regulate the flow of information and control whether
information is ignored in the process of neural unit transmission [35].

2.3. Dilated Convolution

In the traditional convolutional neural networks, the context information is usually
augmented by extending the receptive field. One way to achieve this goal is to increase
the depth of the network model and use a deeper network. Another method is to enlarge
the size of convolution kernel. They will both raise the computational burden and the
training time of the network model. Therefore, Yu and Koltun first proposed a multi-scale
context aggregation dilated convolution model [36]. The original proposal was to solve the
problem of image semantic segmentation because the context information between images
is very helpful for object segmentation. Ye et al. [37] and S Pirhosseinloo et al. introduced
dilated convolution into their algorithms.

3. Model Description
3.1. Problem Formulation

Given a single-microphone noisy signal y(t), the target of single-channel speech
enhancement is to estimate the target speech x(t). This paper focuses on the additive
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relationship between the target speech and noise. Therefore, the noisy signal y(t) can be
defined as

y(t) = x(t) + n(t) (1)

where y(t) is the time-domain noisy signal at time t, x(t) is the time-domain clean signal at
time t, and n(t) is the time-domain noise signal at time t.

3.2. Hybrid Dilated Convolution Module (HDM)

In traditional convolutional neural networks, the context information is usually aug-
mented by extending the receptive field. One way to achieve this goal is to increase the
depth of the network model and use a deeper network. Another method is to enlarge
the size of the convolution kernel. They will both raise the computational burden and
the training time of the network model. Therefore, Yu and Koltun [36] first proposed a
multi-scale context aggregation dilated convolution model. The original proposal was
to solve the problem of image semantic segmentation, because the context information
between images is very helpful for object segmentation.

Figure 1a is a one-dimensional convolutional neural network with three conventional
convolution layers. The expansion rate r of each layer is 1, Figure 1b is a one-dimensional
convolutional neural network with three dilated convolution layers. The expansion rates
r of each layer are 1, 2, and 4, respectively. The top blue unit is regarded as the unit of
interest, and the other blue units represent its receptive field in each layer. Compared with
the conventional convolution, the dilated convolution expands the receptive field of the
convolution kernel without increasing the parameters.

Figure 1. Conventional convolution and dilated convolution.

As shown in Figure 2, the hybrid dilated convolution module(HDM) consists of three
parts: input 1 × 1 convolution, feature fusion convolution, and output 1 × 1 convolution.
The input 1 × 1 convolution scrolling reduces the number of channels to half, reducing
the number of model parameters. In feature fusion convolution, dilated and conventional
convolution outputs are directly added one by one according to the elements. In addition,
both dilated convolution and conventional convolution keep the number of channels
unchanged. The output 1 × 1 convolution doubles the number of channels, so that the
input and output of HDM channel number are consistent. Finally, the output is combined
with the input of the module to form a residual connection [38], which makes the network
training easier.
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Figure 2. Hybrid dilated and conventional convolution module.

3.3. Recursive Learning Speech Enhancement Network (RLSENet)

In order to improve the performance of speech enhancement, deeper and more com-
plex networks are generally required, which usually leads to more training parameters.
Therefore, multiple stages can deal with the speech enhancement problem. A conventional
multi-stage solution is the addition of multiple sub-networks, but it will inevitably in-
creased network parameters and easy overfitting. In contrast, sharing network parameters
through multiple stages and using inter-stage recursive learning allows exploring the
deeper network for speech enhancement without increasing parameters.

The recursive mechanism works by combining the estimated output of the previous
stage of the network model with the original noisy signal on the channel as the input of the
next network. The output of each stage can be compared to a state between different stages,
similar to the recurrent neural network, which can train the network model cyclically.
In this way, the feature dependencies of different stages can be fully utilized, and the
estimation of the network can be gradually refined. Figure 3 is the proposed recursive
learning speech enhancement network. The output of each stage t in RLSENet can be
defined as:

xt−0.5 = fen(xt−1, y) (2)

xt = fde( fhdm( fen(xt−0.5))) (3)

where, fen, fhdm, and fde represent the fully convolutional encoder, hybrid dilated con-
volution module, and fully convolutional decoder in RLBlock, respectively. They are
stage-invariant, and the parameters of network are reused in different stages. fen combines
the estimated xt−1 of the current stage and the noisy signal y as input. xt−0.5 represents the
input of the fully convolutional decoder.

RLBlock consists of three parts: encoder, decoder, and 6 HDMs. The input of RLBlock
is the output of the previous stage and the original noisy signal. The full convolution
encoder is used to extract the low-dimensional features of the input speech frames. The
HDM combines dilated and conventional convolution to fully use contextual information
without losing local information. The full convolution decoder is used to reconstruct the
enhanced speech frames. The structure of RRBlock is shown in Figure 4b. The encoder
consists of four one-dimensional convolution layers. The input size is 1 × 2048, in which
one represents the number of channels and 2048 represents the frame length of speech. The
convolution of each layer of the encoder will halve the frame length of the speech; that is,
the step size is 2, and the number of output channels of each layer is 16, 32, 64, and 128. So,
the output of the last layer is 128× 128, the activation function of each layer in the encoder is
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PReLU [39], and the filter size is 11. The expansion rate of the 6 HDMs grows exponentially
and is set to 1, 2, 4, 8, 16, and 32, respectively. The decoder is a mirror-image of the encoder,
with four layers of one-dimensional deconvolution [40], in which the hopping connection
is used to connect each coding layer with its corresponding decoding layer, making up for
the loss of features in the coding process. In the decoder, the activation function used in the
first three layers is PReLU, and the activation function used in the last layer is Tanh. The
filter size of each layer is 11.

Figure 3. (a) RLSENet: recursive learning speech enhancement network, (b) RLBlock: recursive
learning block.

3.4. Recursive Recurrent Speech Enhancement Network (RRSENet)

The learning process of noisy speech to clean speech can be considered as a sequence
learning, where each stage represents the intermediate output of a stage. Therefore, the
network can be trained in the same way as a RNN. A GRU module is introduced in
RLBlock to form recursive recurrent Block (RRBlock), as shown in Figure 4b. Through the
RRBlock, the feature dependencies of different stages can be propagated to facilitate the
noise removal.

Compared with RLBlock, RRBlock adds a GRU module before the encoder. The GRU
module has a convolution layer, the frame length of input speech is 2048 points, the kernel
size of this layer is 11, and the stride is 2. The convolution layer increases the number of
channels from 2 to 16, and reduces the input speech frame to 1024 points. The input and
output of the first convolution layer in the encoder remains the same in the number of
channels and speech frame length, the output is 16 × 1024, and the others are consistent
with RLBlock. The network trained recursively by using the RRBlock module is named the
recursive recurrent speech enhancement network (RRSENet), as shown in Figure 4a.
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Figure 4. (a) RRSENet: recursive recurrent speech enhancement network, (b) RRBlock: recursive
recurrent block.

The output of each stage t in RRSENet can be defined as:

xt−0.5 = fc(xt−1, y) (4)

st = frecurrent(st−1, xt−0.5) (5)

xt = fde( fhdm( fen(st))) (6)

where, fc concatenates the output of the previous stage to the original noise signal on the
channel, frecurrent is the loop layer, which takes the intermediate state st−1 and xt−0.5 as
input to the stage t − 1, and the loop layer is able to regulate the information flow. Then the
intermediate state st is input to the encoder fen for feature extraction of speech information,
and then the enhanced speech frames are output after fhdm and fde.

4. Experiments
4.1. Datasets

In the experiment, the clean corpus used comes from the TIMIT corpus [41], which
includes 630 speakers of 8 major dialects of American English with each reading 10 utter-
ances. All sentences in the TIMIT corpus are sampled at 16 KHZ, with 4620 utterances in
the training set and 1680 utterances in the test set, resulting in a total of 6300 utterances.
Then, 1000, 200, and 100 clean utterances are randomly selected for training, validation,
and testing, respectively. Training and validation dataset are mixed under different SNR
levels ranging from −5 dB to 10 dB with the interval 1 dB while the testing datasets are
mixed under −5 dB and −2 dB conditions.

For training and validation, we used two noisy datasets. One dataset is a noise library
recorded in the laboratory of Prof. Wang at Ohio State University, which has 100 sounds
with different durations and a sampling rate of 16 kHz. A total of 100 kinds of noise, which
includes machine, water, wind, crying noise, etc, were used. The other is NOISEX92 [42],
with 15 noises, a duration of 235 s, and a sampling frequency of 19.98 kHz. A total of
15 kinds of noise, which includes truck, machine gun, factory, etc, were used. Another five
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types of noises from NOISEX92, including babble, f16, factory2, m109, and white, were
chosen to test the network generalization capacity.

The dataset is constructed using the following steps. First, the noise is downsampled
to 16 kHz and stitched into a long noise. Second, a clean speech is randomly selected, and a
noise of the same length is selected. Finally, during each mixed process, the cutting point is
randomly generated, which is subsequently mixed with a clean utterance under one SNR
condition. As a result, totally 10,000, 2000, and 400 noisy-clean utterance pairs are created
for training, validation, and testing, respectively.

4.2. Experimental Settings

All the speech enhancement network models are written in Python, and the models
are configured and trained using the PyTorch.

For model training, the synthesized noisy speech and clean speech are framed, both at a
sampling rate of 16 kHz, with each frame having a size of 2048 sample points, i.e., a frame
length of 128 ms, and an offset of 512 sample points between adjacent frames, i.e., a frame shift
of 32 ms. All the compared modules, the compared speech enhancement network models,
and the speech enhancement algorithm proposed in this chapter are trained using mean
absolute error (MAE). This loss function is used to calculate the error between the estimated
and actual values, and Adam [43] is used to speed up the convergence of the model. We
set the hyper-parameter learning rate to 0.0002 at the beginning, and when there are three
consecutive increases in the validation loss, the learning rate is halved. The training process
is stopped early when there are 10 increases in the validation loss. For the training set and
validation set, a 5-fold cross-validation method method is used to conduct the experiments.

4.3. Experimental Results
4.3.1. Compared with Typical Algorithms

In order to verify the effectiveness of the proposed speech enhancement network
model RRSENet, we compared three typical speech enhancement algorithms, namely
LogMMSE [44], TCNN [16], and AECNN [45]. Among them, LogMMSE is the minimum
mean square error logarithmic spectrum amplitude estimation, which is a speech enhance-
ment algorithm based on statistical models. TCNN is a speech enhancement model based
on a temporal convolution neural network. The overall framework of the model consists of
an encoder and a decoder, and 18 temporal convolution modules are embedded between
the encoder and decoder. Compared with TCNN, RLSENet replaces the temporal convolu-
tion module used in TCNN with a hybrid dilated convolution module. While AECNN is a
typical 1-D convolution encoder-decoder framework, it still needs to train a large number
of parameters. The frame length of model input and output is 2048, and the number of
channels in successive layers is 1, 64, 64, 64, 128, 128, 128, 256, 256, 256, 512, 512, 256, 256,
256, 128, 128, 128, and 1, the size of the convolution kernel of each layer is 11, and the
activation function uses PReLU. RRSENet adds the GRU module on the basis of RLSENet.
The experiment was tested on the matched test set and the unmatched test set.

Table 1 is the comparison result of the three typical algorithms of LogMMSE [44],
TCNN [16], and AECN [45] under noise matching at −5 dB, 0 dB, and 5 dB. The evaluation
index is the average PESQ [46] and STOI [47] values. The “PESQ” value is the mean of
speech quality under different signal-to-noise ratios in case of matched noise. The “STOI”
value is the mean of speech intelligibility under different signal-to-noise ratios. The average
PESQ value is the average speech quality evaluation value under different signal-to-noise
ratios. The average STOI value represents the evaluation value of the average speech
intelligibility under different signal-to-noise ratios, and the “Avg.” represents the three
types of signals under different evaluation indicators. HDMNet is a network structure
that does not use GRU modules; RLSENet is a recursive learning network using the HDM
modules; and RRSENet is a network structure that uses HDM modules and GRU modules.

The results in the Table 1 show that the RLSENet and RRSENet using recursive
learning network outperform the other three speech enhancement algorithms on PESQ and
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STOI evalutation metrics. Among them, “HDMNet” is the speech enhancement network
that uses only the HDM module. The traditional method LogMMSE enhancement is the
least effective, indicating that it is difficult to handle non-smooth noise. In contrast to
the temporal convolution module used in TCNN, which only considers the historical
information and uses a one-dimensional dilated convolution with its own defects, the
hybrid dilated module proposed in this paper is better than the traditional convolution
block, making full use of the information of the neighboring points of the speech waveform
without losing local information and improving the enhancement performance of the
model. Compared with RLSENet, RRSENet adds a GRU module, which makes the results
of RRSENet better than RLSENet. In general, comparing with other network models, the
RRSENet network model proposed in this paper has the best performance. For example, in
a low SNR-5dB noise environment, the enhanced speech with RRSENet network model
achieves the best enhancement performance compared to the unprocessed noisy speech
with PESQ and STOI by 0.693 and 16.92%, respectively. The AECNN and the TCNN using
the temporal convolution module are slightly inferior, which proves that the RRSENet
network model is more suitable for end-to-end speech enhancement tasks.

Table 1. Experimental results of different network models under seen noise conditions for PESQ
and STOI. BOLD indicates the best result for each case.

Metrics PESQ STOI

SNR −5 dB 0 dB 5 dB Avg. −5 dB 0 dB 5 dB Avg.

Noisy 1.537 1.843 2.083 1.821 66.40 77.56 84.92 76.30
LogMMSE 1.579 1.906 2.176 1.887 66.77 78.25 85.52 76.84

Wiener 1.710 2.180 2.610 2.166 65.15 77.84 85.90 76.29
TCNN 1.969 2.510 2.830 2.436 80.87 89.11 92.71 87.56

AECNN 2.013 2.557 2.945 2.505 81.33 89.45 92.99 87.92
HDMNet 2.122 2.654 3.013 2.596 82.03 89.52 93.09 88.22
RLSENet 2.151 2.692 3.039 2.627 83.06 90.18 93.40 88.80
RRSENet 2.220 2.750 3.051 2.674 83.17 90.19 93.30 88.89

From the results in Table 2, it can be seen that at a low signal-to-noise ratio of −5 dB, the
enhanced speech of RRSENet has increased by 4.5% and 4.98% compared with the enhanced
speech of TCNN and AECNN, respectively. Because under the background of low signal-
to-noise ratio, people pay more attention to the intelligibility of speech, that is, the STOI
evaluation index. This shows that RRSENet can improve the intelligibility of speech under
low signal-to-noise ratio. In addition, the “Avg.” of RRSENet under the PESQ and STOI
evaluation indicators is higher than the other four comparative experiments. Therefore, the
enhanced speech of RRSENet obtains the best speech quality and intelligibility, which also
shows that RRSENet is good at the generalization ability on the mismatched noise test set
is better [48].

Table 2. Experimental results of different network models under unseen noise conditions for PESQ
and STOI. BOLD indicates the best result for each case.

Metrics PESQ STOI

SNR −5 dB 0 dB 5 dB Avg. −5 dB 0 dB 5 dB Avg.

Noisy 1.419 1.603 1.868 1.630 65.05 72.99 82.10 73.38
LogMMSE 1.439 1.654 1.941 1.678 65.23 73.66 82.67 73.85

Wiener 1.617 2.030 2.387 2.011 64.50 76.20 84.90 75.20
TCNN 1.785 2.054 2.359 2.066 74.76 83.71 89.88 82.79

AECNN 1.771 2.066 2.437 2.091 74.28 83.50 89.79 82.52
HDMNet 1.937 2.234 2.611 2.261 77.99 85.06 90.25 84.43
RLSENet 1.899 2.204 2.586 2.230 77.10 85.62 90.97 84.56
RRSENet 1.959 2.276 2.649 2.295 78.87 85.99 91.03 85.29
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4.3.2. Module Comparisons

We then attempt to verify the effectiveness of the proposed hybrid dilated convolution
module, that is, to combine conventional convolution to solve the problem of under-
utilization of the local information of dilated convolution. The HDM module is compared
with the full-dilated convolution module and the full-conventional convolution module
for experiments to analyze the effects of different modules on speech enhancement perfor-
mance. As shown in Figure 5, these two modules are very similar to HDM, as both include
1 × 1 convolution, feature fusion convolution and output 1 × 1 convolution, and residual
connection, and the number of parameters of the two modules is consistent with HDM. The
difference lies in the feature fusion convolution layer, where the full-dilated convolution
uses two dilated convolutions and the full-conventional convolution uses two conventional
convolutions.

Figure 5. The full-dilated convolution module and full-conventional convolution module.

The network architecture of this experiment keeps the whole structure of the encoder
and decoder unchanged. In the comparison of the modules, the GRU module of recursive
learning is not used. Therefore, the network that uses HDM is defined as HDMNet. The
network that used full-dilated convolution modules is defined as full-dilated convolution
module network (FDMNet), and the dilation rate of dilated convolution in FDMNet is
consistent with that in HDMNet. The network used the full-conventional convolution
module network (FCMNet).

Table 3 shows the experimental results of PESQ and STOI for three different modules
under seen noise conditions. Table 4 shows the experimental results of PESQ and STOI
for three different modules under unseen noise conditions. The average PESQ value is the
evaluation value of the average speech quality under different signal-to-noise ratios, the
average STOI value represents the evaluation value of the average speech intelligibility
under different signal-to-noise ratios, and “Avg.” represents the three types of signals
under different evaluation indicators.

Table 3. Experimental results of different modules under seen noise conditions for PESQ and STOI.
BOLD indicates the best result for each case.

Metrics PESQ STOI

SNR −5 dB 0 dB 5 dB Avg. −5 dB 0 dB 5 dB Avg.

Noisy 1.537 1.843 2.083 1.821 66.40 77.56 84.92 76.30
FCMNet 1.832 2.268 2.528 2.209 76.45 86.02 90.50 84.32
FDMNet 1.959 2.441 2.755 2.385 78.46 87.31 91.56 85.77
HDMNet 2.122 2.654 3.013 2.596 82.03 89.52 93.09 88.22
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Table 4. Experimental results of different modules under unseen noise conditions for PESQ and STOI.
BOLD indicates the best result for each case.

Metrics PESQ STOI

SNR −5 dB 0 dB 5 dB Avg. −5 dB 0 dB 5 dB Avg.

Noisy 1.419 1.603 1.868 1.630 65.05 72.99 82.10 73.38
FCMNet 1.714 1.976 2.279 1.990 74.24 82.19 88.17 81.53
FDMNet 1.903 2.183 2.499 2.195 76.79 83.66 89.18 83.20
HDMNet 1.937 2.234 2.611 2.261 77.99 85.06 90.25 84.43

From the results in Tables 3 and 4, it can be seen that HDMNet obtained the best
results, followed by FDMNet, and FCMNet was the worst. The experiment proves: (1) that
the dilated convolution is very effective in end-to-end speech enhancement tasks, greatly
improving the enhancement effect of the network model. (2) The use of the hybrid dilated
convolution model improves the evaluation index compared with the full dilated convolu-
tion model, which shows that the HDM makes full use of the information of the adjacent
points of the speech waveform without losing the local feature information of the speech,
and improves the enhancement effect of the model.

4.3.3. GRU Module and Recursive Times

In order to explore the effect of the time of recursive on RLSENet and RRSENet for
speech enhancement, the time of recursive is taken from 1 to 5. Objective evaluations are
performed on the seen noise test set and unseen noise test set, respectively.

Table 5 shows the PESQ and STOI values of RLSENet and RRSENet under seen noise
conditions. As the number of recursion increases, RRSENet uses the memory mechanism
to further learn the feature information between different stages, thereby promoting noise
removal, improving the quality of speech and improving the intelligibility of speech.

Table 5. Experimental results of RLSENet and RRSENet under seen noise conditions. BOLD indicates
the best result for each case.

Metrics PESQ STOI

Model RLSENet RRSENet RLSENet RRSENet

t1 2.351 2.326 84.94 83.45
t2 2.502 2.581 86.96 87.11
t3 2.591 2.623 88.64 88.50
t4 2.627 2.688 88.78 88.82
t5 2.625 2.704 88.75 88.22

Table 6 shows the PESQ and STOI values of the speech enhanced by the RLSENet
and RRSENet modles. The PESQ value is the mean of speech quality under different
signal-to-noise ratios in the case of unmatched noise. The STOI value is the mean of speech
intelligibility under different signal-to-noise ratios. The results in Table 6 show that when
t = 4, RRSENet achieves the best results under the two indicators of PESQ and STOI. As
the number of recursion increases, the results of RRSENet are better than RLSENet, mainly
due to the addition of the GRU module. Combining the two experiments, the higher the
number of recursion, the better. In RRSENet, t = 4 can obtain better results.



Appl. Sci. 2022, 12, 3461 12 of 15

Table 6. Experimental results of RLSENet and RRSENet under unseen noise conditions. BOLD
indicates the best result for each case.

Metrics PESQ STOI

Model RLSENet RRSENet RLSENet RRSENet

t1 2.151 2.135 81.92 81.54
t2 2.170 2.238 81.89 83.13
t3 2.189 2.244 89.37 84.26
t4 2.230 2.268 84.56 84.59
t5 2.262 2.245 84.56 83.48

4.3.4. Speech Spectrogram

Figure 6 is the spectrogram of the synthesized speech enhanced by the RRSENet
model, “t” is the number of recursion of RRSENet. From Figure 6, noisy speech is more
disturbed than clean speech. In the spectrogram of the enhanced speech, as the number of
recursion increases, the noise reduction effect of the speech is better. The enhanced speech
spectrogram works very well, and speech quality is preserved intact. Through the analysis
of the spectrogram, the effectiveness of RRSENet is proved.

Figure 6. Spectrogram of synthesized speech enhanced by the RRSENet model.

To demonstrate the practicality of the RRSENet algorithm proposed in this chapter,
five speech segments with ambient background noise were recorded in a real-life scenario
with a sampling rate of 8 kHz. when using the RRSENet algorithm for speech enhancement,
firstly, the adoption rate of the recorded speech was resampled operationally so that the
adoption rate of the speech changed to 16 kHz, because the sampling rate of the speech
during model training was 16 kHz. Secondly, after the enhancement of the speech, the
sampling rate of the speech is downsampled to 8 kHz. Finally, the speech is visualized as
shown in Figure 7.

Figure 7. Spectrogram of real-world speech enhancement. The first row is the spectrogram of real-
world noise, the second row is the spectrogram of real-world speech, the third row is the spectrogram
of the enhancement speech
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5. Conclusions

In the paper, a speech enhancement algorithm based on recursive learning with a
hybrid dilated convolution model was proposed. A hybrid dilated convolution module
(HDM) is proposed to solve the problem of insufficient utilization of local information in
one-dimensional dilated convolution. Through HDM, the receptive field can be enhanced,
the context information can be fully utilized, and the speech enhancement performance of
the model can be improved. A recursive recurrent network training model is proposed,
which solves the problems of a conventional network with many training parameters
and a complex network structure. We improved the speech enhancement quality while
reducing the training parameters. The experimental results showed that RRSENet performs
better than the other two baseline time-domain models. Future research includes explor-
ing the RRSENet model for other speech processing tasks such as de-reverberation and
speaker separation.
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