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Abstract: Microalgae are widely distributed in the ocean, which greatly affects the ocean environment.
In this work, a dataset is presented, including the polarized light scattering data of 35 categories of
marine microalgae. To analyze the dataset, several machine learning algorithms are applied and
compared, such as linear discrimination analysis (LDA) and two types of support vector machine
(SVM). Results show that non-linear SVM performs the best among these algorithms. Then, two data
preparation approaches for non-linear SVM are compared. Subsequently, more than 10 categories
of microalgae out of the dataset can be identified with an accuracy greater than 0.80. The basis of
the dataset is shown by finding the categories independent to each other. The discussions about the
performance of different incident polarization of light gives some clues to design the optimal incident
polarization of light for future instrumentation. With this proposed technique and the dataset, these
microalgae can be well differentiated by polarized light scattering data.

Keywords: polarized light scattering; suspended particles; machine learning

1. Introduction

Microalgae are widely distributed in the ocean, which greatly affects the ocean envi-
ronment [1]. Monitoring the categories and growing states of microalgae is important, as
it can help explain and forecast the change of marine ecological environment and reduce
loss from toxic blooms [2,3]. The common methods to observe and identify microalgae are
based on optical microscopy, which is labor-intensive and needs specialized knowledge [4].

PCR is a vital tool to identify the categories of microalgae, but the preparation of
the sample is time-consuming [5]. A spectrophotometer can measure the absorption
spectrum of microalgae and they can be used to analyze the density and biomass of
microalgae [6]. In addition, the signal of acoustic backscattering shows a good correlation
with the abundance of the microalgae under certain concentration range [7]. However,
these methods are based on the analysis of bulk volume, which limits their application in
further detailed classification. Recently, there have been some tools developed to assist
automatic phytoplankton taxonomy. Li et al. [8] introduced an imaging system to monitor
marine organisms with sizes ranging from 200 µm to 40 mm. Göröcs et al. [9] reconstructed
the holographic diffraction images to analyze natural water samples. However, these
imaging methods are limited by the speed, resolution, and visual field, and meet their
bottleneck when facing with micron-sized algae.

The scattering measurement has the advantage of characterizing the physical mi-
crostructure of different microparticles. Katherine et al. [10] classified different suspensions
by scattering intensities features at multiple angles. Ye et al. [11] measured overall micropar-
ticle size using the scattering spectrum. Polarization is an inherent property of light [12].
Polarized light scattering, as an emerging tool, has been applied to characterize different
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states of microalgae [13,14], cancerous tissues [15], atmospheric microparticles [16], and
microplastics [17].

Chami et al. [18] demonstrated the potential of using the polarized signal to analyze
biogenic and highly refractive particles in coastal waters. Koestner et al. [19] used polarized
light scattering measurements to characterize particle size and composition of natural
assemblages of marine particles. Based on the pre-trained model, the states and categories
of particles can be recognized from the mixture. Chen et al. [20] quantitatively studied the
flocculation process with polarized light scattering. Wang et al. [21] applied polarization
parameters to recognize different states of Microcystis aeruginosa, and gave an early warning
strategy. In short, these works show the significance and value of a polarized light scattering
dataset. However, there is still no such dataset of the diverse microalgae, which limits the
optical polarization tools’ applications in monitoring the microalgae in water.

In this work, a dataset by polarized light scattering measurement is presented, includ-
ing the information of polarization parameters of 35 categories of marine microalgae. For
each category, 10 states of polarization (SOP) of incident light are applied to respectively
illuminate the samples, and for each SOP, there are more than 1000 records of the particles.
To analyze the dataset, several machine learning algorithms are applied and compared
to build the classifier which is used to identify different categories. This work compares
linear discrimination analysis (LDA) and different types of support vector machine (SVM).
Results showcase that non-linear SVM performs the best among these algorithms. Then,
two data preparation approaches for non-linear SVM are compared. Subsequently, we
show that more than 10 categories of microalgae out of the dataset can be identified with an
accuracy greater than 0.80. With this proposed technique and the dataset, these microalgae
can be well differentiated by polarized light scattering.

2. Materials and Methods
2.1. Samples

With the characteristics of morphology of the microalgae and types of intracellular
pigments, microalgae can be classified into different phyla, such as Bacillariophyta, Chloro-
phyta, Pyrrophyta, etc. [22]. The samples in this work include 35 categories of marine
microalgae, and the detailed information can be referred to in Table 1. These samples were
provided by (Shanghai Guangyu Biological Technology Co. Ltd., Shanghai, China). During
the experiments, all of these microalgae were sampled from the original sample, and they
were added into the filtered seawater in the sample pool.

2.2. Experimental Setup

The experimental setup is shown in Figure 1, and it was designed to measure the
polarized light scattering of individual microalgae. The light source (S) emitted linearly
polarized light with a wavelength of 532 nm. Then, the linearly polarized light could be
modulated into different states of polarization (SOP) with a polarized state generator (PSG),
which consisted of the half-wave plate (HW1) and the quarter-wave plate (QW1). With
lens (L1), the modulated light was focused into the sample pool (P) full of filtered seawater.
In the sample pool, the microalgae were suspended with a stirrer rotating at the speed of
200 rounds per minute.
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Table 1. Detailed information of samples used in this work.

No. Name Phylum No. Name Phylum

1 Skeletonema costatum Bacillariophyta 19 Cyclotella meneghiniana Bacillariophyta
2 Platymonas subcordiformis Chlorophyta 20 Tetraselmis Chlorophyta
3 Thalassiosira pseudonana Bacillariophyta 21 Isochrysis zhangjiangensis Chrysophyta
4 Chattonella marina Chrysophyta 22 Chaetoceros muelleri Bacillariophyta
5 Amphora Bacillariophyta 23 Phaeocystis globosa Scherffel Chrysophyta
6 Thalassiosira rotula Meunier Bacillariophyta 24 Isochrysis CCMP3180 Chrysophyta
7 Isochrysis galbana Chrysophyta 25 Karenia mikimotoi Pyrrophyta
8 Thalassiosira weissflogii Bacillariophyta 26 Porphyridaceae Rhodophyta
9 Cyclotella meneghiniana Bacillariophyta 27 Chaetoceros gracilis Bacillariophyta

10 Isochrysis Chrysophyta 28 Leptocylindrus Bacillariophyta

11 Nitzschia closterium
f.minutissima Bacillariophyta 29 Zooxanthella Pyrrophyta

12 Pavlova viridis Chrysophyta 30 Heterosigma akashiwo (Hada) Xanthophyta
13 Amphidinium carterae Hulburt Pyrrophyta 31 Scrippsiella trochoidea Pyrrophyta
14 Nannochloropsis Chlorophyta 32 Cyclotellacryptica Bacillariophyta
15 Chaetoceros curvisetus Bacillariophyta 33 Cryptomonas Cryptophyta

16 Dunaliella bardawil Chlorophyta 34 Platymonas helgolandica
tsingtaoensis Chlorophyta

17 Trichodesmium Cyanophyta 35 Coccolithophorids Chrysophyta
18 Chaetoceros debilis Cleve Bacillariophyta
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Figure 1. The schematic diagram of the experiment setup.

Scattering happens once microalgae pass the scattering volume which is the intersec-
tion volume of the optical systems of the illuminating path and receiving path [18]. Then,
the scattered light is received at the backward 120◦, and this angle has been proven to be
sensitive to the microstructure of microalgae [8]. Subsequently, the scattered light passes
through the lenses (L2 and L3), and the pinhole (PH) of 100 µm, so as to collimate the
light and confine the size of the scattering volume to 100 µm. Then, the measurement of
individual microalgae can be realized if the concentration is lower than 105 cells per mL.
The collimated light after L3 can be analyzed by the polarization state analyzer (PSA), to
finally get the Stokes vector S [23], as Equation (1),

S =


I
Q
U
V

 (1)
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where I is the light intensity, and Q, U, V are the residual intensity of 0◦ linear polarization,
45◦ linear polarization, and right-handed circular polarization, respectively. The three
normalized polarization parameters, q, u, v, are defined as Equation (2),

q =
Q
I

, u =
U
I

, v =
V
I

(2)

2.3. Machine Learning Algorithms
2.3.1. Linear Discrimination Analysis

Linear discrimination analysis (LDA) is a machine learning algorithm aiming to
reduce the dimension of the original features and realize the classification between different
categories [24]. The optimal goal of LDA is to find a projection axis by maximizing the
between-class difference |µ1 − µ2|2 and minimizing the within-class difference

(
δ2

1 + δ2
2
)
,

which is equivalent to maximizing the value L, defined as Equation (3)

L =
|µ1 − µ2|2(

δ2
1 + δ2

2
) (3)

2.3.2. Support Vector Machine

Support vector machine (SVM) is a machine learning algorithm that maximizes the
margin between different categories of data and classifies different categories with a hyper-
plane [25]. SVM is designed for two-class classification tasks; one-versus-one (OVO) and
one-versus-rest (OVR) are two methods applied in the classification of the multi-class task.
Regarding the classification of different categories, SVM with the linear kernel can separate
the data of different categories by a linear hyperplane, while the non-linear SVM model
applies the Gaussian kernel to map the original features into a higher-dimensional space
and realize the classification by a non-linear hyperplane.

2.3.3. Performance Evaluation

In this work, we use accuracy to evaluate the performance of the built classifiers, and
the accuracy is defined as Equation (4),

accuracy =
TP + TN

TP + TN + FP + FN
(4)

where TP is the true positive (the actual and predicted labels are positive), TN is the true
negative (the actual and predicted labels are negative), FP is the false positive (the actual
label is negative and the predicted label is positive), and FN is the false negative (the actual
label is positive and the predicted label is negative).

3. Results
3.1. Algorithm Comparison and Selection

During the measurement, 10 SOPs of incident light were modulated into 7 differently
oriented linear SOPs, i.e., 120◦, 150◦, 30◦, 60◦, 90◦, −45◦, and 45◦; one elliptical SOP, E;
the left-handed circular SOP, L; and the right-handed circular SOP, R. For each SOP, each
category of microalgal cells was continuously measured to obtain more than 1000 records.
Note that the time durations for different categories of microalgae were quite different
according to the concentration of the particles. To obtain 1000 records for 10 polarization
states of each sample, the average time duration was about 15 min. Here, each record
corresponded to an individual microalgal cell and it had four feature parameters, [I, q, u,
v]. Therefore, for each category of microalgae in Table 1, the measured dataset included
10 SOPs and more than 1000 records for each SOP. Then, the input dataset was fed into
the machine learning algorithms to build the models and train different classifiers, and the
algorithm comparisons were conducted for different categories of microalgae in a same
SOP of the incident light.
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The sampling methodology for the machine learning process is shown in Table 2. For
each sample, there were in total 1000 records for one polarization state, where 800 records
were used for training process and the remaining 200 were used for validation. Note that
there were 10 illuminating polarization states, the sampling number for these 35 categories
of samples was equally balanced for OVO and OVR.

Table 2. The sampling methodology for the machine learning.

Training Subset Validating Subset Total

Each sample 800 200 1000

Sampling ratio 0.8 0.2 1

Machine learning algorithms were tested and compared in this work, including LDA,
linear SVM, and non-linear SVM. The programing language in this work was Python 3.8,
the package of data processing was mostly NumPy, and the package used for algorithm
training was sklearn. During the training process, two categories of microalgae were
randomly selected out of the dataset, and then the data were separated into training and
validating subsets. After the classifier was trained by the training subset, the classifier was
tested in the validating subset, and the accuracy was recorded as the accuracy of classifier.
In this section, we go through all categories of microalgae, and for each pair of target
microalgae, the accuracy is recorded for further comparison.

To compare the performance of LDA with linear SVM, a binary array (A1, A2) was
obtained for each pair of microalgae, where A1 is the accuracy of LDA and A2 is the
accuracy of linear SVM. We applied the LDA to project the polarization parameters, q,
u, v, into one value. During the training process, the solver of LDA was the singular
value decomposition, the threshold for a singular value was 0.5, and the penalty of SVM
was the hinge loss. After going through all the categories of microalgae in the dataset by
permutation and combination, a series of arrays were recorded and they are shown in
Figure 2a.
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of LDA and linear SVM; (b) the comparison results of linear SVM and non-linear SVM.

Results show that A1 and A2 were mostly lined up on the diagonal line, while linear
SVM was slightly better compared with LDA. Similarly, in the comparison of linear and
non-linear SVM, the result shown in Figure 2b indicates that the accuracy of the non-linear
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SVM, A3, was generally higher than that of the linear SVM, A2. Thereafter, non-linear SVM
was applied to train and classify different categories of microalgae.

3.2. Classification Result of the Dataset

Since SVM is designed for two-class tasks, the dataset was firstly separated by OVR or
OVO into two categories. For OVR, every target class was compared with the remaining
classes, and 35 classifiers could be built with the non-linear SVM with OVR. For an unknown
validating sample, 35 classifiers were applied to predict the measured data and output
35 probability scores, then the highest score corresponded to the identified category.

Different levels of recognition accuracy were set in order to quantitatively analyze
the classification performance with the built classifier. Moreover, it could provide some
information about the microalgae, which is important for understanding the physical
mechanism of the discrimination or instructing the future prototype deployments in water.
Empirically, we selected four levels to evaluate the results. The performance of the classifier
on the validating dataset is presented in Table 3, which shows that Isochrysis has the highest
recognition accuracy greater than 0.95, which implies that Isochrysis has distinct scattering
property compared with the other microalgae in Table 1. Referring to the result in Table 3,
both Chattonella marina and Cryptomonas achieved a recognition accuracy greater than 0.9
but smaller than 0.95, and Chaetoceros curvisetus and Zooxanthella achieved an accuracy
falling in the range of 0.85–0.90. In addition, the other five categories could be identi-
fied with an accuracy within 0.80–0.85. Based on the OVR approach, there were in total
10 categories of microalgae that could be identified in the dataset with an accuracy greater
than 0.80. The classifiers derived from OVR were able to recognize the certain targeted
category of microalgae, and the trained model could be used to evaluate whether the
measured sample was similar to the targeted category.

Table 3. Classification results using SVM by one-versus-rest (OVR).

Recognition Accuracy Categories of Microalgae

>0.95 Isochrysis
0.90–0.95 Chattonella marina; Cryptomonas
0.85–0.90 Chaetoceros curvisetus; Zooxanthella

0.80–0.85 Porphyridaceae; Trichodesmium; Amphidinium carterae
Hulburt; Amphora; Skeletonema costatum

For OVO, every class was respectively compared with the remaining n− 1 classes,
and then n× (n− 1)/2 classifiers could be built in total. During the validating process,
the identified category was voted among these classifiers. Different from OVR, we set
an accuracy threshold to find the largest subset out of the original dataset, and all of the
microalgae in the subset could be recognized above the accuracy threshold. Subsequently,
different accuracy thresholds were compared, including 0.95, 0.90, 0.85, and 0.80. With
these thresholds, the results of the largest subset are shown in Table 4.

The results in Table 4 show that four categories (n = 4) of microalgae could be extracted
from the original dataset, and each category in the subset could be retrieved with an
accuracy of more than 0.95. Eight categories of microalgae could be extracted out of the
dataset, and they could be recognized with an accuracy above 0.9, and 11 and 15 categories
of microalgae could be extracted if the accuracy threshold was 0.85 and 0.8, respectively.

Comparing these two approaches, the OVO performed better than the OVR. However,
it is notable that the complexity of OVO is O(n2) which is much higher than that of OVR.
Different from OVR, the OVO for SVM in this work tried to find the subset of the microalgae
where different categories of microalgae could be well classified from others. Then, these
categories of microalgae in the subset could be used as the skeleton categories which are
independent of each other and are the basis of the dataset, and the other categories are
similar to them or their combinations.
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Table 4. Classification results using SVM by one versus one (OVO).

Accuracy Threshold Categories of Microalgae n

0.95 Chattonella marina; Isochrysis; Chaetoceros debilis
Cleve; Porphyridaceae 4

0.90
Skeletonema costatum; Chattonella marina; Isochrysis; Dunaliella
bardawil; Isochrysis zhangjiangensis; Isochrysis CCMP3180;
Scrippsiella trochoidea; Cryptomonas

8

0.85

Skeletonema costatum; Chattonella marina; Thalassiosira weissflogii;
Isochrysis; Chaetoceros curvisetus; Dunaliella bardawil; Isochrysis
zhangjiangensis; Isochrysis CCMP3180; Porphyridaceae;
Leptocylindrus; Cryptomonas

11

0.80

Skeletonema costatum; Chattonella marina; Isochrysis galbana;
Isochrysis; Chaetoceros curvisetus; Cyclotella meneghiniana;
Isochrysis zhangjiangensis; Isochrysis CCMP3180; Karenia
mikimotoi; Porphyridaceae; Leptocylindrus; Zooxanthella; Scrippsiella
trochoidea; Cryptomonas; Platymonas helgolandica tsingtaoensis

15

4. Discussion

The four polarization parameters of each record are [I, q, u, v], and they are derived
from the Stokes vectors of scattered light, which are basically related to the incident
SOP. To find the best incident SOP and reduce the detection complexity, the performance
of different incident SOP and different combinations of features are discussed and the
averaged classification accuracy of all categories in Table 1 based on non-linear SVM and
OVO is used to evaluate the performances.

The results shown in Figure 3 collect the accuracy among all the incident SOP and
different combinations of polarization parameters. When the input was [I, q, u, v], all the
SOPs achieved an accuracy of about 0.85, while the 150◦ linear SOP was slightly better
than other SOPs, and the 120◦ linear SOP was the worst. Compared with the classification
accuracy derived from I, it is notable that the original classification accuracy was greatly
improved with the addition of the polarization features.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 11 
 

Table 4. Classification results using SVM by one versus one (OVO). 

Accuracy Threshold Categories of Microalgae n 
0.95 Chattonella marina; Isochrysis; Chaetoceros debilis Cleve; Porphyridaceae 4 

0.90 Skeletonema costatum; Chattonella marina; Isochrysis; Dunaliella bardawil; Isochrysis zhang-
jiangensis; Isochrysis CCMP3180; Scrippsiella trochoidea; Cryptomonas 8 

0.85 
Skeletonema costatum; Chattonella marina; Thalassiosira weissflogii; Isochrysis; Chaetoceros curvi-
setus; Dunaliella bardawil; Isochrysis zhangjiangensis; Isochrysis CCMP3180; Porphyridaceae; 
Leptocylindrus; Cryptomonas 

11 

0.80 

Skeletonema costatum; Chattonella marina; Isochrysis galbana; Isochrysis; Chaetoceros curvisetus; 
Cyclotella meneghiniana; Isochrysis zhangjiangensis; Isochrysis CCMP3180; Karenia mikimotoi; 
Porphyridaceae; Leptocylindrus; Zooxanthella; Scrippsiella trochoidea; Cryptomonas; Platymonas 
helgolandica tsingtaoensis 

15 

4. Discussion 
The four polarization parameters of each record are [I, q, u, v], and they are derived 

from the Stokes vectors of scattered light, which are basically related to the incident SOP. 
To find the best incident SOP and reduce the detection complexity, the performance of 
different incident SOP and different combinations of features are discussed and the aver-
aged classification accuracy of all categories in Table 1 based on non-linear SVM and OVO 
is used to evaluate the performances. 

The results shown in Figure 3 collect the accuracy among all the incident SOP and 
different combinations of polarization parameters. When the input was [I, q, u, v], all the 
SOPs achieved an accuracy of about 0.85, while the 150° linear SOP was slightly better 
than other SOPs, and the 120° linear SOP was the worst. Compared with the classification 
accuracy derived from I, it is notable that the original classification accuracy was greatly 
improved with the addition of the polarization features. 

However, the relative contribution of the polarization parameters u and 𝑣 was not 
same. For the SOP of E, L, and R, the addition of the parameter v resulted in a higher 
accuracy than u. However, for the other linear SOPs, the parameter u brought more effec-
tive information than the parameter v. 

 
Figure 3. The performance comparison of different incident SOPs and different combinations of 
features. 

The Mueller matrix is a 4 × 4 matrix, 𝑴, describes the polarization property of the 
particle, and combines the incident SOP, 𝑆 , and the scattered SOP, 𝑆 , that is, 𝑆 = 𝑴 ×𝑆 . The 16 elements of 𝑴 contain different aspects of physical information of particles. 
Usually, we have to change 𝑆  4 times and measure the respective 𝑆  to calculate 𝑴. We 
can always simultaneously get the Stoke vector in a single shot but it is hard to get 𝑴 in 

Figure 3. The performance comparison of different incident SOPs and different combinations
of features.

However, the relative contribution of the polarization parameters u and v was not
same. For the SOP of E, L, and R, the addition of the parameter v resulted in a higher
accuracy than u. However, for the other linear SOPs, the parameter u brought more effective
information than the parameter v.

The Mueller matrix is a 4×4 matrix, M, describes the polarization property of the
particle, and combines the incident SOP, Si, and the scattered SOP, Ss, that is, Ss = M× Si.
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The 16 elements of M contain different aspects of physical information of particles. Usually,
we have to change Si 4 times and measure the respective Ss to calculate M. We can always
simultaneously get the Stoke vector in a single shot but it is hard to get M in that way,
especially for the suspended particles. Therefore, in the dataset, we can only provide the Ss
of the individual microalgae in a given Si, as the data used in the classifications in Figure 2,
and at most we can obtain the statistical M but not the individual M of the microalgal
cells [26].

Considering that different Si will bring different information regarding the elements
of the M, it is important to discuss the contribution of the elements based on the dataset.
Moreover, the quantitative contributions of the elements will guide us to improve the
detecting speed of the system by reducing the number of modulated Si, and find the
optimal SOP to better characterize and classify these categories of microalgae, which is
important for fast field probing applications.

The 150◦ linear SOP and right-handed circular SOP are further discussed with the
Mueller matrix theorem. For simplicity, we discuss the spherical particles. Theoretically,
for spherical particles, the top right and bottom left elements of M are zero [27]. When Si is
[Ii, Qi, Ui, Vi]

T , Ss can be calculated by Equation (5),

Ss =


M11 M12
M12 M22

0 0
0 0

0 0
0 0

M33 M34
−M34 M44




Ii
Qi
Ui
Vi

 =


M11 Ii + M12Qi
M12 Ii + M22Qi
M33Ui + M34Vi
−M34Ui + M44Vi

 = I ∗


1
q
u
v

 (5)

where I is the scattered intensity and q, u, v are the normalized polarization parameters of Ss.

Usually, the standard SOP of incident light can be represented as
[
1, 1/2,−

√
3/2, 0

]T

for 150◦ and [1, 0, 0, 1]T for R. Then, the Stokes vector of the scattered light is calculated as
[M11 + M12/2, M12 + M22/2,−

√
3M33/2,

√
3M34/2]T for 150◦ linear SOP and the Stokes

vector of the scattered light is [M11, M12, M34, M44]T when the incident SOP is R.
The classification performance of the incident SOP of 150◦ is obviously better than the

performance of the incident SOP of R. Compared with these two derived Stokes vectors of
scattered light, the Stokes vector of 150◦ linear SOP has the distinctive information of the
elements M22 and M34, and the Stokes vector of R has the distinctive information of M44.
Since the incident SOP of 150◦ has a better performance of the incident SOP of R, it seems that
M22 and M34 may contain more important information than M44 for the classification task.

However, for the contribution of the polarization parameters u and v, the parameter
u contributes less information compared with the parameter v for linear SOP, while the
parameter v contributes less information compared with the parameter u for circular SOP.
Thus, it seems that M34 is less useful compared with M33 or M44.

The result in Figure 2 shows that non-linear SVM displays the best performance to
classify these categories of microalgae based on Stokes vectors. However, this result does
not explicitly claim the contributions of the specific polarization parameters, since it learns
the polarization parameters of Stokes vectors in a hyper feature space. To verify the above
analysis with Mueller matrix, we select two categories of microalgae to quantitatively
evaluate the contribution of the polarization parameter v and the symmetry of the polar-
ization states. Both the Isochrysis and Chattonella marina are easily distinguishable from
other categories of microalgae. Their biological features are investigated in a previous
book [28,29]. The result is shown in Table 5; note that the relative difference is the difference
between these two cases over the retrieved accuracy with [I, q, u]. Moreover, the precision
information of these two categories of microalgae can be referred to in Tables 6 and 7,
which shows the classification performance of the trained model on these two categories.
The two circular SOPs of the incident light, R and L, have theoretical Stokes vectors of
[M11, M12, M34, M44] and [M11, M12, M34,−M44]. The classification performances with
[I, q, u, v] and [I, q, u] were compared and the result is shown in Table 5, which indicates
that the SOP of R and L can retrieve a close classification accuracy and the contributions of
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the feature, v or M44, are about 0.12 in both cases. This analysis indicates that the SOP of
incident light L and R has a similar performance in the classification task of the dataset,
and this result corresponds to the theoretical explanation with the Mueller matrix.

Table 5. Classification Isochrysis and Chattonella marina.

SOP Accuracy ([I, q, u, v]) Accuracy ([I, q, u]) Relative Difference

L 96.98% 86.47% 0.12
R 95.42% 85.08% 0.12

Table 6. Precision of Chattonella marina.

SOP Precision ([I, q, u, v]) Precision ([I, q, u]) Relative Difference

L 98.52% 89.08% 10.60%
R 97.89% 90.16% 8.57%

Table 7. Precision of Isochrysis.

SOP Precision ([I, q, u, v]) Precision ([I, q, u]) Relative Difference

L 95.50% 83.73% 14.06%
R 93.22% 81.36% 14.58%

With the analysis above, the information of M44 is suggested to be contained during the
polarized light scattering measurement and the circular SOP of incident light is suggested
to be included in the further measurement, as an addition to the measurement with linear
SOP of the incident light, such as 150◦ linear SOP. There may only be one incident SOP
allowed when the conceptual prototype is deployed to classify the suspended microalgae
in the aquatic field, so an optimal incident SOP should be necessarily designed based on
these considerations.

Note that most microalgal cells are not uniform spheres in the morphology and
structure; previous literature demonstrates that the top right and bottom left elements of
their Mueller matrices are approximately zero [30]. Therefore, the discussion based on
Equation (5) is still valid. During the experiments in this work, we measured 10 polarization
states, which is time-consuming. The discussion gives clues to reducing the modulated
polarization states; 150◦ linear SOP and the circular SOP are suggested to be included in
future applications.

The results in this work indicate that, due to the diversity and complexity, polarization
data equipped by the machine learning algorithm are a feasible way to effectively classify
marine microalgae, and more comprehensive methods and an abundant number of data
would achieve a better classification performance. The fast-developing machine learning
method will provide tools for us [31], and the Mueller matrix polarimetry of the individual
microalgae may be expected in near future, and they both promote classification ability.
Moreover, we notice that the optical microscopy is still the standard method to identify the
species of the microalgae [4] and the morphological information and the internal structure
play vital roles in the classification of diverse microalgae to which polarization parameters
are sensitive [32,33]. In addition, an in situ prototype based on polarized light scattering
was easily built and demonstrated to be powerful in classifying particles in seawater [34].
As such, the combination of the microscope and polarized light scattering is a promising
tendency and may provide a way to accurately and rapidly classify the microalgae in water.

5. Conclusions

In this work, we presented a dataset including the polarized light scattering data of
35 categories of marine microalgae and explored a feasible way to classify the microalgae
using the polarization data. The dataset included the diversity and complexity of the marine
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microalgae, covering their different physical properties such as size, shape, structure, etc.
After comparing the three machine learning algorithms, we showed that the classifier based
on non-linear SVM could classify them with an accuracy above 80%. Subsequently, two
comparison approaches, one-versus-one and one-versus-rest, were applied to separate
the dataset. Results showed that 15 categories of microalgae could be identified with an
accuracy greater than 80%, and they could be treated as the basis of the dataset, since
these categories of microalgae are independent from each other. Moreover, the polarization
data with the full Stokes vector obtained the best classification accuracy, which shows the
advantage and the necessity of circular polarization in both illumination and detection. The
above results indicate that, due to the diversity and complexity, marine microalgae need
comprehensive machine learning algorithms and abundant polarization data to achieve
the best classification performance. The results in this work give hints to understand
the physical mechanism of the classification and further instruct the future prototype
deployments in water.
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