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Abstract: Fluid–structure interactions of flexible net panels are complex and lack sufficient explo-
ration. To examine the flow characteristics of flexible net panels with large deformation, we propose
a partitioned coupling scheme in this paper. The coupled fluid–structure equations are solved sep-
arately under finite volume and finite element frameworks. The interface traction from the fluid
solver is considered as a Neumann boundary condition for the solid domain, and the interface
velocity is applied as a Dirichlet boundary condition for the fluid problem. Then, the forces can be
transferred along the interface via Dirichlet-to-Neumann mapping. The results show that both the
drag coefficient and the velocity reduction increase alongside the net solidity ratio (Sn), but they
decrease as the Reynolds number/attack angle increases. A comparative study of drag coefficients
is made between the present numerical simulations and the analytical predictions. This paper also
examines the velocity distribution and vortex formation of flexible net panels. A single vortex forms
in the shear layers and the wake when Sn = 0.16, and a pair of vortices mostly forms in the wake
when Sn = 0.33. The vertical net twines predominantly affect the formation of the vortex behind the
net, leading to delayed vortex shedding. The flow exhibits wake interactions due to the interference
between the net twines in the high-solidity net panel. No such interference occurs in the low-solidity
net panel, but the altered shear layers could cause severe velocity fluctuations in the near field.

Keywords: flexible net panel; fluid–structure interactions; partitioned coupling scheme; vorticity

1. Introduction

Large-scale offshore aquaculture farming has become a sustainable method of feeding
the world, since the practice of farming the ocean is growing rapidly. However, potentially
high-energy oceanic conditions such as strong currents can cause net deformation, signifi-
cantly influencing the current forces on and oxygen levels inside the cages. Understanding
the fluid–structure interactions supports the longevity of the systems and is, therefore,
vitally important for designing offshore aquaculture cages.

Research, including experimental studies and analytical/numerical predictions for
estimating the fluid forces on nets, have been examined thoroughly [1]. According to their
report, to numerically analyze the nets in currents and waves, a structure solution method,
such as the finite element method [2–8]; a fluid solution method, such as computational
fluid dynamics (CFD) method [9–14]; and a coupled fluid–structure interactions (FSI)
method [15–18] have been established. Alongside these three methods, two hydrodynamic
force models are suggested to calculate viscous forces on nets [19]. Dependent on how
a net is approximated, the hydrodynamic force models can either be the Morison-type force
model or the screen-type force model.

The finite element method (FEM) focuses on the structural models. The net is modeled
with triangular/truss elements or mass-spring systems. The hydrodynamic forces on

Appl. Sci. 2022, 12, 3399. https://doi.org/10.3390/app12073399 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12073399
https://doi.org/10.3390/app12073399
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2485-0558
https://doi.org/10.3390/app12073399
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12073399?type=check_update&version=3


Appl. Sci. 2022, 12, 3399 2 of 24

the net are calculated based on the Morison equation or the screen-type force model.
The Newton–Raphson and Rouge–Kutta approaches are used to solve the equations of
motion. These FEM models are computationally efficient because they model the net in
a mesh grouping manner without losing the geometrical and physical properties. However,
a comparative study showed that FEM-based models over-predicted the drag force of the
net [20]. One possible reason is that the interference of the flow field is not considered.
Thus, further development of the numerical models is suggested.

CFD-based numerical models such as the porous media model have been developed
to examine the flow field and velocity distribution around and inside net cages. In the
porous model, the net is approximated by a porous media sheet instead of an equivalent
system of cylinders. Considering the fluid viscosity, the Reynolds-averaged Navier–Stokes
(RANS) equations and turbulence models are used to ascertain the underlying fluid mech-
anisms. However, the porous media model is based on the Darcy–Forchheimer law and
it requires the prescribed resistance coefficients. Chen and Christensen [16] directly used
free coefficients, namely the normal and tangential resistance coefficients, in porous media
simulations by neglecting the Darcy–Forchheimer dependencies, since it was challenging
to incorporate all aspects of the properties influencing the force on a net. Note that using
a porous media model leads to a constant pressure-loss zone rather than a natural pres-
sure drop. Moreover, the strategy used to resolve net deformation in the porous media
model is likely the overset mesh, which leads to overlapped regions in the intersectional
zones [16,21]. These issues need to be addressed.

FEM offers effective structural models, while a CFD-based porous media model fa-
cilitates the fluid field-analysis. Together, the structural model (e.g., lumped-mass model)
and the porous media model have been used to examine the FSI between the fluid and the
flexible nets [15]. This coupled FSI model takes net deformation into account using an itera-
tive scheme. It assumes that a steady condition is satisfied at each iteration. Prompted by
Bi et al. [15], Chen and Christensen [16] conducted an FSI analysis of an aquaculture net
cage under steady flow using a coupled model, which combines the porous media model
and the lumped-mass structural model. However, it seems that their model was unable to
predict net twines’ flow characteristics. Most recently, Martin et al. [21] developed a La-
grangian approach for the coupled simulation of aquaculture net panels in a Eulerian fluid
model based on the immersed boundary methods. Instead of using a porous media model,
the net was represented by Lagrangian points, and the RANS equations were solved in
a Eulerian fluid domain. Their model has been validated for rigid [18] and flexible nets [22].
Still, the flow characteristics of the individual net twines and their interactions have not
been settled. These drawbacks of the porous media model and the net deformation in
the FSI framework should be resolved to significantly advance the numerical modeling of
flexible nets and cages.

Depending on whether the governing fluid–structure equations are solved together or
separately, the numerical schemes of the FSI problems are classified into two approaches:
monolithic and partitioned schemes. In a monolithic scheme [23–27], the coupled non-
linear governing equations are solved together using an iterative technique such as the
Newton–Raphson scheme. This approach requires coupling matrices and much more
computational resources. In the partitioned/staggered scheme [28–30], the coupled equa-
tions are solved separately in the fluid and solid subdomains to obtain the fluid–structure
solutions. This approach allows variables to be transferred between individual solvers
via an interface [31–34]. It seems that the partitioned approaches are virtually favored for
accuracy and efficiency as they support staggered coupling among fluid, structural and
mesh movement in either a loose or tight manner.

To facilitate a better understanding of the flow characteristics of the flexible net panel
and mutual interactions of the net twines, this paper proposes a coupled fluid–structure
partitioned scheme, to conduct accurate and computationally efficient simulations for the
FSI problems regarding net deformation under steady flow. This partitioned coupling
scheme has second-order accuracy in time. By constructing the subdomains for the fluid
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and the structure, and imposing Dirichlet boundary conditions on the fluid and Neumann
boundary conditions on the structure, the governing fluid–structure equations can be solved
separately. Then the variables, namely the forces, are transferred along the interface via
a predictor–corrector scheme. An arbitrary Lagrangian–Eulerian formulation is employed
to accommodate the independent mesh motion at each time step.

In what follows, we first introduce the governing fluid–structure equations in Section 2.
This is followed by the numerical solutions of fluid–structure equations in Section 3.
Section 4 presents the partitioned coupling formulation. Section 5 elaborates on the numeri-
cal setup and verification. With this, we then provide the velocity and vorticity distribution
of flexible net panels under steady flow in Section 6. Section 7 gives a summary of the
method and the conclusions of this paper.

2. Governing Fluid–Structure Equations
2.1. Governing Equations for the Fluid

We consider a three-dimensional flexible net panel Ωs interacting with an incompress-
ible steady flow Ω f (t). The Navier–Stokes equations for an isothermal, incompressible, vis-
cous fluid flow on a deformable spatial domain Ω f (t) in an arbitrary Lagrangian–Eulerian
(ALE) formulation are:

ρ f ∂u f

∂t
+ ρ f (u f −w)·∇u f = ∇·σ f + f f in Ω f (t) (1)

∇·u f = 0 in Ω f (t) (2)

where ρ f is the fluid density; u f = u f (x, t) and w = w(x, t) represent the fluid and mesh
velocities at each defined spatial point x ∈ Ω f (t), respectively; f f is the fluid body force;
and σ f is the Cauchy–stress tensor for a Newtonian fluid, written as:

σ f = −pI + 2µ f ε f
(

u f
)

, ε f
(

u f
)
=

1
2

[
∇u f +

(
∇u f

)T
]

(3)

where p is the fluid pressure; I denotes the second-order identity tensor; µ f is the dynamic
viscosity of the fluid; ε f is the rate-of-strain tensor; and superscript T means transpose.

The ALE formulated Navier–Stokes Equations (1) and (2) in the weak form can be
written as: ∫

Ω f (t) ρ f
(

∂u f

∂t +
(

u f −w
)
·∇u f

)
·φ f dΩ +

∫
Ω f (t) σ f : ∇φ f dΩ

=
∫

Ω f (t) f f ·φ f dΩ +
∫

Γ f
n(t)

T f ·φ f dΓ +
∫

Γ(t)

(
σ f (x, t)·n f

)
·φ f (x)dΓ

(4)

∫
Ω f (t)

q∇·u f dΩ = 0 (5)

Here, φ f and q are the smooth test functions for the fluid velocity and pressure,
respectively; Γ f

n(t) represents the fluid Neumann boundary, where σ f (x, t)·n f = T f ; n f

is the normal to the fluid boundary. The update to the deformable fluid subdomain is
enforced by the ALE formulation [35,36].

The Reynolds-averaged equation is not closed, so it must be solved in combination
with the turbulence model equation. In this paper, the shear stress transmission k − ω
turbulence model (SST k − ω) is selected, and the expression is as follows:

ρ
∂k
∂t

+ ρ
∂

∂xi
(kui) =

∂

∂xj

(
Γk

∂k
∂xj

)
+ Gk −Yk + Sk (6)

ρ
∂ω

∂t
+ ρ

∂

∂xi
(ωui) =

∂

∂xj
(Γω

∂ω

∂xj
) + Gω −Yω + Dω + Sω (7)
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Here, k is the turbulent kinetic energy; ω is the turbulent dissipation rate; Gk and Gω

are the generation terms of turbulent kinetic energy; and Γk and Γω represent the effective
diffusivity of k and ω. Yk and Yω represent the dissipation terms of k and ω, respectively;
Dω is the cross-diffusion term; and Sk and Sω are the user-defined source terms.

2.2. Governing Equations for the Structure

The net panel subjected to waves and currents can be modeled as either equivalent
truss elements [4,6] or mass-spring systems [37–39]. The deformation of the net panel is
governed by the structural equation:

ρs ∂us

∂t
= ∇·σs + fs in Ωs (8)

where ρs is the structure density; us = us(x, t) is the velocity of the net panel defined at each
material point x ∈ Ωs; fs represents the external fluid forces acting on the net panel; and σs

denotes the first Piola–Kirchhoff stress tensor. The solution technique of these differential
equations is dependent on Newmark-β method (Newmark, 1959).

In the present study, we use the principle of virtual work to express the equations
of motion and equilibrium of stresses acting on the net panel. Consider a net panel with
a mass density ρs that deforms under external fluid forces, where in representative points
on the net panel are specified by their position vectors. The weak form of the structural
dynamics Equation (8) can be written as:∫

Ωs ρs ∂us

∂t ·φ
sdΩ +

∫
Ωs σs : ∇φsdΩ

=
∫

Ωs fs·φsdΩ +
∫

Γs
n

Ts·φsdΓ +
∫

Γ0
(σs(x, t)·ns)·φs(x)dΓ

(9)

Here, φs is the displacement function that maps each Lagrangian point x ∈ Ωs to its de-
formed position at time t; Γs

n represents the solid Neumann boundary and σs(x, t)·ns = Ts;
and Γ0 denotes the fluid–structure interface Γ(t) at time t = 0.

2.3. Governing Equations for the Fluid–Structure Interface

We only consider the external fluid forces as the solid Neumann boundary. Two
interface boundary conditions corresponding to the traction and velocity continuity condi-
tions must be satisfied along the fluid–structure interface. The weak form of the traction
continuity condition is given as:∫

Γ(t)

(
σ f (x, t)·n f

)
·φ f (x)dΓ +

∫
Γ0

(σs(x, t)·ns)·φs(x)dΓ = 0 (10)

One may observe that u f and us are defined on different domains Ω f (t) and Ωs,
respectively, and the condition

φ f (φs(x, t)) = φs(x) (11)

Can be achieved by considering a conforming mesh along the interface Γ0 with φs(x, t)
being the position vector of the deformable net panel.

3. Numerical Solutions of Fluid–Structure Equations
3.1. Numerical Solutions of the Fluid Equations

The ALE formulations of the fluid equations can be written in dimensionless form as:

∂u
∂t

+ (u−w)·∇u +∇p =
1

Re
∇2u + f f (12)

∇·u = 0 (13)

We use a finite volume method to discretize the fluid equations. The pressure-implicit
splitting of operators (PISO) scheme is employed for the velocity-pressure coupling. The
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spatial discretization of the pressure and momentum is conducted using second-order
and second-order upwind schemes, respectively. The temporal discretization is conducted
using a second-order implicit scheme.

By introducing the intermediate velocity, u∗, the velocity and pressure fields are
calculated separately to avoid pressure oscillation. The solution procedure of the fluid
equations is based on Chorin [40] for pressure matching and is described as:

Step 1: Predict the velocity:

u∗ − un

∆t
+ (un −wn)·∇un =

1
Re
∇2un +

∆t
2
(un −wn)·∇((un −wn)·∇un) (14)

Step 2: Update the pressure:

∇2pn+1 =
∇·u∗

∆t
(15)

Step 3: Correct the velocity:

un+1 − u∗

∆t
= −∇pn+1 +

∆t
2
(un −wn)·∇pn (16)

where Re denotes the Reynolds number; ∆t = tn+1 − tn is the time length between steps[
tn, tn+1]. The inlet velocity is prescribed for Steps 1 and 3; the outlet pressure is set for

Step 2; and the algebraic equations are solved by the Algebraic Multigrid (AMG) solver.

3.2. Numerical Solutions of the Structural Dynamic Equations

The generalized-α method [41] is employed for the nonlinear structural dynamics. The
virtual work equation for the structural dynamics can be written as the following system
of equations:

MS
..
d

n+1−αs
m
+ CS

.
d

n+1−αs
f + KSdn+1−αs

f = R
n+1−αs

f
s (17)

where MS is the mass matrix; CS is the damping matrix; KS is the stiffness matrix; and Rs
is the force vector. Based on the generalized-α method [41], these vectors are expressed by:

..
d

n+1−αs
m
= (1− αs

m)
..
d

n+1
+ αs

m
..
d

n
(18)

.
d

n+1−αs
f = (1− αs

f )
.
d

n+1
+ αs

f

.
d

n
(19)

dn+1−αs
f = (1− αs

f )d
n+1 + αs

f dn (20)

Rs
n+1−αs

f = (1− αs
f )Rs

n+1 + αs
fRs

n (21)

We consider the implicit Newmark time integration method [42] for the acceleration
and velocity at tn+1:

..
d

n+1
=

1
β∆t2 (d

n+1 − dn)− 1
β∆t

.
d

n
− 1− 2β

2β

..
d

n
(22)

.
d

n+1
=

γ

β∆t
(dn+1 − dn)− γ− β

β

.
d

n
− γ− 2β

2β
∆t

..
d

n
(23)

The acceleration and velocity vectors at the generalized midpoints are:

..
d

n+1−αs
m
=

1− αs
m

β∆t2 (dn+1 − dn)− 1− αs
m

β∆t

.
d

n
− 1− αs

m − 2β

2β

..
d

n
(24)

.
d

n+1−αs
f =

(1− αs
f )γ

β∆t
(dn+1 − dn)−

(1− αs
f )γ− β

β

.
d

n
−

(1− αs
f )(γ− 2β)

2β
∆t

..
d

n
(25)

The time integration parameters β, γ, αs
m and αs

f are expressed as:
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β =
1
4
(1− αs

m + αs
f )

2, γ =
1
2
− αs

m + αs
f , αs

m =
2ρs

∞ − 1
ρs

∞ + 1
, αs

f =
ρs

∞
ρs

∞ + 1
(26)

where the spectral radius ρ∞ ∈ [0, 1]. The fluid and solid subdomains are solved iteratively for
partitioned treatment and domain decomposition. The next section of this paper will address
the coupled fluid–structure matrix formulation and iterative force correction procedure.

4. Partitioned Strong Coupling Formulation

The structural dynamic system regarding fluid–structure interaction discretized by
a finite element method gives coupled linear equations. The system of Equations (17)–(26)
includes 12 equations and 12 unknown terms concerning displacement, velocity, accelera-
tion and force. All quantities associated with time instant tn are known. Eliminating all
quantities associated with fractional time instants between tn and tn+1, together with the
Dirichlet-to-Neumann mapping along the interface

d f = ds = d f ,
.
d

f
=

.
d

s
, R = Rs = −R f (27)

yields 

dn+1

.
d

n+1
∆t

..
d

n+1
s ∆t2

dn+1
f ∆t2

Rn+1∆t2


=

 Astrong




dn
.
d

n
∆t

..
d

n
s ∆t2

dn
f ∆t2

Rn∆t2


(28)

where Astrong is a five-dimensional amplification matrix. The coefficients of Astrong are
dependent on the mass, damping and stiffness matrices, as well as on the time integration
parameters ρs

∞ and ∆t.
The system (26) is unconditionally stable if the spectral radius ρ∞ ≤ 1 for any time

step size ∆t. According to (Dettmer and Perić, 2012), the spectral radius of an amplification
matrix of dimension κ is defined as

ρ∞ = max(|λ1|, |λ2|, · · · , |λκ| ) (29)

Here, λi are the eigenvalues of the amplification matrix. The eigenvalues of Astrong
were evaluated by Joosten et al. [43] for various parameters. Their evaluations suggested
that unconditional stability could be achieved in all cases if the spectral radius ρ∞ ≤ 1.
Thus, in this paper, we specify ρs

∞ = 0.5 for elastic bodies (Dettmer and Perić, 2006).
The partitioned coupling scheme considered in the present work is based on the force

predictor for the solid problem [25,34]. The coupling formulation is Dirichlet–Neumann
coupling, in which the interface traction from the fluid solver is considered as a Neumann
boundary condition for the solid domain, and the interface velocity is applied as a Dirichlet
boundary condition for the fluid problem. The procedure of the scheme is presented in
Algorithm 1.

Algorithm 1. Partitioned coupling scheme.

1. Perform the traction force predictor for interface traction pressure Pn
s and velocity un

s .
2. Each FSI iteration between t ∈

[
tn, tn+1]:

(a) Solve structural Eq. (15) using known interface traction Pn
s ;

(b) Apply Dirichlet velocity continuity condition
un+1

f = un+1
s on interface Γ;

(c) Set
.
d

n+1
f = un+1

f and update the fluid dynamic mesh;
(d) Solve ALE fluid Equation (10) for new interface traction Pn+1

s and apply Neumann condition
Pn+1

s = Pn+1
f on interface Γ.
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In Algorithm 1, a structural solver is employed to accept external fluid forces. A fluid
solver is used to accept the prescribed motion of the interface boundary. The structural and
fluid solvers are used to proceed in a predictor–corrector format by constructing an iterative
interface force correction and the force transfer at each sub-iteration. The schematic for the
partitioned iterative coupling of the ALE fluid solver with the structural solver is depicted
in Figure 1.
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Figure 1. Schematic of predictor–corrector procedure for ALE fluid and net panel coupling: (a) Solve
structural displacement; (b) transfer predicted structural displacement, where u f = us = w f and
update the fluid dynamic mesh; (c) solve ALE fluid equations and (d) forces corrections.

It is worth mentioning that the partitioned coupling scheme in this paper has second-
order accuracy in time. Therefore, the time step required to obtain accurate numerical
solutions is tolerably large. Moreover, the spectral ratio ρ∞ ≤ 1 to meet the partitioned
scheme’s unconditional stability. Alongside the stability to provide the partitioned fluid–
structure coupling, the force correction is much more compatible with strong partitioned
coupling than the displacement correction in a predictor–corrector framework.

5. Numerical Setup and Verification
5.1. The Net Panel

Two knotless square-mesh flexible net panels are examined in this study. The dimen-
sion of 0.25 m × 0.25 m is applied to both of them. The nets are made of polyethylene
terephthalate (PET) and this material is commonly used for offshore aquaculture cages.
The roughness of the net twine could be overlooked by using this material; thus, the net
twines are considered as smooth cylinders in this study. A physical model of its geometry
and physical properties, which have been used for numerical simulations, is displayed in
Figure 2.

The parameters of the net twines and solidities are illustrated in Table 1. The velocity of
the steady flow ranges from 0.15 m/s to 0.75 m/s with an increment of 0.15 m/s. Meaning
that the effect of turbulence is not considered in this study. The corresponding Reynolds
numbers are from 300 to 1500 based on the net twine diameter and the flow velocity. The
drag coefficient is defined as CD = FD/

(
0.5ρ f U2

∞ Ap

)
, where FD is the time-averaged

drag force estimated from the numerical simulations, ρ f is the fluid density, and Ap is
the projected area of the flexible net panel. During the simulation, the top of the net is
connected to a rigid rod which remains completely fixed. The rest of the net panel is
set free and with no sinkers attached in the bottom, so that the effect of the sinkers can
be eliminated.
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Table 1. Parameters of the net panels. (Sn = 2dw
lw

, and dw and lw are the diameter and length of the
mesh bar [44]).

Sn dw (mm) lw (mm)

0.16 2 25
0.33 2 12

The density of the net is 1375 kg/m3 and the modulus of elasticity, E = 2.95× 109 Pa.
With these material properties, the net panels in the present study are much heavier and
much stiffer than that used in the previous experimental studies [15,45,46].

5.2. Computational Domain and Boundary Conditions

The computational domain in this work uses the symmetry of the problem and is set
at 1.5 m (length) × 0.5 m (width) × 0.5 m (height) for the model, as shown in Figure 3.
The domain parameters are larger than those used by Bi et al. [15] for the effect of the
computational domain on the wake behind the nets. Considering the fluid–solid interface,
the tetrahedral grids are used to mesh the domain separately. Considering this, Dirichlet–
Neumann coupling can be achieved via the interface between the fluid and the solid
domains. Depending on the Reynolds number, grids near the net twines are set from
7× 10−5 m to 2.5× 10−4 m to capture the flow transition. The total number of grids is
approximately 1.2× 107.

As addressed in Section 3.1, a uniform streamwise velocity (i.e., U∞) is imposed at
the upstream inlet boundary, while a pressure outlet boundary condition is applied at the
downstream outlet boundary. The lateral sides of the computational domain are set as
slip boundaries using symmetry conditions. In particular, the interface traction from the
fluid solver is considered as a Neumann boundary condition for the solid domain, and the
interface velocity is applied as a Dirichlet boundary condition for the fluid problem.
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Figure 3. The schematics of the computational domain: (a) overall fluid domain and the solid
subdomain, and (b) grids of the undeformed net panel in the solid subdomain.

5.3. Numerical Verification

To verify the present numerical method, the drag coefficients of the present numerical
simulations are compared with analytical models that consider the solidity ratio Sn, the
attack angle α, and the Reynolds number Re. Since this paper studies flexible net panels,
the net panel’s attack angle should be considered. Aside from the angle of attack, the
effects of the solidity ratio and the Reynolds number are too profound to be negligible.
Two analytical models used for estimating the drag coefficients of flexible net panels are
illustrated in Table 2.

Table 2. Analytical models for estimating the drag coefficients.

Researchers Empirical Formulae

Aarsnes et al. [47] CD = 0.04 +
(
−0.04 + Sn − 1.24Sn

2 + 13.7Sn
3) sin α

Kristiansen and Faltinsen [19] CD = Ccyl
D

Sn(2−Sn)

2(1−Sn)
2

A seventh-order polynomial is employed to approximate the drag coefficient of a cir-
cular cylinder (i.e., single net twine) at 103/2 ≤ Re ≤ 104, as can be seen in Kristiansen
and Faltinsen [19]. This formula is valid for a knotless fabric net model with Sn ≤ 0.5 and
an angle of attack in the range of π/4 ≤ α ≤ π/2. The corrected towing velocity of the net
twines, which considers relative motion, gives more accurate results. Figure 4 exhibits the
dependence of the drag coefficients of the flexible net panels on the Reynolds number. The
drag coefficients of the present numerical simulations and the analytical model predictions
are illustrated in Table 3.

The overall trends of the drag coefficients in Figure 4 decrease as the Reynolds number
increases. When Sn = 0.16, the present numerical simulations overestimate the drag
coefficients comparing with those of Aarsnes et al. [47]. The present numerical simulations
underestimate the drag coefficients compared to analytical predictions by Kristiansen and
Faltinsen [19]. When Sn = 0.33 and the Reynolds number is less than 600, the present
numerical simulations slightly overestimate the drag coefficient when compared with
those of the analytical predictions. However, when the Reynolds number is over 600,
the present numerical simulations underestimate the drag coefficients compared to the
analytical predictions.
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Figure 4. Dependence of the drag coefficients of the flexible net panels on the Reynolds number [19,47].

Table 3. Comparison of numerical predictions and analytical models of drag coefficients.

Re Drag Coefficient/Relative Difference

Num. Num. Aarsnes et al. [47] Kristiansen and Faltinsen [19]

Sn = 0.16 Sn = 0.33 Sn = 0.16 Sn = 0.33 Sn = 0.16 Sn = 0.33

300 0.221 0.747 0.184
−16.7%

0.686
−8.2%

0.250
13.1%

0.719
3.7%

600 0.209 0.682 0.181
−13.4%

0.679
−0.4%

0.235
12.4%

0.680
0.2%

900 0.199 0.640 0.174
−12.6%

0.656
2.5%

0.229
15.1%

0.664
3.8%

1200 0.192 0.601 0.162
−15.6%

0.617
2.7%

0.225
17.2%

0.655
8.9%

1500 0.188 0.476 0.151
−19.7%

0.583
22.5%

0.223
18.6%

0.650
36.5%

Table 3 shows that when Sn = 0.16, the present numerical simulations overesti-
mate the drag coefficients by approximately 15.6% on average compared to those of
Aarsnes et al. [47]. Compared to the analytical predictions from Kristiansen and Faltin-
sen [19], the present numerical simulations, on average, underestimate the drag coefficients
by roughly 15.3%. Xu and Qin [1] reported that the analytical model in Aarsnes et al. [47]
did not consider the effect of the Reynolds number; this may cause the discrepancy between
the analytical prediction and numerical simulations/experimental tests. The analytical
models in Kristiansen and Faltinsen [19] consider the effect of the Reynolds number and
the relative motions between the fluid and the netting, but it seems that the interference
between net twines has been neglected. In particular, the net panel’s flow field is so
complicated that it should be considered to obtain more accurate results.

When Sn = 0.33, the relative difference in the drag coefficients between the present
numerical simulations and the analytical predictions from Aarsnes et al. [47] is below 10%,
under the condition that the Reynolds number is from 300 to 1200. The Reynolds numbers
used in Aarsnes et al. [47] range from 200 to 1400; thus, further comparison between their
predictions and the present numerical simulations seems erratic when Re > 1400. A perfect
match between the present numerical simulations and the analytical predictions from
Kristiansen and Faltinsen [19] has been achieved, except for Re = 1500. This implies that
the present numerical model predicts the drag coefficient of a flexible net panel reasonably
well when Re < 1500.
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6. Results and Discussion
6.1. Velocity Distribution

The wake forms behind the net panel when the flow passes through it. Figures 5 and 6
depict the velocity distributions of two flexible net panels at different velocities. We see
that the width of the wake is nearly the same as that of the net panel when the flow
velocity is small. The width of the wake in the far field diminishes gradually as the flow
velocity increases. This is mainly because the reconfiguration of the net causes a change
in the pressure gradient, leading to the far-field wake diminishment. There is a slight
velocity reduction upstream of the net panel; the velocity reduction in the downstream
far-field region is relatively large compared to the upstream velocity reduction. The flow
velocity reaches the steady state in the far-field region. However, the velocity accelerates
dramatically in the near-field region where the wake flow does not block flow the net.
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Figure 6. Velocity distributions of the flow at the angles of attack between π/4 and π/3 for net solidi-
ties Sn = 0.16 (left column) and Sn = 0.33 (right column): (a,b) U∞ = 0.60 m/s; (c,d) U∞ = 0.75 m/s.

Figures 5 and 6 present distinct flow patterns where the velocity reduction increases
alongside the net solidity, meaning that higher solidity can cause a greater shielding effect
in the flow field. As the net solidity reaches 0.33, we see clear interference between net
twines. This interference causes energy losses when the flow passes the net twines and
further affects the flow transition. Consequently, higher solidity results in greater velocity
reduction. There is no such interference between net twines when Sn = 0.16. The velocity
reduction is relatively large if the free stream flow velocity is small; this could be attributed
to the large drag coefficient at a lower Reynolds number [48].

The velocity reduction becomes smaller as the inclination angle of the net increases.
The inclination angle of the net is denoted as π/2 − α, where α is the angle of attack.
In other words, the velocity reduction decreases as the attack angle decreases. This is
consistent with the numerical studies in Zhao et al. [13,14]. Moreover, a large inclination
angle produces a distinct velocity gradient that could cause severe fluctuations regarding
velocity reduction.

It appears that the flow characteristics of the nets may not only depend on the solidity
ratio and the angle of attack but also on the flow regime (i.e., Re). Hence, two flow regimes
are identified in this paper according to Zdravkovich [49]:

(1) Transition-in-wake state of flow (TrW).
(2) Transition-in-shear-layers state of flow (TrSL).

In the TrW state, the laminar periodic wake becomes unsteady at a higher Reynolds
number further downstream. The transition spreads from upstream alongside the Reynolds
number, until the eddy becomes turbulent during its formation. This TrW state can be
divided into two phases, and they are defined as TrW1 and TrW2. In the second phase
TrW2, the irregular eddy transition happens during its formation, where the Reynolds
number, Re ∈ [220 ∼ 250, 350 ∼ 400].
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In the TrSL state, or subcritical state, the second transition occurs along the free shear
layers while the boundary layers remain fully laminar. There are three phases of transition
along the free shear layers, namely TrSL1, TrSL2 and TrSL3. In the first phase TrSL1, the tran-
sition eddy formation happens, where the Reynolds number Re ∈ [350 ∼ 400, 1000 ∼ 2000].
Depending on the Re, this paper examines the interactions between the fluid and the flexible
net panels within the TrW2 and TrSL1 regimes.

In the TrW2 regime, the transition of the irregular eddy happens during its formation.
These irregular eddies facilitate the velocity reduction in the wake, causing greater velocity
reduction at lower Reynolds numbers (e.g., Re < 600). The loss of velocity in the wake
occurs due to a loss of momentum [48]. In the TrSL1 regime, the flow in the transition
zone is free shear flow and the boundary layers remain laminar. This produces a moderate
velocity reduction as the Reynolds number rises. Bi et al. [50] also presented the velocity
distribution across the wake to the outer region, showing experimental evidence of how
the velocity was distributed in the transition zone.

Figure 7 exhibits the magnitude of the flow velocity u along the centerline of the net
panel at different velocities. The overall trends of these data demonstrate that the velocity
reduction exists due to the net panel’s shielding effect, and that the velocity reduction
increases alongside the net solidity. The average velocity reductions for these two nets are
7.5% and 12% with regard to Sn = 0.16 and Sn = 0.33, respectively. As the attack angle
decreases, the velocity reduction for Sn = 0.16 drops from 9% to 7%. In comparison, these
values for Sn = 0.33 slide from 15% to 10%.
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Figure 7. The magnitude of the flow velocity u along the centerline of the net panel at different
velocities (the 0.0 m along the x-axis denotes the center-line of the net).

To estimate the velocity reduction caused by the net’s shielding effect, Løland [48]
proposed a linear correlation between the velocity reduction factor and the drag coefficient.
That is, r = 1− 0.46CD, where r is the velocity reduction factor. This linear correlation
indicates that the velocity reduction decreases linearly with the drag coefficient. In our
simulations, the trends remain the same when Sn = 0.16, and the linear correlation is
r = 1− 0.77CD. However, the correlation becomes r = 0.688 + 0.386CD when Sn = 0.33.
This is because Løland [48] does not consider the interactions of the net twines, which
could affect the drag coefficient of the net and the velocity distribution.

Aside from the linear correlation, several values for the net panel/cage’s velocity reduc-
tions are summarized by Xu and Qin [1]. Most of them favor the value of 10% [12–15,45,51].
It is better to compare these values in specific conditions regarding the net solidity, attack
angle and flow regimes (i.e., Re). Moreover, to avoid underestimating the velocity reduction,
a value of 20% has been recommended [1].
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The origin drifts along the x-direction due to the deformation of the net (see Figure 7).
The offset increases alongside the flow velocity; however, a slight difference exists between
these two nets with different solidities. The net with higher solidity shows less offset
because of the net panel’s increased shielding effect and weight. The largest offset reaches
0.078 m when the flow velocity is 0.75 m/s and Sn = 0.16.

Figure 8 presents the magnitude of the flow velocity u along y-direction at different
distances downstream of the net panel center. The velocity exhibits a U-shaped distribution
in the overall range of−0.125 m ≤ y ≤ 0.125 m. However, the velocity along the y-direction
at different angles of attack in Zhao et al. [13] is more likely a V-shaped distribution (see
Figure 16 in Zhao et al. [13]). We note that the net panel being studied in Zhao et al. [13]
does not consider the deformation; instead, by directly assigning different inclination
angles, the authors examined the velocity distribution of an undeformed net panel. The
deformation could be the cause of the differences in velocity distribution between the
present study and Zhao et al. [13].

From Figure 8, we see distinct velocity reductions concerning different net solidities.
Higher solidity causes greater velocity reduction, mainly because of the increased shielding
effect. However, the relative difference in velocity reduction between these two net panels
drops from 40% to 30% when flow velocities increase from 0.15 m/s to 0.75 m/s. This means
that the velocity reduction differences between these two net panels become smaller as the
flow velocity increases, because the shielding effect becomes weak when the inclination
angle grows. Under this circumstance, the flexible nets choose to “go with the flow” to
reduce the flow impact and reduce drag forces.
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Figure 8. Cont.
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Figure 8. The magnitude of the flow velocity u along y-direction at different distances downstream
of the net panel center. Here, the flow velocities from top to bottom are from 0.15 m/s to 0.75 m/s
with an increment of 0.15 m/s.

We separately define the distances X = 0.13 m and X = 0.50 m as near-field and far-field,
while X = 0.25 m is a distance in the middle of the near field and far field. The velocity
reduction is larger in the near field than those beyond it. It appears that the velocity
distribution in the middle of near field and far field is more stable than those in the near
field and far field. Severe velocity fluctuations exist in the near field when Sn = 0.16. There
is no interference between net twines at such a low solidity; however, the large opening
in the net allows the flow to develop aggressively. Considering this, with blocking from
the net twines, the severe velocity fluctuations appear in the near field. Furthermore, the
velocity fluctuations become much more severe when the flow velocity rises to 0.6–0.75 m/s.
There are also some obvious velocity fluctuations at a solidity of 0.33 if the flow velocity is
over 0.6 m/s. Compared to the near-field velocity distribution, far-field velocity exhibits
a zigzagged distribution, mostly because there are velocity gradients in the far field induced
by the net deformation.
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6.2. Recirculation and Vortex Formation

Recirculation is a specific condition alongside flow separation from a bluff body. The
flow separation immediately generates a low-pressure area that rolls the flow back into
the body, resulting in a circulating vortex or pair of vortices. Therefore, it is necessary to
quantify the recirculation and its size (e.g., width), given their close connections with the
body pressure and the drag acting on the net panel. The recirculation creates remarkable
variations in drag compared to those situations in which the flow remains attached to the
surface of the body. Three typical sections on the net panels, namely the top, middle and
bottom (Figure 9), have been selected to monitor the recirculation and vortex formation
behind the vertical net twines. There is no need to monitor the horizontal net twines since
they are always parallel to the flow direction.
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Figure 9. The selected sections on the net panels are used to monitor vortex formation behind vertical
net twines. Here, these two deformed net panels are under a flow velocity of 0.75 m/s.

Figure 10 depicts two-dimensional instantaneous streamlines of three selected sections
at different Reynolds numbers in the same time frame. The vortices generated by flow
separation and recirculation exhibit distinct characteristics. These are: (1) a single vortex
appears behind the net twine when the solidity Sn = 0.16, whereas when Sn = 0.33, there
is a pair of vortices behind the net twine; (2) vortices distribute both in the shear layers
and the wake when Sn = 0.16, but when Sn = 0.33, vortices distribute mostly in the
wake rather than in the shear layers; (3) vortices decay faster in the top section than those
in the middle and bottom sections; (4) when the flow transfers from TrW2 to TrSL1, the
recirculation width increases when Sn = 0.16, and it decreases when Sn = 0.33. This is
related to the transition of the wake and shear layers; (5) When Sn = 0.16, the reattachment
of the shear layers occurs in the TrSL1 regime. The reattachment moves upwards from one
side to the other of the net twine in the middle and bottom sections. There is no significant
change for the attachment in the top section.

We would expect in-phase vortex structures since there is no mutual interference
between net twines if the net solidity is 0.16. However, due to the net deformation, the
single vortex exhibits a distinct formation even at the same frequency in different net
sections. As the Reynolds number increases and the flow is in the TrSL1 phase, vortices
form in the shear layers. This could be the reason that the velocity fluctuation happens
along the y-direction in the case that Sn = 0.16. The pair of vortices behind the net twines
for Sn = 0.33 are more likely wake interactions. This finding differs from the predictions
in Løland [48] because the author assumes that the interactions between the net twines
can be overlooked if the net solidity is less than 0.33. In fact, the distance between net
twines significantly affects the shear layers at Sn = 0.33, causing the shear layers to be
more unstable.



Appl. Sci. 2022, 12, 3399 17 of 24

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 25 
 

Sn = 0.16 Sn = 0.33 

  

Figure 10. Two-dimensional instantaneous streamlines of three selected sections at different Reyn-

olds numbers in the same time frame.( The top,middle and bottom are three typical sections on the 

net panels, as shown in Figure 9.) 

We would expect in-phase vortex structures since there is no mutual interference be-

tween net twines if the net solidity is 0.16. However, due to the net deformation, the single 

vortex exhibits a distinct formation even at the same frequency in different net sections. 

As the Reynolds number increases and the flow is in the TrSL1 phase, vortices form in the 

shear layers. This could be the reason that the velocity fluctuation happens along the 𝑦-

direction in the case that 𝑆𝑛 =  0.16. The pair of vortices behind the net twines for 𝑆𝑛 =

 0.33  are more likely wake interactions. This finding differs from the predictions in 

Løland [48] because the author assumes that the interactions between the net twines can 

be overlooked if the net solidity is less than 0.33. In fact, the distance between net twines 

significantly affects the shear layers at 𝑆𝑛 =  0.33, causing the shear layers to be more 

unstable. 

We note that vortices decay faster in the top section than those in the middle and 

bottom sections. This indicates that, as the inclination angle increases, the shielding effect 

becomes weak, resulting in less energy loss. Thus, the recirculation bubble size (width) in 

the middle/bottom section is greater than those in the top section, except for 𝑅𝑒 =  1500. 

The statistical evidence is shown in Figure 11. In the case that 𝑆𝑛 =  0.16, when the flow 

switches from TrW2 to TrSL1, the shear layers are supposed to reattach to the body surface, 

which they do, but this rarely happens in the top section of the net. The transition of the 

altered shear layers produces larger recirculation bubbles in the middle and bottom sec-

tions. Furthermore, the reattachment of the altered shear layers on the net twines should 

be responsible for the drag reduction. In the case that 𝑆𝑛 =  0.33, where the shear layers 

have been disturbed, the shrink of the recirculation bubble in the top section is most likely 

attributed to the energy loss. However, this prediction needs a power spectral analysis 

and will not be addressed in the present study. 

Figure 10. Two-dimensional instantaneous streamlines of three selected sections at different Reynolds
numbers in the same time frame. (The top, middle and bottom are three typical sections on the net
panels, as shown in Figure 9).

We note that vortices decay faster in the top section than those in the middle and
bottom sections. This indicates that, as the inclination angle increases, the shielding effect
becomes weak, resulting in less energy loss. Thus, the recirculation bubble size (width) in
the middle/bottom section is greater than those in the top section, except for Re = 1500.
The statistical evidence is shown in Figure 11. In the case that Sn = 0.16, when the flow
switches from TrW2 to TrSL1, the shear layers are supposed to reattach to the body surface,
which they do, but this rarely happens in the top section of the net. The transition of
the altered shear layers produces larger recirculation bubbles in the middle and bottom
sections. Furthermore, the reattachment of the altered shear layers on the net twines should
be responsible for the drag reduction. In the case that Sn = 0.33, where the shear layers
have been disturbed, the shrink of the recirculation bubble in the top section is most likely
attributed to the energy loss. However, this prediction needs a power spectral analysis and
will not be addressed in the present study.

Figure 11 presents the dependence of the non-dimensional recirculation width (W∗r )
on Re. To compare the magnitudes of the recirculation size, we normalize the recirculation
width with the diameter of the net twine dw. Furthermore, the non-dimensional recir-
culation width (W∗r ) is measured from a single vortex since most pairs of vortices when
Sn = 0.33 seem symmetrical.
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Figure 11. Dependence of the non-dimensional recirculation width (W∗r ) on the Reynolds number.

The overall trends of the non-dimensional recirculation width (W∗r ) are divided into
two regimes, namely TrW2 and TrSL1. For Sn = 0.16 in the TrW2 regime, W∗r increases
alongside the Reynolds number, and a value around 1.57 is attained in the regimes where
flow transfers from TrW2 to TrSL1. W∗r drops in the TrSL1 regime where the minimum
value is 0.83. However, in the post TrSL1 regime, W∗r rises progressively to a maximum
of 1.71 on the top section. This is mainly because the shear layers have been disturbed.
For Sn = 0.33 in the TrW2 regime, the value of W∗r decreases in the middle and bottom
sections. However, it increases in the top section from the TrW2 to the TrSL1 regime and its
value, in general, is smaller than those in the middle and bottom sections. The minimum
W∗r , approximately 0.88, is obtained at Re = 300. Additionally, in the middle and bottom
sections, W∗r grows rapidly during the transition from the TrW2 to the TrSL1 regime and it
reaches a peak value of 1.6. Then, W∗r falls in the post TrSL1 regime.

The net panels could be considered as a combination of cylinders (i.e., net twines). It is
well known that W∗r is related to the fluid force acting on a bluff body such as a cylinder, and
that larger W∗r causes a lower pressure area behind the body. Moreover, the reverse flow in
the wake of the body influences the streamwise vortices. According to Zdravkovich [49],
larger W∗r can lead to a higher CD for circular cylinders. However, the net panel’s flow
characteristics are much more complicated than that of a system of cylinders. From this
point of view, it may be helpful to compare the present simulation and the results from Bai
and Alam [52], to facilitate a better understanding of how recirculation/vorticity behind
net twines impacts flow characteristics of the net panel. Still, to provide more insights
into the flow characteristics, studies on three-dimensional vortices of the net panel need to
be conducted.

This paper uses the Q-criterion [53] to identify the iso-surfaces of the three-dimensional
instantaneous vorticities. By decomposing the velocity gradient ∇·U = S + Ω—where
S = 1

2

[
∇·U + (∇·U)T

]
is the rate-of-strain tensor and Ω = 1

2

[
∇·U − (∇·U)T

]
is the

vorticity tensor—Q can be defined as Q = 1
2

(
|Ω|2 − |S|2

)
. Considering this, the iso-

surfaces of the Q-criterion vorticities are exhibited in Figures 12 and 13.



Appl. Sci. 2022, 12, 3399 19 of 24

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 25 
 

the vorticity tensor—Q can be defined as Q =  
1

2
(|Ω|2 − |S|2). Considering this, the iso-

surfaces of the Q-criterion vorticities are exhibited in Figures 12 and 13. 

(a) (b) (c) 

(d) (e) (f) 

Figure 12. Three-dimensional instantaneous vorticity structures behind the flexible net panels at the 

angles of attack between π/3 and π/2: (a–c) 𝑆𝑛 =  0.16; (d–f) 𝑆𝑛 =  0.33. 

The vortex shedding overall is well-organized but not as regular as the classical Kar-

man vortex. The length of the vortex varies differently as the net deformation changes. It 

is easy to capture the vortex shedding in the horizontal net twines rather than in the ver-

tical ones, meaning that the horizontal net twines have less impact on vortex formation. 

Meanwhile, vertical net twines significantly affect vortex formation, leading to delayed 

vortex shedding. These vortices for 𝑆𝑛 =  0.16 (Figures 12a–c and 13a,b) have proven 

that mutual interference does not exist in this situation. However, from Figures 12d–f and 

13c,d, we see remarkable wake interactions for 𝑆𝑛 =  0.33. In particular, the wake inter-

acts more severely at the angles of attack between π/4 and π/3, and the considered 

Reynolds number is above 1200. This indicates that, when the net solidity 𝑆𝑛 ≥ 0.33, there 

is significant interference between net twines that should not be neglected. Moreover, a 

higher-solidity net (i.e., 𝑆𝑛 =  0.33) forms wake structures with more elongated shear 

layers. 
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angles of attack between π/3 and π/2: (a–c) Sn = 0.16; (d–f) Sn = 0.33.

The vortex shedding overall is well-organized but not as regular as the classical
Karman vortex. The length of the vortex varies differently as the net deformation changes.
It is easy to capture the vortex shedding in the horizontal net twines rather than in the
vertical ones, meaning that the horizontal net twines have less impact on vortex formation.
Meanwhile, vertical net twines significantly affect vortex formation, leading to delayed
vortex shedding. These vortices for Sn = 0.16 (Figures 12a–c and 13a,b) have proven that
mutual interference does not exist in this situation. However, from Figures 12d–f and 13c,d,
we see remarkable wake interactions for Sn = 0.33. In particular, the wake interacts more
severely at the angles of attack between π/4 and π/3, and the considered Reynolds number
is above 1200. This indicates that, when the net solidity Sn ≥ 0.33, there is significant
interference between net twines that should not be neglected. Moreover, a higher-solidity
net (i.e., Sn = 0.33) forms wake structures with more elongated shear layers.

Figure 13c,d show that vortices in the top sections of the net panel develop faster
than those in the bottom sections, especially when the Reynolds number is higher than
1200. This is because, aside from the shielding effect, as the Reynolds number increases,
the separated shear layers in top sections become more unstable. The transition of the
shear layers and shear-layer vortices produces increased near-wake vortices, which leads
to the breakdown of the vortices in both the shear layers and the near wake. Compared
to vortices in the middle and bottom sections of the net panel, the energy loss induced
by vortex interactions generates smaller vortices in the top sections. Furthermore, when
Sn = 0.33, the shear layer attachment seems to be suppressed due to the vortex interactions.
This is consistent with the two-dimensional demonstrations in Figure 10. These unstable
shear layers and the delay of vortex shedding also contribute to the drag reduction.
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Figure 13. Three-dimensional instantaneous vorticity structures behind the flexible net panels at
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7. Conclusions

This paper proposes a coupled fluid–structure partitioned scheme to study the FSI
of flexible net panels under steady flow. Using the FVM and FEM schemes, the coupled
fluid–structure equations are solved separately in the fluid and solid subdomains. An ar-
bitrary Lagrangian–Eulerian formulation is employed to accommodate the independent
mesh motion at each time step. Then, the Dirichlet boundary conditions for the fluid
and Neumann boundary conditions for the structure are imposed along the interface.
Considering this, the variables, namely the forces, are transferred along the interface via
a predictor–corrector scheme.

Two net panels with different solidities are examined based on the present coupled
fluid–structure partitioned scheme. The results show that both the drag coefficient and the
velocity reduction increase alongside the net solidity, but they decrease as the Reynolds
number/attack angle increases. When the solidity Sn equals 0.16, the relative difference in
the drag coefficient between the present numerical simulations and analytical predictions
is approximately 15%. When the solidity Sn is 0.33, compared to the validated analytical
model, the average difference is about 4.2% at Re < 1500. Hence, the present numerical
model predicts the drag coefficient reasonably well. Greater velocity reduction exists at
Re < 600, while moderate velocity reduction appears at 600 < Re < 1500. The average
values for these two nets are 7.5% and 12% regarding Sn = 0.16 and Sn = 0.33. The velocity
distributions along the y-direction at different distances show distinct patterns: those in the
middle of near field and far field are more stable. Severe velocity fluctuations have been
observed in the near field when Sn = 0.16. This could be caused by the instability of the
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free shear layers. Moreover, in terms of the near-wake vortex distribution, the low-solidity
net favors forming vortices in the shear layers and the wake, while the high-solidity net
prefers the wake rather than the shear layers. The non-dimensional recirculation width
(W∗r ) is dependent on the solidity, the Reynolds number, and the angle of attack. When the
net solidity Sn ≥ 0.33, the flow shows that the wake interactions and the shear layers have
been disturbed. However, the wake structures behind the net panel have more elongated
shear layers, and vertical net twines have a predominant effect on vortex formation.
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