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Abstract: The real-time guidance algorithm is the key technology of the powered landing. Given the
lack of real-time performance of the convex optimization algorithm with free final time, a lossless
convex optimization (LCvx) algorithm based on the deep neural network (DNN) predictor is pro-
posed. Firstly, the DNN predictor is built to map the optimal final time. Then, the LCvx algorithm is
used to solve the problem of fuel-optimal powered landing with the given final time. The optimality
and real-time performance of the proposed algorithm are verified by numerical examples. Finally, a
closed-loop simulation framework is constructed, and the accuracy of landing under various dis-
turbances is verified. The proposed method does not need complex iterative operations compared
with the traditional algorithm with free final time. Therefore, the computational efficiency can be
improved by an order of magnitude.

Keywords: powered landing guidance; lossless convex optimization; successive convex optimization;
deep neural network; model predictive control

1. Introduction

With the development of aerospace technology, the demand for landings to explore the
moon and other exoplanets has increased dramatically. The future mission requires the ve-
hicle to achieve a high-precision landing to explore regions of scientific value efficiently [1].
In recent years, rocket vertical recovery technology developed from planetary soft-landing
technology has attracted the attention of many researchers. The purpose of the technology
is to guide the rocket core stage to achieve vertical recovery, which significantly reduces
the cost of space transportation [2]. The above scenarios both lead to new requirements for
the powered landing guidance algorithm. Due to the complex dynamic environment, the
initial state of the powered landing phase cannot be accurately predicted in advance, so
the tracking guidance method based on offline calculation cannot be adopted. Therefore,
the real-time optimal guidance algorithm has become the key technology for the powered
landing problem. The primary purpose of the work is to design a high-precision landing
guidance algorithm based on convex optimization fusing the deep neural network (DNN)
predictor, which satisfies optimality and real-time performance.

The early guidance algorithms mainly adopted analytical algorithms, including the
gravity turn [3,4] and Apollo polynomial guidance algorithm [5]. The gravity turn guidance
algorithm cannot guarantee the landing accuracy. The Apollo guidance algorithm can
achieve a high-precision lunar landing. However, the algorithm cannot deal with process
constraints or guarantee the optimality of fuel consumption [6]. After the 1960s, many
scholars have proposed various indirect guidance methods based on Pontriagin’s minimum
principle. These methods transform the optimal control problem into a two-point boundary
value problem (TPBVP), and different methods were used to solve the TPBVP [7–10].
However, the convergence of the indirect method is sensitive to the costate variables, and
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how to select the initial costate variables needs further research. To sum up, the traditional
guidance algorithms lack real-time and optimality performance, and it is difficult to achieve
an accurate landing in a complex dynamic environment.

In recent years, many scholars have proposed some potential real-time guidance algo-
rithms, which can be divided into two categories. The first category is based on convex
optimization (CVX) [11–17]. Açikmeşe [11] and Blackmore [12] first used variable sub-
stitution and lossless convex optimization (LCvx) to deal with the nonconvex dynamic
equations and constraints, and the second-order cone programming (SOCP) was built to
solve the Mars landing problem. Liu and Lu [13,14] proposed the principle of successive
convex optimization (SCvx). By linearizing the constraint and adding the trust-region
constraint, the nonlinear optimal control problem was transformed into a sequence of
sub-SOCPs. This method can deal with more complex dynamic constraints and has been
successfully applied to various aerospace guidance problems, including powered landing.
The most remarkable advantage of the CVX-based algorithm is that it has strict convergence
proof, and the algorithm can obtain the optimal solution in polynomial time. However, due
to the limitation of the current onboard CPU, it is still hard to achieve real-time guidance.
The second category is ML-based algorithms [18–22]. Sánchez [19] proposed a supervised
learning guidance algorithm based on DNN. Firstly, the indirect method generated abun-
dant training samples, and then the DNN was used to learn the relationship between
state and control variables. The control signals can be mapped directly from the state
variables when running onboard. The algorithm is very efficient, but it cannot guarantee
the correctness of the mapped control signals. The landing accuracy and optimality are
lower than the CVX-based algorithm.

To sum up, CVX and ML algorithms are the two main ways to realize real-time
guidance. However, the CVX-based algorithms have the disadvantage of lacking real-time
performance. ML-based algorithms have the shortcoming of insufficient landing accuracy
and reliability.

It is worth noting that the CVX algorithm is divided into the fixed final-time algorithm
and the free final-time algorithm. Since the selection of terminal time significantly impacts
the feasibility and optimality of the solution, it is more practical to study the free final-time
algorithm. There are two methods in the literature. One is to fix the final time first, adopting
LCvx to solve the SOCP, and then regard the final time as a parameter to conduct the one-
dimensional golden search [12,23]. Another method treats the final time as a variable and
deals with the dynamic constraints by SCvx [24,25]. The relationship between algorithms is
shown in Figure 1. The common disadvantage of the two methods is that the SOCP needs
to be solved many times, which dramatically reduces the computational efficiency.
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Many scholars have optimized the above algorithms. The authors of [26] used
quadratic function to approximate the relationship between landing time and landing
mass, and reduced the calculation times of the SOCP problem to 4. In reference [27], the
grid search method was adopted to calculate the optimal landing time, which reduced the
calculation times of the SOCP problem to 6 and was successfully applied in a flight test.
The authors of [28] used linear interpolation to directly calculate the optimal landing time
through the current state of the rocket, but this method needs to store a large amount of
data onboard.

In this paper, the CVX and ML are combined by establishing the DNN predictor to
assist convex optimization, thus significantly improving the efficiency of computation (see
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the algorithm highlighted in red in Figure 1). The algorithm proposed in this work avoids
iteration by introducing the optimal terminal time predictor. Given that the accuracy of the
traditional analytical estimation formulas [29,30] is insufficient, inspired by the [19], the
DNN is adopted to learn the relationship between state variables and optimal terminal
time. The optimal terminal time can be mapped directly from the state variables when
running onboard. Therefore, the solution can be obtained by solving the SOCP only once.

The structure of the paper is as follows: Section 1 briefly introduces the background of
the powered landing and summarizes the development of guidance algorithms based on
CVX and ML. The shortcomings of the current algorithms are illustrated. Section 2 gives
the mathematical description of the powered landing. In Section 3, variable substitution
and lossless relaxation techniques are used to convexify the primal problem. The effect of
terminal time on the feasibility and optimality of the solution is discussed. In Section 4, the
DNN optimal predictor is built to predict the optimal terminal time, and the corresponding
sample generation algorithm is proposed. Section 5 integrates the algorithms of Sections 3
and 4 and analyzes the optimality and real-time performance by the open-loop simula-
tion. Section 6 proposes a closed-loop guidance algorithm framework based on MPC and
analyzes the algorithm’s robustness and landing accuracy. Section 7 summarizes the work.

2. Problem Statement

Firstly, the reference coordinate system O-xyz shown in Figure 2 is established. The ori-
gin of the coordinate system is fixed on the landing platform, the x axis is aligned to the
reverse direction of the local gravity acceleration, and the y axis and z axis are aligned to
the east and north direction of the local ground plane, respectively. Considering the flight
time of the powered landing is short, the inertial centrifugal force and Coriolis force caused
by the rotation of the reference coordinate system are negligible.
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It is worth noting that the acceleration provided by the thruster is the main driving
force that affects the motion of the rocket, while the aerodynamic force is small relative
to the thrust. Therefore, the dynamic model only considers the effect of thrust. In order
to evaluate the robustness of the proposed guidance algorithm, an aerodynamic model is
added to the closed-loop simulation. The dynamic equation of the 3-DOF motion of the
vehicle can be expressed as follows:

.
r = v

.
v = g + T

m
.

m = − ‖T‖Ispg0

(1)
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where r, v and m are the position vector, velocity vector and mass of the vehicle, respectively.
Isp is the specific impulse of the engine, and g0 is the earth’s gravitational constant and
g0= 9.8065 m/s2. g is the gravitational acceleration vector. The initial altitude of the
powered landing phase is usually about 5 km, and the variation of the gravitational
acceleration is negligible. Therefore, g can be regarded as a constant vector:

g = (−g0, 0, 0)T (2)

T is the thrust vector and ‖T‖ is the thrust magnitude. Due to the performance limitation
of the rocket engine, ‖T‖ needs to satisfy the following constraints:

Tmin ≤ ‖T‖ ≤ Tmax (3)

where Tmin and Tmax are the lower and upper bounds of the thrust magnitude, respectively.
In order to ensure that the vehicle can avoid obstacles and terrain near the landing site, it is
also necessary to add the glideslope constraints, as shown in Figure 2:√

r2
y(t) + r2

z(t)− rx(t) tan γmax ≤ 0 (4)

where γmax is the maximum glideslope angle and γmax ∈ (0, π/2). rx, ry and rz are the
three components of the position vector r, respectively. Given the constraint, the range of
the horizontal motion decreases with altitude, and lateral maneuvers become small as the
rocket approaches the landing site. Assuming that the thrust direction is parallel to the
longitudinal axis of the rocket, the attitude of the rocket can be limited by constraining
the direction of the thrust. The following thrust pointing constraints need to be added, as
shown in Figure 2: √

T2
y (t) + T2

z (t)− Tx(t) tan θmax ≤ 0 (5)

where θmax is the maximum thrust pointing angle and θmax ∈ (0, π/2). Tx, Ty and Tz are
the three components of the thrust vector, respectively. Given the constraint, the horizontal
components of the thrust direction are constrained to a small value, thereby equivalently
constraining the attitude of the vehicle.

The initial and terminal constraints are listed as follows:
r(t0) = r0
v(t0) = v0

m(t0) = m0
r(tf) = 0
v(tf) = 0

(6)

where t0 and tf are the initial time and the terminal time of the powered landing, respectively.
r0, v0 and m0 are the position, velocity and mass at the initial time, respectively, which can
be obtained by the navigation system. Since the landing platform is located at the origin
of the coordinate system, the position and velocity vector at the terminal time are both
zero vectors.

This work considers the fuel-optimal powered landing problem, so the objective
function is selected as the maximum terminal mass:

min J = −m(tf) (7)

The mathematical description of the fuel-optimal powered landing problem is shown
in (1)~(7), which can be summarized in the Figure 3.
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3. Lossless Convex Optimization Algorithm

This section first convexifies the primal problem using the variable substitution and
lossless relaxation techniques, then discretizes the problem using the equidistant trape-
zoidal discretization method, and finally converts the problem into an SOCP which can be
solved efficiently. Since the selection of terminal time dramatically impacts the optimality
and feasibility of the solution, the second part of the section discusses the effect of terminal
time on the solution in detail and gives relevant qualitative conclusions.

3.1. Convexification and Discretization

From the description of the problem in Section 2, it can be seen that there are some
non-convex constraints in the primal problem, which can be divided into two categories.
The first is the dynamic non-convex factors caused by the variation of rocket mass with time,
which can be convexified by variable substitution. The second is the non-convex factors
caused by introducing the lower bound of thrust magnitude, which can be convexified by
lossless relaxation. It is proved that after the above convex steps, the optimal solution of
the problem is the same as primal problem [11,12].

First, define the logarithm of mass as a new variable to replace rocket mass:

z(t) = ln[m(t)] (8)

Similarly, define new control variables:

u(t) = T(t)
m(t) σ(t) = ‖T(t)‖

m(t) (9)

where u(t) and σ(t) are the defined control variables, which indicate the thrust acceleration
components and magnitude, respectively. Then the mass flow constraint is rewritten
as follows:

.
z(t) =

.
m(t)
m(t)

= − ‖T(t)‖
Ispg0m(t)

= − σ(t)
Ispg0

(10)

New dynamic constraints and mass flow constraints are derived:

.
r = v

.
v = g + u
.
z = − σ

Ispg0

(11)

The upper and lower bound constraints of the thrust magnitude are transformed into
the following formula:

Tmin ≤ ‖T(t)‖ ≤ Tmax ⇒
Tmin

m(t)
≤ ‖ T(t)

m(t)
‖ ≤ Tmax

m(t)
⇒ Tmine−z(t) ≤ σ(t) ≤ Tmaxe−z(t) (12)
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The Taylor expansion is used to simplify the expression further, and only the first-order
term is retained to obtain the approximate constraint as:

Tmine−z0(t)[1− (z(t)− z0(t))] ≤ σ(t) ≤ Tmaxe−z0(t)[1− (z(t)− z0(t))] (13)

where z0(t) is the lower bound of the z(t). The specific expression of z0(t) is as follow:

z0(t) = ln
(

m0 −
Tmax

Ispg0
t
)

(14)

It is worth noting that only retaining the first-order term will introduce the linearization
error. However, according to the numerical simulation in Section 5, it can be verified that
the error is small. So far, the upper and lower bound constraints of the thrust magnitude
have been transformed into linear inequality constraints. Because there is a non-convex
constraint relationship between the thrust acceleration component and magnitude, lossless
relaxation is required:

‖u(t)‖ = σ(t)⇒ ‖u(t)‖ ≤ σ(t) (15)

Formula (15) is called the lossless relaxation technique, and it is a key step in con-
vexification. Although (15) makes the constraint convex, it increases the feasible domain
of the primal problem. Refs. [11,12] and a large number of numerical simulations show
that although the feasible domain of the problem has changed after relaxation, the optimal
solutions before and after relaxation are equivalent. The mathematical description of the
fuel-optimal powered landing problem can be summarized in the Figure 4.
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The convex problem needs to be further discretized to transform the infinite-dimensional
optimization problem into a finite-dimensional problem. The computational efficiency and
accuracy of different discrete methods are various, discussed in detail in reference [15].
In order to simplify the derivation and highlight the essence of the problem, the equidistant
trapezoidal discretization method is adopted.

The given time interval [0, tf] is uniformly discretized into N points, and the length of
each discrete segment is ∆t = tf/(N − 1). Define the vector to be optimized as:

x[k] =
(

r[k]T , v[k]T , z[k], u[k]T , σ[k]
)T

k = 1, . . . , N (16)
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Then, the dynamic equation constraints in discrete form can be written according
to (11):

r[k]− r[k + 1] + ∆t
2 v[k] + ∆t

2 v[k + 1] = 0

v[k]− v[k + 1] + ∆t
2 u[k] + ∆t

2 u[k + 1] = −g∆t

z[k]− z[k + 1]− ∆t
2Ispg0

σ[k]− ∆t
2Ispg0

σ[k + 1] = 0
k = 1, . . . , N − 1 (17)

Since the objective function of the discretized problem is a linear function, the equality
constraints are affine, and the inequality constraints are a combination of affine constraints
and second-order cone constraints. The original continuous optimization problem is
completely transformed into a finite-dimensional SOCP. The results can be summarized in
the Figure 5.
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The problem can be solved efficiently using a mature SOCP solver. All numerical
simulations in the paper are performed on an Intel Core i7-10875H PC with 2.3 GHz and
64 GB memory using the ECOS solver [31]. The algorithm used by the solver is a standard
primitive-dual, prediction-correction interior-point algorithm, using Nesterov-Todd (NT)
scaling and self-dual embedding technology. ECOS is a small-footprint, high-performance
SOCP solver whose accuracy is numerically reliable and beyond that typically required
by embedded applications. It is competitive in solving small and medium-sized convex
optimization problems.

3.2. Discussion about Optimal Terminal Time

Section 3.1 uses the LCvx to convert the problem into an SOCP and efficiently solve it.
However, the algorithm requires a given terminal time in advance, which is also the main
shortcoming of the algorithm in Section 3.1. Nevertheless, few scholars have studied the
impact of terminal time on the solution in detail. This section will analyze the relationship
between the terminal mass and the terminal time through the simulation.

First, set the rocket parameters and environment parameters, as shown in Table 1.
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Table 1. Rocket and environmental parameters.

Parameter Amount Parameter Amount

Tmin 845.2 kN Isp 282 s
Tmax 169.0 kN γmax 80◦

g0 9.80665 m/s2 θmax 30◦

Then, set the typical initial state variables, as shown in Table 2.

Table 2. Setting of initial state variables.

Parameter Amount Parameter Amount

rx0 5× 103 m vx0 −150 m/s
ry0 5× 102 m vy0 −30 m/s
rz0 5× 102 m vz0 30 m/s
m0 3.8× 104 kg

The relationship between the terminal mass and the terminal time is obtained using
the ECOS solver, as shown in Figure 6.
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The relationship can be divided into three intervals:

1. LCvx failure interval (tf ∈ [0, tcr]): Although it is possible for the numerical solver to
obtain the optimal solution, the convex relaxation is no longer valid, which means the
solutions do not satisfy ‖u(t)‖ = σ(t). Therefore, the solution is infeasible;

2. Increasing interval (tf ∈ (tcr, topt]): The algorithm can successfully obtain the optimal
solution, and the terminal mass increases monotonously with the terminal time.
Numerical simulations show that this interval is usually narrow. In Figure 6, the
interval length is only 0.64 s. When the initial state variables are set to other values,
the interval length is generally less than 2 s;

3. Decreasing interval (tf is slightly larger than topt): The algorithm can also successfully
obtain the optimal solution, and the terminal mass decreases monotonously with the
terminal time. The rocket will increase the landing time by consuming more fuel in this
interval. If tf is very large, the altitude might increase during the powered landing.

Combining the above three situations, the following conclusions can be drawn.
The feasibility and optimality of the algorithm in Section 3.1 are closely related with tf.
If tf is too small, a feasible trajectory cannot be obtained. If the value is too large, it will
consume more fuel, and even lead to increasing the altitude. In addition, it can be found
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that the topt and tcr are very close, so choosing an inappropriate tf can easily lead to an
infeasible solution.

Many scholars used the one-dimensional search and SCvx method to solve the topt,
which have achieved good results. However the two methods both need to solve the SOCP
many times, and the number of iterations is related to the initial selection of tf. Since the
number of iterations cannot be predicted in advance when running onboard, and the
iteration significantly increases the computation cost, the above iteration-based method
limits the algorithm’s efficiency in Section 3.1.

4. DNN Optimal Predictor

Section 3.2 illustrates the shortcomings of traditional iteration-based algorithms. It is
necessary to propose a new method to avoid iteration.

Feedforward neural network is the earliest artificial neural network. It has a robust
fitting ability and can be used to fit the nonlinear relationship between all kinds of data.
According to the Universal Approximation Theorem, for a feedforward neural network
consisting of a linear output layer and at least one hidden layer using nonlinear activation
functions, as long as there are enough neurons in the hidden layer, then it can approximate
a bounded closed set function defined in real space with arbitrary accuracy.

There is a complex implicit relationship between the initial state and the optimal
terminal time for the fuel-optimal powered landing problem, so it is very suitable to use a
feedforward neural network to fit the relationship between them. If the number of hidden
layers increases, the network can fit more complex nonlinear relationships with fewer
neurons. Therefore, the deep feedforward neural network is chosen to build the optimal
predictor, referred to as DNN.

This section aims to replace the traditional iteration-based method by introducing
the DNN topt predictor. The predictor can accurately and efficiently map the optimal
landing time according to the current state variables, which significantly improves the
computational efficiency of the LCvx algorithm with free terminal time. The specific
algorithm denoted as DNN-LCvx is shown in Figure 7.
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4.1. Sample Generation

The key to constructing the DNN optimal predictor is to generate a large number
of good training samples. In this paper, the SCvx algorithm proposed in [25] is used to
generate the sample trajectory efficiently. Then, the state variables and the correspond-
ing optimal terminal time are obtained directly using linear interpolation. The sample
trajectory’s initial state variables are generated as follows:

rx,i= 5000 + 1000ε (m) vx,i= −100 + 100ε (m/s)
ry,i= 1000ε (m) vy,i= 50ε (m/s)
rz,i= 1000ε (m) vz,i= 50ε (m/s)
mi= 38 + 2ε (t) ε ∈ [−1, 1]

(18)

where ε is a uniformly distributed random number with the range of [−1, 1]. First, the
corresponding fuel-optimal trajectory is solved by the SCvx algorithm for each pair of
initial state variables. Then, 60 state variables and optimal terminal time pairs are uniformly
selected as samples on each sample trajectory. Finally, the generated samples are stored in
the training set. The flow chart of sample generation is shown in Figure 8.
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A large number of sample trajectories can be generated efficiently using the above
algorithms. A total of 20,000 sample trajectories are randomly generated, and the sample
trajectories are shown in Figure 9. Because 60 pairs of samples are uniformly distributed
on each sample trajectory, the total number of the samples is 1.2 million, which basically
covers the whole feasible region.
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Figure 9. Distribution of the sample trajectories.

The distribution of the terminal time of all sample trajectories is drawn, as shown
in Figure 10. It can be found that there is a great variant between the optimal terminal
time obtained under different initial conditions. Among the 20,000 sample trajectories, the
minimum optimal terminal time is 25.1219 s, and the maximum is 57.8355 s, and the sample
data is reasonable.
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Figure 10. Statistics of the optimal terminal time of sample trajectories.

4.2. Design and Training of the DNN

The DNN structure used in this section is shown in Figure 11.
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Figure 11. Structure of the DNN.

The input layer of the DNN contains 7 neuron units, which represent the current posi-
tion components, velocity components, and mass of the vehicle, respectively. The output
layer contains 1 unit representing the estimation of topt. Each unit in the network structure
is essentially a nonlinear function that describes the mapping relationship between input
and output. The number of hidden layers, the number of units in each layer, and the
activation function are all hyperparameters of the DNN, which need to be determined by
optimizing the network structure. Define a loss function in the form of mean squared error
(MSE) as follows:

σMSE =

n
∑

i=1

(
ti,opt − t̂i,opt

)2

n
(19)

where n is the number of samples input for each training, ti,opt and t̂i,opt are the true values
and estimated values of the optimal terminal time, respectively. Similarly, in order to
measure the error of the network, an error function in the form of mean absolute error
(MAE) is defined:

σMAE =

n
∑

i=1

∣∣ti,opt − t̂i,opt
∣∣

n
(20)

The Bayesian regularized backpropagation algorithm is selected to train the DNN,
and the method updates the weights and biases according to the Levenberg–Marquardt
optimization algorithm. Bayesian regularization minimizes the linear combination of
squared errors and weights and modifies the linear combination to give a network that
generalizes well after training. The neural network hyperparameters are shown in Table 3:

Table 3. Setting of the DNN’s hyperparameters.

Parameter Amount Parameter Amount

Number of hidden layers 2 Training ratio 85%
Number of hidden layer units 30 Test ratio 15%

Activation function Sigmoid Maximum epochs 1000

The variation of the training set and the test set’s MSE with the training epochs is
shown in Figure 12:



Appl. Sci. 2022, 12, 3383 13 of 22

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 24 
 

The variation of the training set and the test set’s MSE with the training epochs is 
shown in Figure 12: 

 
Figure 12. Visualization of the training process. 

It can be found that the MSE decreases monotonically with the epoch. When the 
epoch reaches 1000, the MSE of the training set reaches the minimum, and 

4 2
MSE 4.8 10  sσ −= × . The MSE of the training set and the test set are highly coincident, in-

dicating that the generalization ability of the net is good, and there is no overfitting in the 
training results. 

After training, the distribution of the network error is plotted, as shown in Figure 13. 

 
Figure 13. Statistics of the DNN errors. 

It can be found that the DNN constructed in this paper can accurately predict the 
optimal terminal time according to the current state. The MAE is 11.6 ms, and the predic-
tion errors of most samples (99.11%) do not exceed 0.1 s. The specific results are shown in 
Table 4. 

Table 4. Statistics of training results. 

Figure 12. Visualization of the training process.

It can be found that the MSE decreases monotonically with the epoch. When the epoch
reaches 1000, the MSE of the training set reaches the minimum, and σMSE = 4.8× 10−4 s2.
The MSE of the training set and the test set are highly coincident, indicating that the
generalization ability of the net is good, and there is no overfitting in the training results.

After training, the distribution of the network error is plotted, as shown in Figure 13.
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It can be found that the DNN constructed in this paper can accurately predict the
optimal terminal time according to the current state. The MAE is 11.6 ms, and the prediction
errors of most samples (99.11%) do not exceed 0.1 s. The specific results are shown in Table 4.

Table 4. Statistics of training results.

Parameter Amount Parameter Amount

Mean square error (MSE) 4.8074× 10−4 s2 Mean absolute error (MAE) 11.6 ms
MSE of the training set 4.8001× 10−4 s2 Maximum error 0.3921 s

MSE of the test set 4.8488× 10−4 s2 Minimum error −0.4530 s
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5. Open-Loop Simulation

In this section, the DNN-LCvx algorithm (see Figure 7) is verified by open-loop
numerical simulations. The primary purpose is to verify the algorithm’s optimality and
real-time performance and discuss the possibility of its application to onboard guidance.

5.1. Optimality Performance

The SCvx algorithm proposed in [25] is regarded as a standard algorithm, and the
errors between the DNN-LCvx and the SCvx are analyzed. If the control profiles com-
puted by the two algorithms are similar, and the terminal landing mass and terminal
time are close, it can be considered that the DNN-LCvx proposed in this paper has good
optimality performance.

The initial state variables are shown in Table 2. The two algorithms are discretized
with uniform time interval, and N = 100. Figures 14 and 15 show the control profiles of the
two algorithms.
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It can be found that the control profiles computed by the two algorithms are similar.
The optimal terminal time solved by SCvx is 32.815 s and the terminal mass is 31,760.5 kg.
The optimal terminal time solved by the DNN-LCvx algorithm is 32.719 s and the terminal
mass is 31,755.7 kg. The terminal time error is −0.096 s and the terminal mass error is
−4.8 kg. The errors are at a small level. Therefore, the optimality of the DNN-LCvx
algorithm can be verified.

Next, the impact of the discrete number on optimality is discussed. Generally, the
larger the discrete number is, the closer the result is to the optimal solution, but the
computation cost will increase significantly. The variation curve of terminal mass with the
discrete number is plotted in Figure 16.
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It can be seen from Figure 16 that there is a systematic error in the DNN-LCvx algo-
rithm, which is mainly caused by the linearization of (13) and the error of the network. It is
worth noting that when the discrete number is greater than 30, the terminal mass changes
very smoothly with N. Therefore, N > 30 can ensure the optimality of the algorithm.

5.2. Real-Time Performance

This section evaluates the real-time performance of the DNN-LCvx algorithm by
comparing the elapsed time of the proposed DNN-LCvx algorithm and the standard
SCvx algorithm. The initial state variables are shown in Table 2. The discrete number is
N = 30, and the general ECOS solver is used to solve the SOCP. The elapsed time and other
information obtained from the test are shown in Table 5.

Table 5. Comparison of real-time performance between the SCvx and DNN-LCvx.

Item DNN-LCvx SCvx

Elapsed time (ms) 6.5 78.0
Iterations 1 5

Elapsed time per Iteration (ms) 6.5 15.6

It can be found that the DNN-LCvx has good real-time performance. In this example,
the DNN-LCvx algorithm is 12.0 times faster than the SCvx algorithm, which is mainly
caused by two factors:

1. SCvx adopts the idea of solving problem in sequence, so it needs to solve sub-SOCPs
many times, which significantly increases the elapsed time, while DNN-LCvx can be
completed only once.



Appl. Sci. 2022, 12, 3383 16 of 22

2. In order to prevent the failure of the linearization and the artificial infeasibility, the
SCvx algorithm needs to introduce a large number of trust region constraints and
virtual control variables, thus increasing the complexity of the sub-SOCP.

In summary, the DNN-LCvx algorithm proposed in this paper has excellent real-time
performance compared with traditional algorithms. Next, we discuss the impact of the
discrete number on real-time performance. The variation of the elapsed time with the
discrete number is plotted, as shown in Figure 17. If the discrete number is the same, the
computation speed of DNN-LCvx is about an order of magnitude higher than SCvx.
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6. Closed-Loop Simulation

The simulations in Section 5 are only open-loop simulations for the ideal dynamic
model. However, there are complex environmental disturbances and thrust execution
errors in real flight. Therefore, it is necessary to introduce closed-loop control to achieve a
high-precision landing. In this section, a closed-loop guidance algorithm based on MPC
is proposed. The proposed algorithm’s accuracy and robustness are verified by adding
aerodynamic drag, thrust execution error, and initial state errors to the model.

In the implementation of the MPC-based closed-loop guidance algorithm, the navi-
gation system first obtains the state variables, including the flight velocity, position, and
the remaining mass. The obtained data is then transmitted to the DNN optimal predictor,
which estimates the optimal landing time. Then, the state variables and the optimal landing
time are transmitted to LCvx to obtain the optimal control profile. Finally, the average
value of the control variables in the first guidance period is transmitted to the dynamic
model, and the state variables are updated. This process will repeat after one guidance
period until the rocket safely reaches the landing site. The algorithm flow chart is shown in
Figure 18.

6.1. Adaptability to Environment and Control System

In order to guarantee convergence and computational efficiency, the DNN-LCvx
algorithm does not consider the atmospheric drag. This section will verify the robustness
of the proposed algorithm by adding an atmospheric drag term to the dynamics model.
Moreover, the effect of the control system execution error on the simulation results is
also considered. The thrust in the guidance period is assumed to be a constant value
that cannot be continuously changed. The constant value is the interpolation average of
the optimal thrust sequence in the guidance period. In the closed-loop simulation, the
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increased disturbances will cause the actual state variables to diverge from the planned
trajectory. Therefore, the guidance module needs to update the guidance law in real-time,
as shown in Figure 18.
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The dynamic equations of the system are:

.
r = v

.
v = g + κT

m −
1

2m ρCdSref‖v‖v
.

m = − κ‖T‖
Ispg0

(21)

where ρ is the density of the atmosphere, and the value is 1.225 kg/m3; Cd is the drag
coefficient; Sref is the reference area of the rocket, and the value is 10.51 m2. T is the control
variables computed by DNN-LCvx, and κ is the ratio of the actual control variables to the
expected control variables, which indicates the error of the control system. The remaining
parameters are the same as (1), and the initial conditions of the simulation are shown in
Table 2. The simulation results of the landing error of different Cd and κ can be obtained,
as shown in Tables 6 and 7, where the guidance period is 200 ms and the discrete number
is 30.

Table 6. Statistics of landing error with κ = 1.0.

Cd 0.5 1.0 1.5 2.0

position error (m) 0.0480 0.0116 0.0133 0.0189
velocity error (m/s) 0.1701 0.0012 0.0027 0.0147
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Table 7. Statistics of landing error with Cd = 1.0.

κ 0.95 0.98 1.02 1.05

position error (m) 0.8299 0.3573 0.0025 0.0182
velocity error (m/s) 1.7474 0.5079 0.0201 0.0755

It can be seen from above results that when κ is fixed and Cd is free, the rocket can
achieve high-precision landing, and the landing accuracy is not highly correlated with
the Cd. When Cd is fixed and κ is free, the rocket can also achieve high-precision landing.
However, the simulation also indicated that the landing error would increase significantly
for κ < 1. For example, the landing speed error reached 1.7474 m/s if κ = 0.95.

The following strategy can be used to solve the problem of low landing accuracy for
κ < 1: In the trajectory planning stage, set Tmax slightly smaller than the nominal maximum
thrust Tn,max in advance. When the rocket’s maximum thrust is smaller than Tn,max, there
is still enough margin to guarantee κ ≥ 1.

The thrust profile is plotted with Cd = 1.0 and κ = 1.02, as shown in Figure 19.
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The red marks in the figure indicate the open-loop control sequence running the
DNN-LCvx algorithm at the initial state. The black curve is the closed-loop simulation
result without any disturbance, and it can be seen that the closed-loop simulation results
are highly consistent with the open-loop results. The blue curve is the control sequence
obtained by closed-loop simulation considering aerodynamic drag and thrust execution
error. It can be seen that the second switch time of the thrust is delayed, and the total flight
time of the rocket also increases accordingly. The position error of the landing is 0.0025 m,
and the velocity error is 0.0201 m/s. The algorithm can achieve a high-precision landing.

It is worth noting that the final landing mass obtained by the open-loop trajectory
planning is 31.752 t. When the aerodynamic drag is added, the final landing mass obtained
by the closed-loop simulation is 32.616 t. The fuel consumption is reduced by nearly 1 t
because aerodynamic drag has the positive effect of slowing the rocket’s velocity, reducing
the fuel consumption required for the landing.

6.2. Adaptability to Initial States

This section mainly analyzes the robustness of the closed-loop algorithm under differ-
ent initial states. According to the analysis in Section 4.1, if the initial state satisfies (18), the
optimal landing time obtained by the DNN optimal predictor is reliable. Therefore, this
section randomly selects 150 initial state combinations according to (18), and then performs
a Monte Carlo simulation to analyze the landing accuracy.
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Selecting Cd = 1.0 and κ = 1.02, the scatter plot of position error and velocity error in
the horizontal direction can be obtained, as shown in Figure 20.
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Figure 20 shows that the rocket can achieve precision landing for all initial states.
The position error of the landing in the horizontal direction is within 0.06 m, and the
velocity error of the landing in the horizontal direction is within 0.4 m/s. It meets the
requirement of safe landing. In addition, the excessive vertical speed at the terminal time
will cause damage to the rocket structure, so it is also necessary to analyze the vertical
speed of landing, as shown in Figure 21.
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The simulation results show that the vertical velocity of landing is less than 1.7 m/s,
and most of the numerical examples are less than 1 m/s. The rocket trajectories under the
random initial state are shown in Figure 22. The position components’ profiles under the
random initial state are shown in Figure 23.
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The simulation results show that the rocket can accurately land under different initial
conditions. Figure 23 shows that the landing time varies greatly under different initial
values, with a maximum variety of nearly 40 s. The algorithm proposed in this paper can
effectively and reliably solve the optimal landing time.

7. Conclusions

This work mainly studies an efficient guidance algorithm for fuel-optimal powered
landing. The LCvx algorithm is combined with the DNN predictor to construct the DNN-
LCvx algorithm, accurately predicting the optimal landing time and efficiently solving the
optimal trajectory with various constraints. Open-loop numerical simulation shows that:

1. The computation accuracy of the proposed algorithm is high, and the error of terminal
mass is several kilograms, which can ensure the optimality of the results.



Appl. Sci. 2022, 12, 3383 21 of 22

2. The computational efficiency of the proposed algorithm is high, and it is about an
order of magnitude higher than the traditional CVX-based algorithm. The elapsed
time of single trajectory planning is stable between 5 ms and 8 ms.

The MPC framework is introduced to the closed-loop simulation under the given
disturbance, and the simulation results show that the proposed algorithm can achieve
accurate landing under various disturbances. The horizontal position error is less than
0.06 m, the horizontal speed error is less than 0.4 m/s, and the vertical velocity is less than
1.7 m/s.

We noticed that although the DNN-LCvx algorithm has a significant improvement in
real-time performance, it also has the following shortcomings that need to be highlighted:

1. In order to obtain a high-precision DNN optimal predictor, the proposed algorithm
requires a large number of training samples (1.2 million in this paper); thus, the offline
training cost is high.

2. For different types of vehicles, the DNN optimal predictor needs to be retrained,
reducing the algorithm’s generality.

3. The initial state of the vehicle must be distributed within a specific range (see (18)).
Otherwise, the predicted optimal landing time may be invalid.

In summary, the proposed guidance algorithm meets the requirements of multi-
constraint, optimality, real-time, and high precision. Moreover, it can significantly improve
real-time performance compared with other CVX-based algorithms. Thus, the algorithm
can be applied to onboard applications. Some shortcomings of the algorithm are high-
lighted, which are worth further study in the future.
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