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Abstract: In this study, the problem of master–slave synchronization of two different chaotic systems
is considered and solved under a novel set of assumptions. The mathematical model of each of them
contains unknown, constant parameters. Only a single output of the master system is available, and
only a single input of the slave system is a control input. The proposed, novel approach is based
on the active cooperation of the adaptive observer of the master system and adaptive controller
of the slave. The tuning function technique is included in the observer–controller design to avoid
overparameterization. Complexity explosion and unacceptable increases in adaptive parameters
are prevented by proper adaptive techniques application. Due to the selected observer type, the
derivation is restricted to the defined class of master systems—output-nonlinear parametric (ONP)
systems. Linear transformation of several popular chaotic systems (e.g., Arneodo, Arneodo–Coullet,
Genesio–Tesi, Lur’e) into the ONP form is discussed. The stability of the whole, closed-loop system
is derived using Lyapunov techniques and examples of implementation (synchronization of Arneodo
and 3D jerk systems) are provided.

Keywords: adaptive backstepping; chaos synchronization; nonlinear observer

1. Introduction

As chaotic behavior is so sensitive to initial conditions, it is hard to believe that two
chaotic systems may achieve synchronous motion. Fortunately, as it was demonstrated
in [1], proper control can solve this problem. Despite 30 years of research, synchronization
of chaos remains a hot research theoretical topic and stimulates numerous applications. It
is a well-established fact that effective synchronization of chaotic systems is wildly used
in secure communication [2–4]. Chaotic motion is observed in chemical processes, and
synchronization of chaotic oscillations with periodic motion is crucial for certain chemical
technologies [5]. The understanding of chaotic dynamics of biological and ecological sys-
tems [6,7] helps to apply proper methods to synchronize chaotic motion and to improve
the system welfare, despite the destructive activity of humankind. Chaos synchronization
in laser systems [8,9] is investigated because of potential applications in secure communica-
tion, new technologies such as chaotic Lidar, or random number generators. The mentioned
areas of research on chaos synchronization and control are just a few of many reported.

Especially, synchronization of two quite different chaotic systems is a new, interesting
fundamental problem and may lead to important applications [10,11]. Numerous biological
systems (such as circulatory and respiratory systems [12]) behave synchronously, although
they are quite different, and the achievement of this synchronous behavior determines
health or disease. Hence, synchronization of different chaotic systems may be considered as
a treatment restoring health and welfare. Synchronization of different chaotic systems will
open new opportunities in secure communication and any other applications mentioned
above. Any real system’s parameters are inevitably perturbed by external factors and
cannot be exactly known. Therefore, synchronization of two different chaotic systems in
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the presence of unknown parameters is more essential and useful in real-life applications,
and this problem will be reflected in this contribution.

We can distinguish two main approaches to the synchronization of chaotic systems.
The first approach is to propose a proper control for a slave system to follow the desired
trajectory, generated by a master system. Numerous control techniques are reported: sliding
mode control [13,14], adaptive backstepping [15,16], dynamic surface control (DCS) [17,18],
etc. Commonly, measurement of the master system output is not enough to synthesize the
controller. Higher derivatives of the master output are usually necessary to synthesize the
controller, but these signals are rarely available.

Using the second approach, the slave system is made to be an observer for the master
system [19–21]. Therefore, the structure of the slave system is defined by the master system,
and the possibilities to synchronize two different chaotic systems are limited.

In this contribution, we connect both approaches by proposing the novel structure
shown in Figure 1. The observer provides estimated state variables to contribute to the
control law while tracking errors are fed back from the controller to improve the observer.

Figure 1. General scheme of the proposed approach.

Several nonlinear adaptive observers are reported in the literature: Luenberger-type
observer [22–24], Kalman filter [25], sliding mode observers [26,27], high gain [28,29], etc.
Some of them require special conditions for a nonlinear system, for example, Lipschitz-
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type [30,31] or quadratic-type [32] constraints. After careful consideration, we selected
a classical solution reported in [33] based on K filters presented in [34]. Such observers
are smooth and free from application difficulties common for sliding mode and high-gain
observers, do not require any global constraints for system nonlinearities (as it is assumed
in [35], for example), and a linear approximation of system nonlinearities (as in [36]) is not
necessary. On the other hand, the system must be transformed into a special canonical form
depicted in Figure 1.

Finally, the problem of chaotic systems synchronization is solved under the following
assumptions:

• Master and slave systems may be different;
• Master and slave systems contain (different) unknown, constant parameters;
• Only the single output of the master system is available;
• The slave system is controlled by a single input located in the last state equation.

According to our knowledge, the problem of chaos synchronization under such a set of
assumptions has never been investigated previously. Additionally, the design methodology
applied here is a new approach. First, we construct an adaptive observer based on a nonlin-
ear state transformation and K filters. In contrast to the original observer shown in [33],
we introduce a component related to the control algorithm into the observer’s equations.
This new approach enables observer–controller cooperation, improving synchronization
performance as the final effect. The tuning function technique [37] is smartly included in
the observer–controller design to avoid overparameterization.

The paper is organized as follows: Output nonlinear parametric (ONP) systems
are defined in Section 2, and the observer for such systems is described and modified
to enable cooperation with the tracking controller. Next, we discuss chaotic systems
transformable into the ONP form by a linear transformation. Several popular systems such
as Arneodo [11], Arneodo–Coullet [38], Genesio–Tesi [39], and Lur’e [35] belong to this
class. The general form of transformation is provided in the Appendix A. In Section 4, we
define a slave system and the synchronization problem. We concentrate on third-order
systems, although generalization of the proposed design technique is possible. Section 5 is
devoted to the closed-loop adaptive controller design. The stability of the whole system is
discussed in Section 6. Finally, examples, discussion, and conclusions are presented.

2. Adaptive Observer for an Output Nonlinear Parametric System

We consider a general nonlinear system (nonlinear in states and inputs), but we
assume that it is transformable (by a certain nonlinear state transformation, which may
depend on unknown parameters) into a nonlinear system described by state and output
equations as follows:

.
z = Az +ϕ(y, r) + F(y, r)Tθ (1)

y = cTz, (2)

where z denotes a vector of n state variables; y is a scalar, measurable output; r is an
external, measurable input. The matrices A, cT of appropriate dimensions (n× n, 1× n)
are known, as well as nonlinear functions ϕ(y, r), F(y, r), while θ represents a vector of
p unknown, constant, bounded parameters. The design of an adaptive observer for the
system (1), (2) is discussed in this section.

Let us call the assumed system model (1), (2) an output-nonlinear parametric system
(ONP). The model (1), (2) is restrictive as the nonlinearities and terms with unknown
parameters in the state equation depend on the measured signals only (that is why we
call it output-nonlinear). We have to stress that this restriction is not imposed because
of the adaptive control. Even if the parameters are known, the class of systems globally
stabilizable by output feedback is not much wider than the class provided by (1), (2) [33,40].
Despite this, many important chaotic systems may be transformed to the form (1), (2),
so we claim that the proposed approach is general enough. The system form (1), (2)
corresponds with the selected observer design technique, and this was widely discussed
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and compared with other opportunities in Section 1. The features of ONP systems and
the systems transformable into the ONP form are an interesting research topic, although
outside the scope of this paper. Let us mention that the system obtained by a linear state
transformation from any ONP system remains in the ONP form.

The system (1), (2) may be chaotic or not. We assume that there exists an output–
feedback–gain matrix k, such that Ao := A− kcT is stable, and therefore, for any positive
definite matrix Q, the Lyapunov equation

AT
o R + RAo = −Q (3)

possesses a positive definite solution R. Of course, working with a single output system
(k is a column vector with n parameters) is a special case of multidimensional output.
Multioutput case means that more than n feedback parameters may be used to satisfy (3).
Therefore, the single output is the most restrictive case. Transmission of a single signal
is also an advantage in secure communication, which is the main application field of
chaos synchronization.

Motivated by the idea of K filters presented in [33,34], we introduce an observer, so
that we are able to reconstruct the state variables z despite unknown parameters θ.

Let us define the observer state variables ẑ and the observer state equation as

.
ẑ = Aoẑ +ϕ(y, r) + ky + PT

.
θ̂+ F(y, r)T θ̂+ s (4)

where

• The p× n matrix variable P is an output of a linear filter to be defined;
• The unknown parameters θ are substituted by adaptive parameters θ̂, tuned according

to adaptive law
.
θ̂ = ΓPce1 − Γτ1 (5)

where e1 := y− cTẑ; Γ is a symmetric, positive definite matrix of design parameters;
• The component s and the tuning function τ1 are used to modify the observer dynamics

according to the slave system tracking errors, and meanwhile may be assumed equal
to zero.

The adaptive law (5) will be justified by the analysis of the Lyapunov function includ-
ing the complete closed-loop system. The form of (5) is standard: It contains a component
with an observer error e1 and a tuning component τ1, which is used to avoid overpa-
rameterization. In this way, the observer is prepared for cooperation with the adaptive
tracking controller of a slave system, although at this moment, the specific choice of (5) is
not necessary.

We denote the state estimation error as

e = z− ẑ, (6)

the parameter adaptation error as
θ̃ = θ− θ̂, (7)

and the “composite” error as
ε = e− PTθ̃. (8)

Differentiation of (8) performed after plugging in (1), (4), and
.
θ̃ = −

.
θ̂ provides that

the time derivative of ε is given by

.
ε =

.
z−

.
ẑ−

.
P

T
θ̃+ PT

.
θ̂ = Az +ϕ(y, r) + F(y, r)Tθ

−
[

Aoẑ +ϕ(y, r) + kcTz + PT
.
θ̂+ F(y, r)T θ̂+ s

]
−

.
P

T
θ̃+ PT

.
θ̂ = Aoe + F(y, r)T θ̃− s−

.
P

T
θ̃.

(9)



Appl. Sci. 2022, 12, 3394 5 of 19

Therefore, if the p× n matrix variable P is modified according to the differential equation,

.
P

T
= AoPT + F(y, r)T , (10)

we obtain from (9)
.
ε = Aoε− s, (11)

and this result does not depend on any specific adaptive law (5). Hence, in the nonadaptive
case, when θ̃ = 0, s = 0, the error ε = e converges to zero for any initial value of e.

For the adaptive case, we may use the Lyapunov function

V = εTRε +
1
2

θ̃TΓ−1θ̃, (12)

which is positive definite as a function of e, θ̃. For τ1 = 0 and s = 0, as θ̃TPc = cTPTθ̃ =
e1 − cTε, we obtain

.
V =

.
ε

TRε + εTR
.
ε + θ̃TΓ−1

.
θ̃ = εTAT

o Rε + εTRAoε− θ̃TΓ−1
.
θ̂ = −εTQε− θ̃TPce1

= −εTQε− e2
1 + cTεe1 = −εTQε + 1

2
(
cTε
)2 − 1

2 e2
1 −

1
2 e2

1 −
1
2
(
cTε
)2

+ cTεe1

= −εT
(

Q− 1
2 ccT

)
ε− 1

2 e2
1 −

1
2
(
e1 − cTε

)2.

(13)

The standard reasoning, commonly used in adaptive control and presented in [41,42]
is applied to make conclusions from (13): The Lyapunov function derivative is negative
except the set M =

{(
e, θ̃
)

: e− PT θ̃ = 0, e1 = 0
}

. Therefore, we determine that ε→ 0

and θ̃ is bounded, and analyzing the set M, assuming the persistency of excitation of
PccTPT , we find that e = 0, θ̃ = 0 is the only possible trajectory in M; hence, e→ 0, θ̃→ 0 .
As a matter of fact, in the adaptive case, we consider the tracking, closed-loop system
stability rather than the observer alone.

3. Master Chaotic Systems Transformable into ONP Form

General, necessary, and sufficient conditions for the existence of local change in
coordinates z = Φ(x) transforming a nonlinear system

.
x = f(x) + f0(x, u) + θTf(x, u) (14)

with parameters θ into the ONP form (1), (2) are given in [33,43]. In this contribution,
we concentrated on third-order chaotic systems transformable into the ONP form. For
example, consider shifted Arneodo system

.
x1 = x2,
.
x2 = x3,

.
x3 = a(x1 + r)− bx2 − x3 − (x1 + r)2,

(15)

which is a classical Arneodo system for r = 0, chaotic for a certain subset of parameters
(a, b) [11]. The system (15) is transformed by a linear transformation

z = Φ(a, b)x, Φ(a, b) =

 1 0 0
1 1 0
b 1 1

 (16)

into the ONP form .
z1 = −z1 + z2,
.
z2 = −bz1 + z3,

.
z3 = a(z1 + r)− (z1 + r)2

(17)
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(see Appendix A for more details). Assuming that the output is y = z1 = x1, and comparing
with (1), (2), we obtain:

A =

 0 1 0
0 0 1
0 0 0

;ϕ(y, r) =

 −y
0

−(y + r)2

; F(y, r)T =

 0 0
0 −y

y + r 0

;

θ =

[
a
b

]
; cT = [1 0 0].

(18)

The inverse transformation is given by:

x = Φ−1(θ)z, Φ−1(θ) =

 1 0 0
−1 1 0

1− b −1 1

. (19)

Motivated by this example, we consider as a master system any third-order nonlinear
system with state variables x, the output y = x1, and unknown constant parameters θ,
given by

.
x1 = x2,
.
x2 = x3,

.
x3 = f0(x, r) + θTf(x, r),

(20)

and transformable into the ONP form (1), (2), assuming that the inverse transformation is
given by:

x1 = z1,
x2 = αTz,

x3 = βT
0 z +

p
∑

i=1
θiβ

T
i z,

(21)

where vectors αT , βT
i are constant and θi are unknown, constant parameters.

As the output y = z1 = x1 is available, we construct an observer (4) for the ONP
system (1), (2).

4. Slave System

The slave system is assumed to be a third-order chaotic system given by

.
w1 = w2,
.

w2 = w3,
.

w3 = ΘTH(w) + h(w) + u,
(22)

with p unknown, constant, bounded parameters Θ, known nonlinearities H(w), h(w) of
proper dimensions (p× 1, 1× 1), measurable state variables and the control input u. An
exemplary slave system may be a 3D jerk chaotic system [44]. In this case, we have

=

 a
b
c

, H(w) =

 −w3
−w1
w2

, h(w) = w1w2
2 − w3

1. (23)

The aim of the control is to make the slave signal w1 follow the bounded output y
generated by the master system, in spite of unknown parameters θ (in the master system)
and Θ (in the slave system).

5. Adaptive Control

The adaptive backstepping with the tuning function approach was used to derive the
synchronizing controller. To make the derivation more readable, we collected all important
signals and parameters, which are listed in Table 1.
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Table 1. Important signals and parameters.

Adaptive Observer Adaptive Controller

ẑ Estimated state variables v1
Synchronization error, first-loop tracking

error

e Estimation error w2d
First-loop stabilizing function (desired

trajectory for w2)
e1 First-state variable estimation error v2 Tracking error for w2

ε “Composite” error w3d
Second-loop stabilizing function (desired

trajectory for w3)

θ̂,θ̃ Adaptive parameters and adaptation error v3 Tracking error for w3
P Auxiliary matrix variable ω Filter state variable
k Design matrix responsible for observer dynamics v3 f Filter tracking error

Q, R Auxiliary positive definite matrices used to
construct Lyapunov functions xi − wi, i = 1, 2, 3 Synchronization errors

Γ, σ Design parameters responsible for adaptation u Control input
τ1, s, τ2, s1 Corrective signals from adaptive controller Θ̂, Θ̃ Adaptive parameters and adaptation error

K1, K2, K3
Design parameters shaping trajectories of

v1, v2, v3 f
Ω Filter parameter

Γ1, σ1
Design parameters responsible

for adaptation

5.1. STAGE 1

Let us denote the tracking error (also synchronization error) by

v1 = x1 − w1 (24)

and observe that
.
v1 =

.
x1 −

.
w1 = x2 − w2 (25)

may be represented as

.
v1 = αTz− w2 = αT

(
ẑ + ε + PTθ̃

)
− w2 (26)

(because it follows from (6) and (8) that z = ẑ + ε + PTθ̃).
Let w2d denote the desired trajectory of w2, which acts as a virtual control in (26). The

tracking error for w2 is defined by

v2 = w2d − w2. (27)

After selecting
w2d = αTẑ + K1v1, (28)

with a positive design parameter K1, the error dynamics Equation (26) becomes

.
v1 = −K1v1 + αT

(
ε + PT θ̃

)
+ v2 (29)

The tuning function τ1 in (5) and the component s in (4) are selected from the analysis
of Lyapunov function

V1 = V +
1
2

v2
1 = εTRε +

1
2

θ̃TΓ−1θ̃+
1
2

v2
1 (30)

Taking τ1 and s into account leads us to have, instead of (13), the following equation:

.
V = −εT

(
Q− 1

2
ccT
)

ε− 1
2

e2
1 −

1
2

(
e1 − cTε

)2
+ θ̃Tτ1 − 2εTRs (31)
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Therefore, as
.

V1 =
.

V + v1
.
v1,

.
V1 = −εT

(
Q− 1

2
ccT
)

ε− 1
2

e2
1 −

1
2

(
e1 − cTε

)2
+ θ̃Tτ1 − 2εTRs− v1

(
K1v1 − αT

(
ε + PT θ̃

)
− v2

)
, (32)

and this will be simplified by selecting

τ1 = −Pαv1 + τ2, (33)

where τ2 is the next-loop tuning function, and

s =
1
2

R−1(αv1 + s1) (34)

(τ2 and s1 will be defined in the next stage). Finally,

.
V1 = −εT

(
Q− 1

2
ccT
)

ε− 1
2

e2
1 −

1
2

(
e1 − cTε

)2
− K1v2

1 + θ̃Tτ2 + v1v2 − εTs1. (35)

5.2. STAGE 2

As
.
v2 =

.
w2d−

.
w2, using (28), (4), (29), (34), and (22), together with representing virtual

control w3 as
w3 = w3d − v3, (36)

where w3d is the desired trajectory for w3 and v3 denotes the tracking error, provides
.
v2 = αT

.
ẑ + K1

.
v1 −

.
w2 = αTAoẑ + αT

{
ϕ(y, r) + ky + F(y, r)T θ̂

}
+αTPT

ΓPce1 − Γ{−Pαv1 + τ2}︸ ︷︷ ︸
τ1

︸ ︷︷ ︸
.
θ̂

+ αT


1
2

R−1(αv1 + s1)︸ ︷︷ ︸
s

− w3d + v3

+K1

{
−K1v1 + αT

(
ε + PTθ̃

)
+ v2

}
︸ ︷︷ ︸

.
v1

= G + 1
2 αTR−1s1 + K1αT

(
ε + PT θ̃

)
− w3d + v3,

(37)

where

G = αT
{

Aoẑ +ϕ(y, r) + ky + PT{ΓPce1 − Γ{−Pαv1 + τ2}}+ F(y, r)T θ̂+ 1
2 R−1αv1

}
+ K1v2. (38)

This motivates us to form the desired stabilizing function w3d as

w3d = K2v2 + G + v1 +
1
2 K1αTR−1αv2 , (39)

with the positive design parameter K2. The first component in (39) stabilizes the dynamics
of v2, the second compensates for the nonlinearities, and the two last equations are used
to cancel some unnecessary terms in the Lyapunov function derivative. Finally, (37) is
simplified to

.
v2 = −K2v2 − v1 +

1
2 αTR−1s1 −

1
2

αTR−1αv2 + K1αT
(

ε + PT θ̃
)
+ v3. (40)

The Lyapunov function mentioned above is selected as

V2 = V1 +
1
2

v2
2 =

1
2

v2
1 +

1
2

v2
2 +

1
2

θ̃TΓ−1θ̃+ εTRε, (41)

where V1 is as defined in (30). Plugging in
.

V1 from (35) and
.
v2 from (40) into

.
V2 =

.
V1 + v2

.
v2

results in
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.
V2 = −εT

(
Q− 1

2 ccT
)

ε− 1
2 e2

1 −
1
2
(
e1 − cTε

)2 − K1v2
1 + θ̃Tτ2 + v1v2 − εTs1 − K2v2

2

−v1v2 +
1
2 v2αTR−1s1 − 1

2 K1αTR−1αv2
2 + K1v2αT

(
ε + PT θ̃

)
+ v2v3.

(42)

Selecting
s1 = K1αv2 (43)

cancels K1v2αTε by εTs1, and 0.5v2αTR−1s1 is canceled by the term 0.5K1αTR−1αv2
2, which

was intentionally initiated in (39).
The tunning function τ2 is used to cancel components containing θ̃ in (42); therefore,

τ2 = −K1v2Pα + σθ̂, (44)

where σ > 0 is a small design parameter. Such a choice of τ2 changes the adaptive law (5)

into
.
θ̂ = ΓP(ce1 + αv1 + K1αv2)− σΓθ̂ including a term−σΓθ̂, which makes the adaptation

more robust. Due to this simplification, UUB stability will be proven instead of asymptotic
stability. Finally,

.
V2 = −εT

(
Q− 1

2 ccT
)

ε− 1
2 e2

1 − K1v2
1 −

1
2
(
e1 − cTε

)2 − K2v2
2 ++v3v2 + σθ̃T θ̂. (45)

5.3. STAGE 3

Considering (39), the time derivative
.

w3d is rather complicated, although it is not
impossible to write it down in an explicit form. Obtaining approximation of this derivative
from a linear filter

.
ω = Ω(w3d −ω) (46)

(where ω is the filter state variable, and Ω denotes the filter parameter) allows simplification
of the controller. The filter output ω is the response of a stable linear system (46) to the
input w3d; therefore, w3d −ω is bounded, for example, (w3d −ω)2 ≤ ρ.

The filter tracking error is denoted by

v3 f = ω− w3 (47)

and this, together with (36), allows us to use v3 = w3d + v3 f −ω and to express (45) as

.
V2 = −εT

(
Q− 1

2 ccT
)

ε− 1
2 e2

1 −
1
2
(
e1 − cTε

)2 − K1v2
1 − K2v2

2

+v3 f v2 + (w3d −ω)v2 + σθ̃T θ̂,
(48)

and (39) as

.
v2 = −K2v2 − v1 +

1
2

αTR−1s1 −
1
2

αTR−1αv2 + K1αT
(

ε + PT θ̃
)
+ v3 f + w3d −ω. (49)

As
.
v3 f =

.
ω− .

w3, Equation (46) and the last equation in (22) allow us to write down

.
v3 f = Ω(w3d −ω)−ΘTH(w)− h(w)− u (50)

The control u is used to cancel inconvenient nonlinearities in (50), to stabilize the
trajectory v3 f , and to original components, canceling inconvenient terms in the Lyapunov
function derivative. Unknown slave system parameters Θ are substituted by adaptive
parameters Θ̂, and the adaptation error is defined as Θ̃ = Θ− Θ̂. All those reasons explain
the following selection:

u = Ω(w3d −ω)− Θ̂TH(w)− h(w) + K3v3 f + v2. (51)
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Under control (51), Equation (50) is simplified as

.
v3 f = −Θ̃TH(w)− K3v3 f − v2. (52)

The Lyapunov function for the whole system is chosen as

V3 = V2 +
1
2

v2
3 f +

1
2

Θ̃TΓ−1
1 Θ̃ =

1
2

v2
1 +

1
2

v2
2 +

1
2

v2
3 f +

1
2

θ̃TΓ−1θ̃+ εTRε +
1
2

Θ̃TΓ−1
1 Θ̃. (53)

As
.

V3 =
.

V2 + v3 f
.
v3 f − Θ̃TΓ−1

1

.
Θ̂, after plugging in (48) and (52), we obtain

.
V3 = −εT

(
Q− 1

2 ccT
)

ε− 1
2 e2

1 −
1
2
(
e1 − cTε

)2 − K1v2
1 − K2v2

2 + v3 f v2

+(w3d −ω)v2 + σθ̃T θ̂+ v3 f

(
−Θ̃TH(w)− K3v3 f − v2

)
− Θ̃TΓ−1

1

.
Θ̂.

(54)

The robust adaptive law
.

Θ̂ is used to cancel the components containing Θ̃; hence,

.
Θ̂ = Γ1

(
−H(w)v3 f − σ1Θ̂

)
(55)

and σ1 > 0 is a small design parameter.
Substituting (50) and having in mind that (w3d −ω)v2 ≤ 0.5ρ + 0.5v2

2 and θ̃Tθ̂ =

0.5
(
−‖θ̃‖2

+ ‖θ‖2 − ‖θ̂‖2
)

, and that analogous equality holds for Θ̃TΘ̂, we obtain

.
V3 = −εT

(
Q− 1

2 ccT
)

ε− 1
2 e2

1 −
1
2
(
e1 − cTε

)2 − K1v2
1 − K2v2

2 + σ1Θ̃TΘ̂

≤ −εT
(

Q− 1
2 ccT

)
ε− K3v2

3 f + (w3d −ω)v2 + σθ̃Tθ̂− 1
2 e2

1 −
1
2
(
e1 − cTε

)2

−K1v2
1 −

(
K2 − 1

2

)
v2

2 − K3v2
3 f −

σ
2 ‖θ̃‖

2 − σ1
2 ‖Θ̃‖

2
+ ρ

2 + σ
2 ‖θ‖

2 + σ1
2 ‖Θ‖

2.

(56)

6. Closed-Loop System Stability

If the matrix Q is such that Q− 0.5ccT is positive definite and K2 > 0.5, then according
to (56), the Lyapunov function derivative becomes negative outside a certain compact set ∆
in the state space of the aggregated state vector

ξ =
[
ε, v1, v2, v3 f , θ̃, Θ̃

]
. (57)

According to the well-known extension of the Lyapunov theorem [37], all signals in
(57) are bounded and uniformly ultimately bounded to ∆. A designer is able to decrease
the volume of ∆ increasing the design parameters K1, K2, and K3 and, therefore, to shape
trajectories of v1, v2, and v3 f . Practical or numerical problems may be the only limit for
the growth of K1, K2, and K3. As the actual parameters θ and Θ are bounded, bound-
edness of adaptive parameters θ̂, Θ̂ follows from the boundedness of adaptation errors
θ̃, Θ̃. The matrix P is generated as an output of a stable linear system (10), subject to the
bounded excitation (as y is bounded); therefore, it is bounded itself. Hence, both θ̂ and
.
θ̂ = ΓP(ce1 + αv1 + K1αv2)− σΓθ̂ are bounded. Consequently, the observer (4) may be con-
sidered as the stable linear system (A0 is stable) with the bonded input; hence, ẑ is bounded.
Finally, both stabilizing functions w2d, w3d are bounded, and therefore, boundedness of
w1, w2, and ω follows from the fact that v1, v2, and v3 f are bounded. Inspection of (51)
assures that the control is also bounded as a sum of bounded components.

To summarize, the slave state variable w1 follows the master output y, the track-
ing accuracy may be arbitrarily improved, and all signals in the closed-loop system
remain bounded.
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7. Example

We considered the Arneodo system (13) as the master system. With parameters a = 7.5,
b = 3.8 it demonstrates chaotic motion. The evolution in chaotic regime is shown in Figure 2.
At t = 100 [s], the input r changes from 0 to 4. Hence, the attractor moves along x1 axis. For
t = 140 [s], the value of parameter a changes from a = 7.5 to a = 6.75, transforming chaotic
motion into a limit cycle (Figures 3–6). The transformation to the ONP form is defined by
(16) and (19).

Figure 2. Evolution of signals x1 (solid line) and r (dashed line) for initial condition x = [1 0 0]T.

In the following, we present two numerical experiments, selected from many per-
formed. In the first experiment, the properties of the designed adaptive observer were
checked. The second experiment presents the results of the proposed synchronization
algorithm of two different chaotic systems.

7.1. Example 1—Observer Performance

First, we demonstrate features of the observer designed in Section 2. The tuning
of the observer starts with placing the eigenvalues of A0 by an appropriate selection of
gains k. In this way, the dynamics of the linear part of the observer is decided. The speed
of adaptation, which depends on Γ, must correspond with the observer “time constant”
defined by the maximal eigenvalue of A0—i.e., faster observer requires faster adaptation
(higher Γ). Matrices Q and R, although used in the Lyapunov function (12) and its derivative
(13), do not influence the observer directly.

The plots below are obtained for initial conditions of the Arneodo system xT(0) = [1 0 0];
hence, for the transformed system z(0) = Φx(0) = [1 1 3.8]T , and initial conditions for
the observer were selected as ẑ(0) = 0.8z(0) = [0.8 0.8 3.04]T . The initial conditions for
adaptive parameters were selected 20% lower than the real values.

Results of experiments shown in Figures 5 and 6 are typical for the obtained ob-
server performance. All errors considered (ε, e, θ̃) converge to zero. By calculation of
x̂ = Φ−1(θ̂)ẑ, it is verified that x− x̂→ 0 , so the proposed observer provides estimates of
original state variables x as well. This is demonstrated in Figure 5, in which the influence of
design parameters is also illustrated. The highest estimation errors are observed just after
the start of the system. Errors caused by shifting the attractor (change in r) are far smaller.
A rapid change in the unknown parameter a, although it is not expected according to initial
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assumptions, is well tolerated. The observer recovers after such disturbance and returns to
a perfect estimation of state variables.

Figure 3. (a) State–space trajectories for initial condition x = [1 0 0]T ; (b) a 2D projection of the
state–space trajectories with Figure 3a on (x1, x2) plane.

Figure 4. (a) A 2D projection of the state–space trajectories presented in Figure 3a on (x1, x3) plane;
(b) a 2D projection of the state–space trajectories presented in Figure 3a on (x2, x3) plane.

Figure 6a illustrates the nature of the “composite” error ε. The chaotic motion is
eliminated from this signal, and it converges exponentially according to Equation (11).

From Figure 6b, we infer that the observer provides a good estimation of unknown
parameters as well. After the initial transient, the estimates remain accurate and robust
against the input signal changes.

Although the observer working alone behaves properly, the main aim is cooperation
with the feedback controller, according to the structure presented in Figure 1.
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Figure 5. Norm of ‖x− x̂‖, design parameters: kT = [15 75 125], providing triple eigenvalue of
A0 at −5, Γ = diag(800; 1600), solid line; design parameters: kT = [30 300 1000], providing triple
eigenvalue of A0 at −10, Γ = diag(80 000; 160 000), dashed line.

Figure 6. (a) Norm of the “composite” error ε; (b) norm of parameter estimation errors; design param-
eters: kT = [15 75 125], providing triple eigenvalue of A0 at−5, Γ = diag(800; 1600), solid line; design
parameters: kT = [30 300 1000], providing triple eigenvalue of A0 at −10, Γ = diag(80 000; 160 000),
dashed line.

7.2. Example 2—Synchronization

The slave system is the 3D jerk system described by Equations (22, 23). With parame-
ters a = 3.6, b = 1.3, c = 0.1, it demonstrates chaotic behavior. Evolution in chaotic regime
is shown in Figure 7. Trajectories of the uncontrolled slave system are relatively far from
those of the master system, even if started from the same initial conditions.



Appl. Sci. 2022, 12, 3394 14 of 19

Figure 7. State–space trajectories of 3D Jerk system for initial condition w = [1 0 0]T .

Parameters of the observer were selected as kT = [60 1200 8000] (providing a triple
eigenvalue of A0 at −20), Γ = diag(8; 16), σ = 10−6. The observer’s initial condi-
tion is ẑ(0) = [0.8 0.8 3.04]T . Parameters of the adaptive controller were chosen as
Γ1 = diag(1; 2; 1) and σ1 = 0, 0001. Initial conditions of all adaptive parameters (in the
observer and in the controller) were selected 20% lower than the real values. The filter
parameter is Ω = 104. Typical plots obtained from experiments are shown in Figures 8–10.

The proposed controller offers a fast response during the initial period of time and a
small steady-state error. Increasing design parameters Ki results in reducing quasi-steady-
state errors. The synchronization error x3 − w3 is larger than x2 − w2. It is caused by the
application of the filter (46); Ω(w3d −ω) substitutes the accurate value of

.
w3d in (51).

The transient state of the synchronization process is even faster than state variables
estimation by the observer alone. The feedback from the tracking errors improves the
operation of the observer, and cooperation in the observer–controller loop results in high-
quality synchronization.

Figure 8. (a) Tracking/synchronization error v1 = x1 − w1; (b) tracking error v2; design parameters:
K1 = K2 = K3 = 10, solid line; design parameters: K1 = K2 = K3 = 15, dashed line.
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Figure 9. (a) Tracking error v3 f ; (b) norm of parameter estimation errors ‖Θ̃‖; design parameters:
K1 = K2 = K3 = 10, solid line; design parameters: K1 = K2 = K3 = 15, dashed line.

Figure 10. (a) Synchronization error x2 − w2; (b) synchronization error x3 − w3; design parameters:
K1 = K2 = K3 = 10, solid line; design parameters: K1 = K2 = K3 = 15, dashed line.

8. Conclusions

The problem of the observer-based master–slave synchronization of completely dif-
ferent chaotic systems was solved under a novel set of assumptions. A modification of
the K-filter-based observer was proposed, including feedback from the tracking adaptive
controller. The master and the slave are connected by a single signal, which is a practical
advantage in prospectus secure communication applications.

The main, new idea of the proposed approach is to enable cooperation between the
adaptive observer and the adaptive tracking controller in a unified closed-loop system.
Tracking errors fed back from the controller influence the observer (by a tuning function
in adaptive law), improving the overall performance. Application of the tuning functions
technique allows us to avoid overparameterization of the whole system—the number
of adaptive parameters is the same as the number of unknown parameters. As a result
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of filter application, the “explosion of complexity” in the control law is prevented. The
applied adaptive laws are robust; therefore, an uncontrolled increase in adaptive parameters
is avoided.

The proposed controller can synchronize different chaotic systems with sufficient
accuracy. Tuning of the design parameters is logical and clear. A designer can trade
off the synchronization accuracy against the aggressiveness of the control strategy. The
proposed solution was compared with adaptive tracking using all master–state–vector
variables. The analyzed examples demonstrate that the obtained accuracy of tracking
(synchronization) was similar, despite the smaller amount of information transferred from
the master. Additionally, settling time, overshoot, and other control quality measures are
comparable to those obtained in the case of full availability of the state vector. The same
conclusions can be drawn from the comparison with the results presented in [11].

The selection of a particular type of nonlinear adaptive observer constrains the class
of chaotic systems under consideration. In future research, we plan to explore other types
of nonlinear adaptive observers in collaboration with a tracking controller. Although
this paper concerns particular chaotic systems and the derivation concentrates on third-
order systems, the proposed design technique may be easily adapted to different cases of
nonlinear systems.
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Appendix A

Let us consider a third-order system

.
x1 = x2,
.
x2 = x3,

.
x3 = f0(x1, r) + θTD(x + Br) + gTx,

(A1)

with the input r, output y = x1, state variables x = [x1, x2, x3]
T, where θ are unknown,

constant parameters and f0(x, r), D, B, gT are known, and let us define state transformation

z = Tx, T =

 1 0 0
α 1 0
β γ 1

. (A2)

The inverse transformation is given by

x = T−1z, T−1 =

 1 0 0
−α 1 0

−β + αγ −γ 1

. (A3)

Therefore, as

T

 0
0
1

 =

 0
0
1

, (A4)
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we have

.
z = T

 [
0 1 0

][
0 0 1

]
θTD + gT

T−1z +

 0
0

f0(z1, r)

+

 0
0

θTDBr

. (A5)

Simple matrix manipulations provide that the last columns of the state matrix in
(A5) are

T

 [
0 1 0

][
0 0 1

]
θTD + gT

T−1 =


∗ 1 0
∗ α− γ 1

∗ β− γ2 +
(
θTD + gT) 0

1
−γ

 γ +
(
θTD + gT) 0

0
1


, (A6)

Therefore, the system (A1) is transformed into the ONP form if

q1 = α− γ,

q2 = β− γ2 +
(
θTD + gT) 0

1
−γ

,

q3 = γ +
(
θTD + gT) 0

0
1


(A7)

do not depend on θ.
For Arneodo system (13)

θ =

[
a
b

]
, D =

[
1 0 0
0 −1 0

]
, B =

 1
0
0

, gT =
[

0 0 −1
]
. (A8)

Therefore,
θTD + gT =

[
a −b −1

]
. (A9)

As q2 = β− γ2 − b + γ, selecting β = b and any α, γ that do not depend on unknown
parameters constitutes a family of transformations into the ONP form. One of them is
α = 1, β = b, γ = 1, applied in (14).

Therefore, the Arneodo system is linearly transformable into the ONP form. Addition-
ally, several other popular chaotic systems such as Arneodo–Coullet [38], Genesio–Tesi [39],
and Lur’e [35] belong to this class.
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