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Abstract: As the vital technology of natural language understanding, sentence representation reason-
ing technology mainly focuses on sentence representation methods and reasoning models. Although
the performance has been improved, there are still some problems, such as incomplete sentence
semantic expression, lack of depth of reasoning model, and lack of interpretability of the reasoning
process. Given the reasoning model’s lack of reasoning depth and interpretability, a deep fusion
matching network is designed in this paper, which mainly includes a coding layer, matching layer,
dependency convolution layer, information aggregation layer, and inference prediction layer. Based
on a deep matching network, the matching layer is improved. Furthermore, the heuristic matching
algorithm replaces the bidirectional long-short memory neural network to simplify the interactive
fusion. As a result, it improves the reasoning depth and reduces the complexity of the model; the de-
pendency convolution layer uses the tree-type convolution network to extract the sentence structure
information along with the sentence dependency tree structure, which improves the interpretabil-
ity of the reasoning process. Finally, the performance of the model is verified on several datasets.
The results show that the reasoning effect of the model is better than that of the shallow reasoning
model, and the accuracy rate on the SNLI test set reaches 89.0%. At the same time, the semantic
correlation analysis results show that the dependency convolution layer is beneficial in improving
the interpretability of the reasoning process.

Keywords: sentence representation; semantic reasoning; attention mechanism; long-short memory
network; deep fusion matching network

1. Introduction

Natural language inference (NLI) is a process in which the abstract representation
of natural language text pairs becomes space vectors. The reasoning learns the potential
relationship between text pairs. NLI has become one of the most critical benchmark tasks
in natural language understanding because of its complex language understanding and
in-depth information involved in reasoning. At present, NLI technology mainly consists of
three parts: encoding, sentence representation (understanding), and reasoning learning.
Among them, sentence reasoning learning is still a long way from the goal of practical
application—the construction and optimization of the reasoning model. The research on
deep learning for the NLI model is still in its infancy. Although the existing deep learning
algorithm models, such as cyclic neural network and convolutional neural network, have
achieved initial results in the construction of the reasoning model, they have failed to
achieve a breakthrough. Therefore, there is a broad space for research on the construction
and optimization of the NLI model. The construction and optimization of sentence semantic
representation and reasoning models have become two core problems in NLI. No matter
which aspect is improved, the effect of the whole NLI method will be affected. At the same
time, it is of great significance to study the influence of the two methods on the NLI method.
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In existing studies, to focus on the construction and optimization of a semantic rep-
resentation and inference model, input is usually simplified as sentence pairs to avoid
the interference caused by miscellaneous data. Therefore, NLI technology is also known
as sentence representation reasoning technology. Before the appearance of sentence-level
representation technology, the method of sentence-level representation was to use CBOW
embedded distributed representation technology based on word encoding to represent text
as a fixed-length sentence vector. However, with the development of neural networks and
deep learning, recently, sentence representation technology has gradually developed from
a combination of simple word-embedded models to more complex architecture, such as the
convolutional network [1], cyclic neural network [2,3], and its deformation [4]. They have
been applied to improve the performance of sentence representation. Inspired by these
works, this paper decided to use a tree convolutional network for the extraction of sentence
structural information.

Besides sentence representation, semantic reasoning is a process that infers the logical
relationship of text pairs by analyzing the internal relationship between text information
and text according to a given natural language text pair. NLI mainly adopted the method
based on logical formal reasoning [5,6], which transformed sentences expressed in natural
language form into logical expressions that computers can understand, and then it real-
ized semantic reasoning using a logic interpreter. Moldovan [7] proposed a logic-based
reasoning method COGEX, which is based on logic, to represent the relationship between
inferential text pairs, such as syntactic objects, syntactic subjects, and causal relationships.
In addition to the logical representation of input text pairs, the method also uses knowledge
base content with logical representation. Raina [8] proposed a dependency syntactic logic
reasoning method, which parses the syntactic relationship of the text, constructs a syntax
tree, and then completes semantic reasoning through the relationship between the parent
node and the child node. Logic-based reasoning technology has achieved good results in
processing small-scale data. However, with the increasing data volume and the sentence
structure complexity, the applicability and accuracy of the model are limited [9]. With the
development of deep learning in natural language processing, semantic reasoning tech-
nology gradually changes from logic-based reasoning technology to deep learning-based
reasoning technology [10]. The core of reasoning technology based on deep learning is to
calculate the similarity of two semantic objects and simulate the potential correspondence
between different abstract levels and different properties of “semantic objects” [11].

In order to solve the problems of the lack of reasoning depth and interpretability in
the reasoning model, this paper designs a deep fusion matching network, which mainly
includes a coding layer, matching layer, dependence convolution layer, information aggre-
gation layer, and inference prediction layer. We first improve the matching layer based
on the deep matching network and use a heuristic matching algorithm to replace the
complex neural network as the interactive fusion mode of matching information. Secondly,
the dependency convolutional layer uses a tree convolutional network (TBCNN) to extract
the structural information of sentences. Finally, we analyze prediction accuracy, semantic
correlation analysis, and ablation analysis of the model’s performance on multiple datasets.

2. Materials
2.1. SNLI Dataset

The SNLI dataset is a text implication recognition dataset published by Stanford
University. SNLI is manually annotated and contains 570 k text pairs. There are three kinds
of marks: implication, contradiction, and neutral. In this paper, all data are divided into a
training set (549,367 samples), a verification set (9842 samples), and a test set (9824 samples),
according to Zhu’s [12] data partition rules, and some SNLI data forms are shown in Table 1.
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Table 1. Sample data of SNLI dataset.

Premise Sentence The Label Hypothetical Sentence

Two women are embracing while holding
to-go packages.

Entailment
E E E E E

Two woman are holding
packages.

A man selling donuts to a customer
during a world exhibition event held in the

city of Los Angeles.

Contradiction
C C C C C

A woman drinks her coffee in
a small café.

A man in a blue shirt standing in front of a
garage-like structure painted with

geometric designs.

Neutral
N E N N N A man is repainting a garage.

2.2. Multi-NLI Dataset

The Multi-NLI dataset published by Adina Williams, Nikita Nangia, and Sam Bow-
man [13] contains 433 k text pairs. Different from the SNLI dataset, it covers more data
close to real life, such as novels and telephone voice. The sample data are shown in Table 2.
The dataset contains 10 categories of data. Whether the same category appears in the
training and test sets simultaneously, it is divided into the matched and unmatched sets.

Table 2. Sample data of Multi-NLI dataset.

Type Premise Sentence The Label Hypothetical
Sentence

Novel The Old One always comforted
Ca’daan, except today. neutral Ca’daan knew the Old One

very well.

Message
Your gift is appreciated by each

and every student who will
benefit from your generosity.

neutral Hundreds of students will
benefit from your generosity.

Cell

yes now you know if everybody
like in August when everybody’s
on vacation or something we can

dress a little more casual or

contradiction August is a black out month
for vacations in the company.

In this paper, the text implication task is performed on the unmatched and matching
sets. The data are divided: training set (392,702 samples), matching/unmatching verifica-
tion set (9815/9832 samples). Since the test set data cannot be obtained, this paper uses a
verification set instead of a test set.

3. Methods

The semantic reasoning model based on matching [14–18] comprises the coding,
matching, and prediction layers. The detailed explanation of the sentence representation
and semantic reasoning section are presented in the following section. The information ex-
traction method includes the matching model and the syntactic structure extraction model.
The semantic reasoning section based on deep fusion matching network includes sentence
coding layer, local reasoning, syntactic structure model, global reasoning, and resulting
reasoning and prediction.

3.1. Reasoning Information Extraction Method
3.1.1. Matching Model Based on AF-DMN

Inspired by the deep neural framework [19], Duan [20] proposed an attention-fused
deep matching network, referred to as AF-DMN, based on the matching reasoning model.
However, AF-DMN has a more complex matching layer. The matching layer is composed of
T identical calculation blocks. Each calculation block contains four sub-modules: (1) cross
attention layer; (2) cross attention fusion layer; (3) self-focus layer; (4) self-focus fusion layer.



Appl. Sci. 2022, 12, 3416 4 of 18

3.1.2. Syntactic Structure Extraction Based on Tree Convolution Network

In order to capture the syntactic structure of a sentence, Mou [21] proposed a tree-based
convolutional neural network (TBCNN). It can effectively capture syntactic information
compared with a conventional convolutional neural network.

First, sentences are converted into parse trees. Then, the structure information of sen-
tences is extracted along with the tree structure by a sliding window. Finally, the syntactic
information is captured through the hidden and output layers. Thus, TBCNN contains
syntactic parsing and convolution layers, divided into dependency convolution networks
(d-TBCNN) and component convolution networks (c-TBCNN).

3.2. Design of Reasoning Model Based on Deep Fusion Matching Network

This paper proposes a semantic fusion deep matching network, referred to as SCF-
DMN. The core of the model is as follows: using the improved AF-DMN model to obtain
the local inference information between sentences and help to obtain the deep reasoning
information; using d-TBCNN to simulate the syntactic structure information of the sentence
to improve the interpretability of the reasoning process; finally, the idea of the control gate is
used to fuse the local inference information and syntactic structure information of sentences
to form the global reasoning information of the reasoning model, thus expanding the
reasoning depth and interpretability of the model.

As shown in Figure 1, the whole matching network consists of five parts: coding layer,
matching layer, dependency convolution layer, information aggregation layer, and inference
prediction layer. The specific functions of each part are as follows:

(1) Coding layer: it mainly completes the transformation from natural language repre-
sentation to sentence embedding representation, including sentence preprocessing,
vectorization, semantic information coding, and embedded representation generation.

(2) Matching layer and dependency convolution layer: they mainly complete the extrac-
tion of local inference information between sentences and syntactic structure inference
information. Moreover, by extracting the interactive information between sentences,
implicit logic is introduced into the reasoning process to improve the interpretability
of the reasoning process.

(3) Information aggregation layer: it mainly completes the integration of representation
information, interactive reasoning information, and syntactic structure reasoning
information. All information is integrated into fixed-length semantic information
using cyclic neural networks and pooling in deep learning.

(4) Reasoning and prediction layer: it mainly completes the output of prediction results
of specific reasoning tasks. In general, linear function and multi-layer fully connected
network are used to infer the global reasoning information after fusion to predict the
implication relationship of a given sentence pair. The detailed structure and function
of the sub-networks are given below.

The detailed explanation and design of each part are given below.

3.2.1. Sentence Coding

In order to avoid the result’s interference of the sentence representation on the judg-
ment of the reasoning model, the coding layer of the deep fusion matching network is
designed in this paper. The bidirectional long-short memory network is used to obtain
the sentence embedded representation of the premise sentence pair (p, q). If there is no
clear indication in the following text, the premise sentence is represented by substitution,
and use p instead of presupposition, use q instead of hypothetical sentences.

Firstly, this paper preprocesses the p and q sentences, including English word seg-
mentation and the removing of stop words, to obtain the word list p = (p1, pi, . . . , pm)
and q = (q1, qj, . . . , qn), where m and n represent the number of words in the sentence
and respectively.
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Then, the bidirectional long-short memory network combined with sentence context
information is used to encode sentence semantic-information, and the hidden layer state hi
of the ith word in the sentence is obtained as shown in Formula (1).

hi = BiLSTM(ei, hi−1, hi+1) (1)

Among them, ei represents the ne dimension word vector corresponding to the i-th
word, which is generated by word2vec technology; hi−1 and hi+1 represent the hidden
layer state corresponding to the previous and the next word of the ith word, respectively.

Combining the hidden layer state of each word in the sentence, we obtain the sentence
embedding representation H, as shown in Formula (2):

H = (h1, hi, . . . , hL) (2)

where H ∈ R1×L, L is the length of the sentence. After the final sentence p and q pass
through the coding layer, the sentences embedded are expressed as Hp = (hp1 , hpi , . . . , hpm)
and Hq = (hq1 , hqj , . . . , hqn).

3.2.2. Local Reasoning Based on Improved AF-DMN

The matching layer of the deep fusion matching network model refers to the chain
structure of the AF-DMN model. It then passes through T identical matching modules to
collect the local interactive reasoning information based on the sequence. The reasoning
information specifically includes the internal context information of sentences p and q,
and the interaction information between sentences p and q.

As shown in Figure 2, each matching module is divided into four sub-layers: interac-
tion layer, interaction fusion layer, self-focus layer, and self-focus fusion layer. The interac-
tion layer obtains the interactive information between sentences p and q. The interaction
fusion layer enhances the extraction process of interactive information. The self-focus layer
obtains the context information within the sentence to solve the long-term dependence
problem. Finally, the self-focus fusion layer enhances the effect of content extraction.
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Before obtaining the interactive information between the premise statement and the
hypothetical statement, it is necessary to obtain the alignment information of the relevant
sub-components between the sentences, namely, the interactive attention matrix. Alignment
information acquisition methods are divided into hard alignment and soft alignment. Hard
alignment [5] requires one-to-one correspondence between words, while soft alignment [22]
is closer to semantic information alignment. Words or phrases with consistent semantics
have a higher weight on the attention matrix. For example, “near” is aligned with “be close
to”. Therefore, the interaction layer of the semantic fusion depth matching network uses the
soft alignment proposed by Chen [23] and calculates the inner product between sentences
p and q to obtain the correlation between sentences.

Firstly, the correlation sub-component weight et between sentences in the ith matching
module is calculated, and et

ij represents the correlation between the ith word in sentence p
and the ith word in sentence q. The calculation method is shown in formula (3).

et
ij = f (Wt[pi, qj] + b) = ht−1

pi
Wtht−1

qj
+ 〈Ut

l , ht−1
pi
〉+ 〈Ut

r , ht−1
qj
〉. (3)

where Wt ∈ R2h×2h, Ut
l ∈ R2h, Ut

r ∈ R2h represents the parameter of the tth matching
module and represents the point multiplication operation.

Then, the weight of relevant sub-components et
ij is replaced into Formulas (4) and (5)

to calculate the correlation matrix at
pi

of the premise sentence q on the hypothetical sentence
q and the correlation matrix at

qj
of the hypothetical sentence p on the premise sentence.

at
pi
=

n

∑
j=1

exp(et
ij)

∑n
k=1 exp(et

ik)
, ∀i ∈ [1, . . . , m] (4)

at
qj
=

m

∑
i=1

exp(et
ij)

∑m
k=1 exp(et

kj)
, ∀i ∈ [1, . . . , n] (5)

where m and n denote the participles number of sentences p and q respectively, and exp(·)
denotes the exponential function with natural constant e as the base.

The interaction information h̃pi between the ith word in the sentence p and the sentence,
q is obtained by solving the correlation matrix at

pi
and the previous matching module Ht−1

p ,
as shown in Formula (6).

h̃t
pi
= Ht−1

p ·at
pi

(6)

where Ht−1
p = (ht−1

p1
, ht−1

pi
, . . . , ht−1

pm ) is the sentence embedding representation of the tth
matching module connected to the t− 1th matching module. Similarly, the interactive
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information h̃qj between the j-th word in the sentence q, and the sentence p can be obtained,
as shown in Formula (7).

h̃t
qj
= Ht−1

q ·at
qj

(7)

where,
Ht−1

q = (ht−1
q1

, ht−1
qj

, . . . , ht−1
qn ).

In order to further enhance the interaction between sentences p and q, SCF-DMN sets
a fusion layer after the interaction layer. Because the interactive information between sen-
tences does not depend on the previous state of a single sentence, a bidirectional long-short
memory network cannot significantly improve the correlation between sentences. How-
ever, it will cause an unnecessary calculation process for the reasoning model. Therefore,
the interaction fusion layer of SCF-DMN only uses the heuristic matching method to fuse
the interactive information h̃t

pi
and h̃t

qj
of sentences p and q.

The calculation formula of the cross fusion representation Ft
pi

and Ft
qj

of sentence p
and q in the t-th matching module are shown in Formulas (8) and (9).

Ft
pi
= [ht

pi
; h̃t

pi
; ht

pi
− h̃t

pi
; ht

pi
� h̃t

pi
] (8)

Ft
pi
= [ht

pi
; h̃t

pi
; ht

pi
− h̃t

pi
; ht

pi
� h̃t

pi
] (9)

where ht
pi
− h̃t

pi
is the similarity difference between the word representation ht

pi
of the

i-th word of sentence p in the t-th matching module and the corresponding interactive
information h̃t

pi
. In the same way, ht

pi
− h̃t

pi
represents the similarity difference of the

word representation ht
qj

of the j-th word of sentence q in the t-th matching module and

corresponding interactive information h̃t
qj

. � represents point multiplication operation,
[. . . ; . . . ; . . .] represents splicing operation.

The self-focus mechanism is introduced into the self-focus layer to solve the long-
term dependence problem in the reasoning process. Long-term dependence means that
the current system’s state may have been affected by the system’s state a long time ago,
especially for long sentences (sentence length is greater than or equal to 17).

For the premise sentence p, firstly, based on the cross fusion representation Ft
pi

obtained
from the interaction fusion layer, the internal correlation degree st

ij of each word in the
sentence is calculated as follows:

st
ij = 〈Ft

pi
, Ft

pj
〉, ∀i, j ∈ [1, 2, . . . , m] (10)

where Ft
pi

and Ft
pj

represent the cross fusion representation of the i-th word and the j-th
word of the sentence p in the first matching module, and m is the number of participles in
the sentence p, and 〈·〉 represents the Euclidean distance solution.

Then, we calculate the self-focus matrix St
pi

of the word using the Formula (11).

St
pi
=

m

∑
i=1

exp(st
ij)

∑m
k=1 exp(st

kj)
(11)

Finally, the self-focus vector h
t
pi

of the i-th word in the sentence, p, is obtained by multi-
plying the self-focus matrix with the cross-fusion representation, as shown in Formula (12).

h
t
pi
= Ft

pi
·St

pi
(12)

Similarly, we can obtain the self-focus vector h
t
qj

of the j-th word in the sentence q,
as shown in Formula (13).

h
t
qj
= Ft

qj
·St

qj
(13)
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In this layer, in addition to using the heuristic matching method to model the high-order
information between words in a sentence, a bidirectional long-short memory network is used

to strengthen the internal information dependence of the h
t
pi

and h
t
qj

of self-focus vectors.
For the premise sentence p, the heuristic matching method is used to obtain the

self-focus fusion information ĥt
pi

of the word.

ĥt
pi
= [Ft

pi
; h

t
pi

; Ft
pi
− h

t
pi

; Ft
pi
� h

t
pi
] (14)

Then, the fusion information of self-focus ĥt
pi

is input into bidirectional long-term
and short-term memory network after activation function to further enhance the capture
of internal information dependency, and the top-level hidden layer state is taken as the
enhanced local interactive reasoning information ĥt

pi
. The whole calculation process is

shown in Formulas (15) and (16).

h′tpi
= σ(Wt

h ĥt
pi
+ bt

h) (15)

ht
pi
= BiLSTM(h′tpi

, ht
pi−1

, ht
pi+1

) (16)

where σ(·) represents the activation function, Wt
h and bt

h represent the parameters of the
activation function; ht

pi−1
and ht

pi+1
represent the context of the first word in the sentence.

Then, the interactive inference information Ht
p of the premise sentence p and the local

interactive inference information Ht
q of the sentence q obtained by the t-th matching module

in the matching layer are shown in Formula (17) and Formula (18).

Ht
p = (ht

p1
, ht

pi
, . . . , ht

pm) (17)

Ht
q = (ht

q1
, ht

qj
, . . . , ht

qn) (18)

The matching layer of SCF-DMN adopts a circular chain network, and the whole
matching layer consists of t-th identical matching modules. The above calculation process
is repeated in turn. Finally, the output of the t-th matching module is used as the local
interactive inference information vq and vq.

3.2.3. Syntactic Structure Modeling Based on d-TBCNN

The semantic fusion depth matching network designed in this paper uses a depen-
dency tree convolution network (d-TBCNN) to collect sentence syntactic structure reasoning
information and improve inference information.

As shown in Figure 3, the dependency convolution network will perform a convolution
operation on each subtree according to the result of the dependency analysis tree of the
sentence, extract the syntactic structure features of the subtree, and then splice all the
syntactic structure features to form the syntactic structure inference information of the
sentence. The specific calculation steps are as follows:
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(1). Firstly, the natural language parser [24] proposed by Stanford University is used to
transform sentences into a dependency syntax tree. Taking the premise sentence
as an example, each node in the syntax tree corresponds to a word in the sentence.
The arc between nodes indicates that the node (child node) and node (parent node)
have a dependency relationship, and the arc is marked with the syntax relationship
between the two nodes [25]. Because there are too many dependencies between
words, some are meaningless for inferring sentence structure information. Therefore,
referring to the work of Mou [26], the dependency convolution layer only retains
34 grammatical relationships that are frequently used and are more important. Some
of the dependencies are shown in Table 3.

Table 3. Partial dependency tags and comments.

Sign Relationship Type

SBV Subject–verb
VOB Verb–object
IOB Indirect–object
FOB Fronting–object

(2). (Then, the syntactic structure features corresponding to the subtree are extracted
along with the dependency subtree. The feature extractor adopts a double-layer
convolution layer [27]. Suppose that the child nodes connected to the parent node
npd are nci (i = 1, 2, . . . , mc), in which mc represents the total number of child nodes.
For each subtree yc, the extracted local sentence structure features are as follows:

yc
pi
= f (Wd

pd
·pd +

n

∑
j=1

Wd
r[cj ]
·cj + bd) (19)

Among them, the structural feature yc ∈ Rmc , pd is the word embedding vector
corresponding to the parent node, and the word embedding vector corresponding to the
j-th child node is cj. The word vector representations in the dependency tree are obtained
by pretraining in the coding layer. Wd

p ∈ Rmc×ne is the weight corresponding to the node,
the weight assigned according to the dependency type between words is Wd

r[ci ]
∈ Rmc×ne .

bd ∈ Rmc is the offset vector, in which r[cj] represents the dependency relationship between
nodes p and cj.

(3). By pooling the structural features of each subtree in the sentence p, the syntactic
structure features of the sentence p are shown in Formula (20), and the syntactic
structure features uq of the sentence q are shown in Formula (21).

up = (yc
p1

, yc
pi

, . . . , yc
pm) (20)

uq = (yc
q1

, yc
qj

, . . . , yc
qn) (21)

3.2.4. Global Reasoning Information

The purpose of the information aggregation layer is to combine the matching semantics
vp and vq extracted from the matching layer, and the syntactic structure features up and uq
are extracted from the tree convolution layer to construct the input of the final inference
prediction layer.

For the premise sentence p, firstly, the local interactive inference information vp of the
sentence is connected with the corresponding syntactic structure features up. The fusion
proportion of each part is determined by adding a control gate. For the i-th word in the



Appl. Sci. 2022, 12, 3416 10 of 18

premise sentence p, the calculation process of the fusion reasoning information is shown in
Formula (22). 

x′pi
= [vpi ; upi ]

gpi = sigmod(Wg
p x′pi

+ bg
p)

xpi = gpi � x′pi

, , (22)

where gpi is the control gate, [; ] represents the splicing operation, � represents the point
multiplication operation, and Wg

p represents the training parameters.
Then, the global inference information Vp = (hp1 , hpi , . . . , hpm) of sentence p is gen-

erated by the bidirectional long-short memory network. The calculation formula of the
global inference information of each word is shown in Formula (23).

→
h pi = BiLSTM(xpi ,

→
h pi−1)←

h pi = BiLSTM(xpi ,
←
h pi+1)

hpi = [
→
h pi ,

←
h pi ]

(23)

Similarly, the global inference information Vq = (hq1 , hqj , . . . , hqn) of the sentence q can
be obtained.

3.2.5. Result Reasoning and Prediction

The length of the global reasoning information generated by the information aggre-
gation layer is consistent with the original length of the sentence, which may lead to the
sentence pair being unable to achieve reasoning because of the inconsistent information
length. Therefore, in order to unify the sentence dimension without changing the infer-
ence information, the inference prediction layer of SCF-DMN designed in this paper uses a
pooling operation to convert the inference information Vp and Vq and the fixed-length input.

There are two common pooling operations: average pooling and maximum pooling.
Maximum pooling only retains the most robust features for the fused semantic information.
It discards the weaker features to reduce the impact of noise and improve the robust-
ness of the model. The disadvantage of maximum pooling is that it is easy to lose the
feature location information. However, it can be made up by combining with average
pooling. Therefore, the SCF-DMN model refers to the work of Chen [23], adopts the
method of average pooling and maximum pooling set, and then splices the results to
form the final fixed-length sentence pair vector V. The calculation process is shown in
Formulas (24) and (25). 

vp_ave = ∑m
i=1

Vpi
m , v

i=1
m

maxpi p_max

vq_ave = ∑n
j=1

Vqj
n , v

j=1
n

maxqj q_max

(24)

V = [vp_ave ; vp_max; vq_ave; vq_max] (25)

where [; ] is the splicing operation.
The sentence pair vector V is input into the multi-layer perceptual classifier to calculate

the probability Pi of each tag in the corresponding task. For all tasks, the objective function
of training is to minimize cross-entropy, as shown in Formula (26).

L = −
N

∑
i=1

[yilogPi + (1− yi)log(1− Pi)] (26)

where yi is the relation label; N represents the total number of sentence pairs.
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4. Results

In this paper, an NVIDIA GeForce GTX 1070 video card is used in the experiment.
All experimental codes are built based on the Theano framework. Based on the parameters
of previous studies on the same datasets, the parameters of the semantic fusion deep
matching network are set as follows:

• The maximum length of the sentence is set to 100. The model uses word2vec tech-
nology [28] to obtain the word embedding vector, where the dimension of the word
embedding vector is 300, and GloVe-840B-300D is used to initialize the pretraining
word vector. For words not included in the dictionary, the value of [−0.1, 0.1] is used for
random initialization, and the word vector is kept updated with the training process.

• The dimensions of all LSTM networks in the model are 300, the activation function
adopts the Relu function, and the weight parameters in the network are initialized
randomly [29].

• The model optimization uses the Adam optimization algorithm [30], the default
parameters 1α and 2α are set to 0.9 and 0.99, respectively, and the initial learning rate
of the network is set to 0.0002.

• In order to prevent data overfitting, we use the Dropout strategy during training [31].
The input and output layers of each layer of the network are added to the Dropout
layer and the dropout is set to 0.8.

• For the SNLI dataset, the training process, the number of training batches, and the
number of verification matches are set to 32; for the Multi-NLI dataset, the number of
training batches and the number of verification matches in the training process is set
to 8.

• For the SNLI dataset, the number of matching modules in the matching layer is set to
3; for the Multi-NLI matching module, the number T is set to 2 [20].

• The models are tested on two datasets to see if they could produce the correct answer or
not. The accuracy of their performances is then calculated as the main evaluation index.

4.1. Experimental Results on SNLI Dataset

The reasoning models based on the model of Li and the model of this paper are
designed and compared. The experimental results of each model on the SNLI dataset are
shown in Table 4.

Table 4. Accuracy of each model on SNLI dataset.

Model Training (%) Test Set (%)

300D Tree-CNN (Mou et al., 2015) 83.3 82.1
300D NSE (Munkhdalai et al., 2016) 86.2 84.6

100D LSTMs with attention (Rocktäschel et al., 2015) 85.3 83.5
100D Deep Fusion LSTM (Liu et al., 2016) 85.2 84.6
300D Matching-LSTM (Wang et al., 2015) 92.0 86.1

200D Decomposable Attention Models (Parikh et al., 2016) 90.5 86.8
300D Re-read LSTM (Sha et al. 2016) 90.7 87.5

600D ESIM (Chen et al. 2017) 92.6 88.0
AF-DMN (Duan et.al., 2017) 94.5 88.6

Model in this paper 95.8 89.0

The coding-based reasoning model includes (1) the TBCNN model combining sentence
structure information into sentence representation [26]; (2) memory-enhancing neural
network NES proposed by Munkhdalai [32].

Matching based reasoning models include (1) matching reasoning model based on
attention mechanism [33]; (2) matching LSTM model using match LSTM instead of tradi-
tional LSTM network based on matching model [34]; (3) re-read LSTM model focusing on
attention vector interaction in sentences [35]; (4) deep fusion that pays more attention to
text-to-text interaction LSTM model [36]; (5) decomposable attention model using attention
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mechanism to decompose the responsible problem into subproblems that can be solved
independently [22]; (6) ESIM model including chain LSTM and tree LSTM [23].

4.2. Results on Multi-NLI Datasets

Compared to Multi-NLI datasets, comparison models can be divided into baseline
and attention-based reasoning models, as shown in Table 5.

Table 5. Accuracy of each model on Multi-NLI dataset.

Model Matching Set (%) Unmatched Set (%)

CBOW (Williams et al., 2018) 64.8 64.5
BiLSTM (Williams et al., 2018) 66.9 66.9

ESIM (Chen et al., 2017) 76.8 75.8
AF-DMN (Duan et al., 2018) 76.9 76.3

Model in this paper 77.1 75.3

The performance of each model on the Multi-NLI dataset is shown. The baseline
model CBOW and BiLSTM [13] have 64.8% and 66.9% accuracy on the Multi-NLI dataset
and 64.5% and 66.9% on the unmatched set, respectively. The accuracy rates of ESIM [37]
and AF-DMN model [20] based on attention mechanism are similar on the matching test
set, which are 76.8% and 76.9%, respectively, and the accuracy on the unmatched set is
75.8% and 76.3%, respectively. In contrast, the accuracy of the SCF-DMN model designed
in this paper is 77.1% on the matched dataset and 75.3% on the non-matching set.

5. Discussion
5.1. Analysis of Prediction Accuracy

The SNLI results show that the accuracy of the matching-based reasoning model
is higher than that of the sentence coding-based reasoning model on the SNLI test set.
The highest accuracy rate of the AF-DMN model is 88.6% of that of the AF-DMN model.
The reasoning model based on semantic fusion depth matching network (SCF-DMN)
designed in this paper achieves 95.8% and 89.0% accuracy in the SNLI training set and
test set, respectively, which improves by 1.3% and 0.4% compared with the AF-DMN
model. This shows that the SCF-DMN model has deeper reasoning depth and can capture
the interactive information between sentences better than the AF-DMN model, indirectly
indicating that the SCF-DMN model is added to the reasoning process. The syntactic
structure information is effective and can promote the inference result.

The Multi-NLI results show that the performance of the SCF-DMN model is better
than AF-DMN on the matching set, but the data on the unmatched set is lower than AF-
DMN. This result may be because the data in the unmatched set does not appear in the
training data completely. Therefore, some relations not shown in the training data may not
be learned. At the same time, the simple bidirectional long-term and short-term memory
network (BiLSTM) is only used in the coding layer, which may lead to the deviation of the
content expression of complex sentences, resulting in a poor learning effect.

5.2. Analysis of Semantic Relevance

Figure 4 shows the visual results of semantic correlation between the premise sentence
“a person is training his horse for a competition.” and the hypothetical sentence “a person
on a horse jumper over a broken-down airplane.” the darker the color, the stronger the
correlation between them.

The SCF-DMN model focuses on the close relationship between the core word “train-
ing” and the core word “jumps” in the hypothetical sentence, and “competition” is closely
related to “airport”. At the same time, it is also concerned that the correlation between the
subject “person” and “horse” in the premise sentence and the subject “person” and “horse”
in the hypothetical sentence is significantly higher than that with other words.
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Figure 5a,b, respectively, show the dependency syntactic relationship between the
premise and hypothetical sentences. The result is consistent with the result of sentence pair
correlation. Thus, it shows that adding syntactic structure information to the SCF-DMN
model can promote the capture of sentence structure information and the interpretation of
the reasoning process.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18 
 

Figure 4 shows the visual results of semantic correlation between the premise sen-
tence “a person is training his horse for a competition.” and the hypothetical sentence “a 
person on a horse jumper over a broken-down airplane.” the darker the color, the stronger 
the correlation between them. 

 
Figure 4. Visual results of sentence to semantic correlation analysis. 

The SCF-DMN model focuses on the close relationship between the core word “train-
ing” and the core word “jumps” in the hypothetical sentence, and “competition” is closely 
related to “airport”. At the same time, it is also concerned that the correlation between the 
subject “person” and “horse” in the premise sentence and the subject “person” and 
“horse” in the hypothetical sentence is significantly higher than that with other words. 

Figure 5a,b, respectively, show the dependency syntactic relationship between the 
premise and hypothetical sentences. The result is consistent with the result of sentence 
pair correlation. Thus, it shows that adding syntactic structure information to the SCF-
DMN model can promote the capture of sentence structure information and the interpre-
tation of the reasoning process. 

 
(a) 

 
(b) 

Figure 5. Dependency syntax. (a) Presupposition sentence; (b) hypothetical sentence. 

5.3. Ablation Analysis 
In order to verify each module′s influence of the SCF-DMN model on the model, an 

ablation test of the module was carried out on the SNLI dataset. The specific test results 
and analysis are as follows: 

Figure 5. Dependency syntax. (a) Presupposition sentence; (b) hypothetical sentence.

5.3. Ablation Analysis

In order to verify each module’s influence of the SCF-DMN model on the model,
an ablation test of the module was carried out on the SNLI dataset. The specific test results
and analysis are as follows:

5.3.1. The Influence of Interactive Fusion Mode

In order to explore the impact of interactive fusion on semantic fusion deep match-
ing networks, this paper compares the impact of two interactive fusion methods on the
performance of the SCF-DMN model, namely, heuristic matching mode and heuristic
matching + BiLSTM network. The final experimental results are shown in Table 6.
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Table 6. Comparison of the influence of different interactive fusion methods on semantic fusion
depth matching network.

Interactive Integration Mode Accuracy
Rate (%)

Best
Iteration

Training
Time (h)

Hyper-
Parameters

Heuristic matching + BiLSTM 88.7 9 26.87 47,071,203
Heuristic matching 89.0 8 22.87 43,285,803

The experimental results show that the heuristic matching method improves the
accuracy rate by 0.3% and reduces the number of super parameters by 8%. Moreover,
under the same training parameters, the training time is also reduced by 4 h. However,
since there is not much correlation between the interactive information of sentences in the
interaction fusion layer, the BiLSTM network does not improve the model’s performance.
On the contrary, it will introduce redundant information to reduce the reasoning accuracy
and increase the super parameters.

Figure 6 shows the learning curve of the SFC-DMN model with the heuristic matching
method and SCF-DMN model with BiLSTM network and heuristic matching method on
the SNLI dataset. The figure shows that the learning curve of the SCF-DMN model with
the heuristic matching method tends to stabilize faster. As a result, the final stable state’s
accuracy of the former model is higher than that of the latter.
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After the above comparison, it can be found that the information of the fusion layer
has a certain impact on improving the model’s accuracy. This is because the heuristic
matching method can emphasize the similarity and differences between sentence pairs.
However, at the same time, if the fusion information is further strengthened, it will lead to
information redundancy and reduce the model’s performance.

5.3.2. The Influence of Syntactic Structure Information

In order to analyze the influence of syntactic structure information on semantic fusion
depth matching network, this paper designs and compares the performance of the SCF-
DMN model and SCF-DMN model, excluding dependent convolution layer on SNLI
dataset. The experimental results are shown in Table 7.
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Table 7. Comparison of effects of dependent convolution layer on SCF-DMN model performance.

Model Composition Accuracy Rate (%) Training Time (H) Hyper-Parameters

SCF-DMN 89.0 22.87 43,285,803
SCF-DMN (without

dependent convolution layer) 88.3 14.15 23,535,603

As shown in Table 7, compared with the SCF-DMN model, the training time of the
SCF-DMN model without a dependent convolution layer is reduced by 38.1%. The accuracy
rate on the SNLI dataset is reduced by 0.7%, and the accuracy rate is reduced by 0.3%
compared with the AF-DMN model.

As shown in Figure 7, the learning curves of each model on the SNLI dataset are
shown. It is found that the convergence speed of the SCF-DMN model (without dependency
convolution layer) is faster than that of the SCF-DMN model. However, after it is stable,
the accuracy rate of the SCF-DMN model on SNLI data is significantly higher than that
of the SCF-DMN model (without dependency convolution layer). It is consistent with
the results in Table 7, indicating the inference process between sentences by dependency
convolution layer. Thus, it has an essential promoting effect.
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Although this paper explores sentence representation and reasoning methods from
the perspective of the reasoning model, which improves the reasoning accuracy to some
extent, it is far from achieving the best effect. Given this, future research can be further
studied from the following limitations of this study, including improving hardware quality
with custom ASIC or FPGA [38], considering the heavy calculation requirements for the
proposed model.

6. Conclusions

At present, the field of NLI has become another research hotspot after the field of
images. Many scholars have carried out research work in this field. This paper first intro-
duces some basic reasoning models with their series of challenges. It then introduces the
principles, advantages, and disadvantages of the AF-DMN and tree convolution networks.
Finally, this paper proposes a deep fusion matching network to the reasoning model, aim-
ing at the lack of reasoning depth and interpretability. The network consists of the coding,
matching, dependency convolutional, information aggregation, and inference prediction
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layers. The matching layer is improved based on the deep matching network. The heuristic
matching algorithm replaces the complex neural network as the interactive fusion mode of
matching information, which improves the reasoning depth and reduces the complexity
of the model. The dependency convolutional layer uses a tree convolutional network
to extract the structural information of sentences along the dependency tree structure of
sentences to make up for the unexplainably of the reasoning process. The experimental
results show that the reasoning effect of the network is superior to that of the shallow
matching reasoning model, and the accuracy rate on the SNLI test set reaches 89.0%. At the
same time, it is found from the visualization results that the explanatory ability of the
reasoning process by relying on the convolutional layer is significantly improved.

However, due to cognition and understanding, sentence representational reasoning
is still the focus and difficulty in this field. The inference model in this paper is designed
only considering the characteristics of the inference domain of sentence representation.
Its design and performance are narrowed to this specific idea and purpose. However, with
the development of transfer learning, it is found that introducing other natural language
processing tasks with similar semantic characteristics to the target domain can help improve
the performance of the target domain.
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