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Abstract: The calcium leaching effect leads to a decrease in the impermeability of the impervious
curtain. The inverse analysis strategy was introduced in this study because the calcium leaching
parameters of the curtain are not easy to determine. An orthogonal design and the finite element
method were used in the strategy. The time-series data of hydraulic head and leakage volume were
applied to construct the objective function. The extreme learning machine (ELM) was proposed to
build the reflection sets. Genetic algorithm (GA), simulated annealing (SA), sparrow search algorithm
(SSA), and particle swarm optimization (PSO) were employed to accelerate the iterative search for the
target parameters. The target parameters of the calcium leaching model were used for finite element
verification by comparing the monitored and simulated values. The simulated values of hydraulic
head and leakage by PSO show good agreement with measurements. The evolution of the curtain
permeability coefficient in 100 years was analyzed. The results demonstrate the strategy’s feasibility
in determining the curtain’s calcium leaching parameters and permeability coefficients.

Keywords: inverse analysis; calcium leaching; impervious curtain; permeability coefficient

1. Introduction

The curtain is an impermeable structure used for dam foundation containment in
hydraulic engineering. Calcium hydroxide (CH) and calcium silicate hydrate (C-S-H) are
the main components of the solid-phase calcium in the curtain. CH partly determines
the decay process of the curtain’s impermeability. At the same time, C-S-H affects the
physical and mechanical properties of the curtain. The precipitation of the solid-phase
calcium in cement-based materials occurs in weakly alkaline or basic solutions. During op-
eration, the cyclic action of ambient water causes the solid-phase calcium in the curtain to
decompose and precipitate out, increasing the permeability of the curtain and affecting the
operation of the hydraulic project [1]. For example, after nearly twenty years of operation,
the Daheiding dam had a significant calcium precipitation problem, deteriorating year by
year. The impervious curtain was found to be seriously damaged by sampling the curtain
bore-hole and underwater television observation [2].

The permeability coefficient of cement-based materials is generally defined as a func-
tion of porosity, influenced by pore structure, degree of dissolution, and physical damage [3].
Saito [4] proposed an exponential equation between permeability and porosity for simulat-
ing the permeability coefficient of cement-based materials during leaching. This equation
works effectively in accelerated mortar electrochemical tests and has been adopted by
Gawin [5,6]. Based on this, Kozeny and Carman further considered the evolution of mi-
crostructural parameters by introducing pore shape, specific surface area, and degree
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of distortion. This evolution provides a more accurate characterization of the hydraulic
properties and has been extensively used in species of cement-based materials [7–10]. Sig-
nificantly, the permeability coefficient of cement-based materials is similarly influenced
by the process and rate of solid-phase calcium decomposition. For diffusion-driven leach-
ing, Gerard et al. [11], Phung et al. [12], and Wan et al. [13,14] have proposed different
solid–liquid phase equilibrium equations based on thermodynamic equilibrium relations.
Regarding advection-diffusion-driven leaching, Lambert [15] adopted the discrete element
method to simulate the dissolution process at the rock–mortar contact, which provided a
new strategy for solving the calcium leaching problem. Zhang et al. [16] considered the
calcium leaching effect and presented the calcium hydroxide content and initial infiltration
flow rate as the durability control index of the impervious curtain.

A great deal of research has been conducted on the calcium leaching effect. However,
one primary problem with calcium leaching is that those calculation parameters are not
efficiently and accurately determined. This problem is accentuated by the little research on
calcium leaching parameters during the construction period.

An alternative approach to the problem is inversion analysis. The inversion method
has been proven to be an efficient way for obtaining rational seepage parameters [17–24].
Nevertheless, little research has been carried out specifically for the permeability coefficient
of the impervious curtain. Furthermore, the existing studies simply considered the role
of the seepage field without applying the coupling model of the chemical and seepage
fields [25,26], which is unable to determine the parameters accurately for the calcium
leaching problem.

The essence of inversion analysis is to determine the calculation parameters based on
observations. The inversion analysis exists relative to the forward computation. An artificial
neural network is required to construct the data mapping in the forward research, while an
optimization algorithm is selected to minimize the objective function in the back process.
The optimal parameters are found by iterative computation while minimizing the defined
objective function. The results are then substituted into the finite element model, and the
error between the calculated results and measurements is evaluated accordingly.

Due to the relatively time-saving and inexpensive availability of head data in hydraulic
engineering, the root means square of the head error is simply set to the objective function
in most inversion models [27–30]. One limitation of this strategy is that it could lead to
non-uniqueness problems [31]. The effectiveness of the inversion model can be improved
by combining several types of observations (e.g., hydraulic head and leakage).

In this paper, the inverse analysis strategy is used for obtaining calcium leaching
parameters by considering the coupling of the seepage and chemical fields. The objective
function is constructed by time-series measurements. Finite element analysis, orthogonal
design, and extreme learning machine (ELM) are taken to determine the objective parame-
ters. Genetic algorithm (GA), simulated annealing (SA), sparrow search algorithm (SSA),
and particle swarm optimization (PSO) are used to speed up the search process, respectively.
The strategy is applied to the inverse model of the Shimantan concrete gravity dam located
in Henan Province, China. Combined with the observed data and analytical methods,
the optimal calcium leaching parameters are determined, and the curtain permeability
coefficient evolution in a century is presented.

2. Calcium Leaching Model
2.1. Controlling Equations

Impervious curtains consist of pouring materials such as cement mortar and clay
slurry. The application of curtain grouting is an important seepage control measure in
water engineering. Under prolonged exposure to ambient water, the solid-phase calcium
in the curtain (e.g., CH and C-S-H) decomposes and precipitates because of the leaching
effect. The decomposition of the solid-phase calcium leads to the increasing porosity and
permeability coefficient of the materials. Assuming that the flow of the pore solution follows
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Darcy’s law, the equations controlling permeation dissolution in curtains are presented in
Equation (1). 

u = − k
ρg∇P

∂(ϕP)
∂t +∇(ρu) = Qm

∂c
∂t +∇(−D∇c) + u∇c = RC

(1)

where u denotes the osmotic flow rate; k is the permeability coefficient; ρ reprenents
the water density; g means the gravitational acceleration; ϕ is the porosity; P stands for
the water pressure; t represents the time; Qm denotes the mass source items; c is the
concentration of Ca2+ in the pore solution; D represents the diffusion coefficient; and RC
means the rate of solid-phase calcium decomposition.

2.2. The Solid-Phase Calcium Decomposition Model

The solid–liquid equilibrium equation cannot be applied directly to simulate the
decomposition of solid-phase calcium in advection-diffusion-driven leaching. In this case,
Ulm et al. [32] provided a chemical pore plasticity theory that quantifies the rate of solid-
phase calcium decomposition by the distance from equilibrium. The disintegration of the
solid-phase calcium can be expressed as Equation (2) after Gawain’s neglect of the elastic
deformation and plastic hardening–softening term.

∂sCa
∂t = 1

η As

η = RTτleach

As = RT ln
(

cCa
ceq

Ca

)
−
∫ SCa

Seq
Ca

κ(s)ds

κ(s) = RT
cCa

(
dsCa
dcCa

)−1

(2)

where sCa represents the actual calcium concentration in the solid skeleton; t denotes the
time; η is the micro-diffusion of Ca2+ in different compounds, depending on the calcium
content; R means the gas constant; T is the temperature; τleach denotes the characteristic
time of calcium leaching; As represents the chemical affinity that controls the force of
chemical reactions; cCa stands for the present calcium concentration in the pore fluid; κ(s)
is the equilibrium constant; and ceq

Ca and seq
Ca mean the calcium concentration in the pore

fluid and solid skeleton at the equilibrium point, respectively.

2.3. Pore Parameter Evolution Equation
2.3.1. Kozeny–Carman Equation

The Kozeny–Carman (KC) equations are the best known semi-empirical formulation
in the field of percolation and they have been adopted extensively in the simulation of
permeability coefficient. Considering the effects of porosity, pore internal surface area,
and distortion, the permeability coefficient of cement-based materials can be described by
the KC equation in Equation (3).

K =
ϕ3

c(1− ϕ)2S2
(3)

where K means the permeability coefficient of cement-based material; ϕ is the porosity;
c denotes the Kozeny–Carman constant; and S represents the specific surface area of the
solid phase.

The parameter c in the KC equations can be replaced by τ2Fs for simplifying the effect
of pore shape and degree of distortion. The expression is given in Equation (4).

Ω = 1
τ2Fs

Ω0 = 1
n Ωl

Ω = Ω0 − (Ω0 −Ωl)d2
l

(4)
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where Ω0 and Ωl denote the set total term for undissolved and dissolved material, respec-
tively; τ is the tortuosity; Fs stands for the shape factor; n means the lumped term increased
times; dl represents the leaching degree. The leaching degree is given as Equation (5).

dl =

{
1 CCH = 0
CCH
C0

CH
CCH > 0 (5)

where C0
CH and CCH denotes the initial and current concentration of CH, respectively.

2.3.2. Porosity Variation Equation

In advection-diffusion-driven leaching, the dissolution of solid-phase calcium leads to
increased porosity. Combining the coupled permeation–dissolution model for porous me-
dia materials with the simplified method of calculating porosity proposed by Kuhl [33,34],
the evolution equation for porosity is presented in Equation (6).

ϕ = ϕ0 +
u
ρ

∫ 1
η

Asdt (6)

where ϕ and ϕ0 represent the current and initial porosity of the material, respectively;
u
ρ means the average molar volume of the solid phase, which is taken as 0.056 mol/m3 in
this paper; As is the chemical potential; and η denotes the coefficient affecting the micro-
diffusion of the Ca2+ in the pores. The values of different η are indicated in the finite
element analysis part.

2.3.3. Diffusivity Evolution Equation

The diffusivity of cement-based material rises continuously with increasing porosity
in advection-diffusion-driven leaching. Van Eijk and Brouwers [35] proposed a modified
equation for the relationship between porosity and diffusivity. The connection is given in
Equation (7).

De
D0

= 0.0025− 0.07ϕc(x, 0)2 − 1.8H(ϕc(x, 0)− 0.18)(ϕc(x, 0)− 0.18)2

+0.14ϕc(x, t)2 + 3.6H(ϕc(x, t)− 0.16)(ϕc(x, t)− 0.16)2 = D(ϕ)
(7)

where D0 represents the aquatic diffusivity of Ca2+ which is taken as 4.5× 10−10 m/s;
ϕc(x, 0) means the initial capillary porosity; H() is the Heaviside function; and ϕc(x, t)
denotes the capillary porosity.

3. The Objective Function

Recent theoretical developments have revealed that multiple types of observations can identify
the objective function of inversion analysis. In this study, the hydraulic head and leakage measure-
ments are applied to construct the objective function. It is assumed that the permeability coefficient
of the rock stratum is isotropic. Pm

i =
[
Pm

i1 , Pm
i2 , Pm

i3 , . . . Pm
it
]
(i = 1, 2, 3, . . . , M) denotes the time

series data for pressure tube monitoring, while Qm
j =

[
Qm

j1, Qm
j2, Qm

j3, . . . Qm
jt

]
(j = 1, 2, 3, . . . , N)

denotes the time series data for weir monitoring. A scalar K was selected to stand for the
permeability coefficient of the impervious curtain.

The permeability coefficient of the curtain increases with calcium leaching time.
The KC equations were used to simulate the evolution of the permeability coefficient
under the influence of calcium leaching. The porosity was applied as an intermediate
parameter linking the calcium leaching effect to the permeability coefficient. In the calcium
leaching model, the lumped term for sound materials Ω0, the lumped term increased times
n, and the rock hydraulic conductivity kr have significant implications on the permeabil-
ity coefficient of the curtain. In this paper, the inverse model was developed to obtain
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the best estimates of these parameters to minimize the value of the objective function F.
The mathematical model of the back analysis is established as described in Equation (8):

minF =

(
M
∑

i=1

||Pi(K(Ω0,n,kr ,t))−Pm
i ||

2
2

||Pm
i ||

2
2

) 1
2

+ w

(
N
∑

j=1

||Qj(K(Ω0,n,kr ,t))−Qm
j ||

2
2

||Qm
j ||

2
2

) 1
2

s.t. Ω0min ≤ Ω0 ≤ Ω0max
nmin ≤ n ≤ nmax

krmin ≤ kr ≤ krmax

(8)

Here Pi(K( Ω0, n, kr, t)) and Qj(K( Ω0, n, kr, t)) are numerically calculated hydraulic
head and leakage volume, respectively, and w is the weight for ensuring a relative balance
between the head and flow observation errors. Zhou et al. [17] analyzed the relative error
of hydraulic head and leakage under different weight values. The results show that the
errors between hydraulic head and discharge can be well balanced under the condition of
w = 0.02. The conclusion is adopted in this study. Ω0max and Ω0min respectively represent
the upper and lower bounds of the lumped term. nmax and nmin denote the upper and
lower bounds of the lumped term increased times. Similarly, krmax and krmin signify the
upper and lower bounds of rock hydraulic conductivity, respectively. The upper and
lower bounds of the parameters can be roughly determined by engineering experience
and laboratory experiments. The ranges of parameters are indicated in the results section,
for verifying the rationality of the results.

Within the range of the monitoring data, the hydraulic head and leakage measure-
ments at the initial moment were selected for inversion to obtain the target parameters.
The combination of the objective parameters was also applied to predict the trend of curtain
permeability coefficient in a century.

4. Prediction Model of Permeability Coefficient
4.1. Orthogonal Design Method

OD is an experimental method for studying multiple factors and levels [36]. The selec-
tion of representative combinations within comprehensive test portfolios can be efficient
and economical. Suppose that there is no interaction between parameters. The typical
combinations of parameters are selected for the FEM positive computation. For the param-
eters Ω0, n, and kr in this paper, five uniformly distributed values were chosen for each
of the range of values taken. Under a full-scale test, 125 (53) trials are required, and no
replications of each combination are considered. By contrast, only 25 (L25

(
53)) trials are

required by choosing the OD method. OD dramatically reduces the number of trials and
constructs representative samples. The orthogonal combinations used in this paper are
given in Table 1.

Table 1. Sample parameters based on orthogonal design L25
(
53).

Test Number
Permeation Parameters

Adaptability Value
Ω0 n kr

1 5000 500 1 × 10−7 0.004774
2 5000 800 4.6 × 10−7 0.244917
3 5000 1100 8.2 × 10−7 0.537412
4 5000 1400 2.8 × 10−7 1.086679
5 5000 1700 6.4 × 10−7 1.409979
6 8000 500 8.2 × 10−7 0.01401
7 8000 800 2.8 × 10−7 0.371828
8 8000 1100 6.4 × 10−7 1.055184
9 8000 1400 1 × 10−7 1.258973

10 8000 1700 4.6 × 10−7 1.458692
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Table 1. Cont.

Test Number
Permeation Parameters

Adaptability Value
Ω0 n kr

11 11,000 500 6.4 × 10−7 0.019933
12 11,000 800 1 × 10−7 0.640415
13 11,000 1100 4.6 × 10−7 1.239977
14 11,000 1400 8.2 × 10−7 1.636077
15 11,000 1700 2.8 × 10−7 2.748317
16 14,000 500 4.6 × 10−7 0.035461
17 14,000 800 8.2 × 10−7 0.696786
18 14,000 1100 2.8 × 10−7 1.298395
19 14,000 1400 6.4 × 10−7 2.484507
20 14,000 1700 1 × 10−7 2.892282
21 17,000 500 2.8 × 10−7 0.038281
22 17,000 800 6.4 × 10−7 0.702525
23 17,000 1100 1 × 10−7 1.879253
24 17,000 1400 4.6 × 10−7 2.515877
25 17,000 1700 8.2 × 10−7 4.068743

4.2. Extreme Learning Machine

ELM is a general estimation of multivariate nonlinear mapping with good general-
ization performance and learning ability. As a prediction tool, ELM has been extensively
used in hydrological and geological problems [37–39]. The weights between the input and
hidden layers are randomly set and kept constant in the ELM strategy, eliminating the
back-propagation operation process. At the same time, the system of solving equations is
applied to directly determine the connection weights between the implicit layer and the
output layer, which significantly improves the generalization ability and learning speed
of the model. The input part of the ELM model training sets consists of calcium leaching
parameters determined by OD. The output includes the combined head and leakage errors
calculated by the FEM simulation at the measurement points.

Figure 1 shows a neural network with a single hidden layer, where Ii(i = 1, 2, 3)
represents the input layer. Si(i = 1, 2, 3) means the single-hidden layer. O is the output
layer. Ω0, n, and kr are the calcium leaching parameters. aij = [ai1, ai2, ai3](i = 1, 2, 3)
denotes the input weight of the ith implied layer unit and vi means the weight of the ith

implied layer output unit. The output layer contains only one unit because of the integration
between hydraulic head and leakage. One point to note is that there may be situations
where the matrix cannot be inverted since the mapping function is initialized randomly.
To solve this problem, the mapping function is chosen to be a Sigmoid function to ensure
that the output matrix of the hidden layer achieves full row rank or full column rank.

Figure 1. A single implicit layer ELM neural network.
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4.3. Predictive Modeling Procedure

The steps of the inversion model constructed by the ELM and optimization algorithms
are given in the following steps, and the flow chart is shown in Figure 2:

Figure 2. Flow chart of the prediction model based on ELM and optimization algorithms.

Step 1: Determine the upper and lower limits of each leaching parameter. Select
reasonable combinations of parameters by the orthogonal design. Carry out a positive
computation by the finite element method, obtain the hydraulic head and leakage values of
the measurement points, and calculate the corresponding error values.

Step 2: The combinations of leaching parameters are used as inputs to the ELM,
and the error values of measurement points are selected as outputs. Establish a nonlinear
mapping between the parameter combinations and the error values.

Step 3: Four optimization algorithms are chosen to obtain the objective combination
that minimizes the objective function. The corresponding error value is determined by
mapping the ELM.

Step 4: Determine whether the maximum number of iterations has been reached
or whether the target function meets the accuracy requirements. If not, return to Step 3;
otherwise, output global optimal solution and fitness value.

Step 5: The objective combination of leaching parameters is substituted into the finite
element model to calculate the hydraulic head and leakage volume at the measurement
points. Compare the simulation results with monitoring data and evaluate the accuracy of
the objective combination. Predict the permeability coefficient of the impervious curtain in
a century.

5. Application Case
5.1. Project Overview

The two-dimensional finite element model of a gravity dam was established for
verifying the effectiveness of the inversion strategy. Based on the geological investigation
and monitoring analysis, the inverse calculation of the calcium leaching parameters was
carried out with ELM and four optimization algorithms.

Located on the Rolling River in the Henan province of China, the Shimantan dam
is a large-scale water conservancy project with integrated use of industrial water supply,
flood control, flood removal, and irrigation. The location of the Shimantan gravity dam is
presented in Figure 3.
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Figure 3. The location of the Shimantan gravity dam.

The dam mainly consists of secondary with crushed concrete, tertiary with crushed
concrete, normal concrete, and impermeable curtain. The maximum height is 40.5 m,
and the maximum width is 31.74 m. The normal storage level is 107 m. The grouted
drainage gallery is located in the dam near the upstream side with a bottom elevation of
76.00 m and a city gate cavern type cross-section.

5.2. Finite Element Analysis
5.2.1. Finite Element Model

The seepage process at the base of the gravity dam was simulated by the multi-
physics field simulation software COMSOL Multiphysics. Four-node convention/diffusion
quadrilateral elements are applied in this study. Figure 4 shows the element meshes of the
model. The model contains 4157 quadrilateral meshes. The curtain grouting thickness is
2 m, reaching a slightly weathered rock of 3 m. The maximum cell width is 2.5 m, and the
minimum cell width is 0.1 m. A right-angle coordinate system was constructed, with the
x-positive direction pointing downstream and the z-positive direction pointing vertically
upwards. Two times the maximum height of the dam was extended at both the upstream
and downstream in the x-direction. The depth of the foundation was taken as twice the
dam height. The 2D finite element model is shown in Figure 4.

Figure 4. 2D finite element mesh of Shimantan dam.
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5.2.2. Boundary and Initial Conditions

The boundary and initial conditions of the finite element model are indicated in
Figure 4. The upstream and downstream water levels are 107 m and 86 m, respectively.
The pore fluid within the curtain is assumed to be saturated initially. The initial concen-
tration of calcium ions in the impervious curtain and rock foundation are 22 mol/m3 and
0 mol/m3, respectively.

5.2.3. Calculation Parameters

The initial composition of the curtain rub material could not be accurately determined
as the Shimantan dam has been in operation for over twenty years. Therefore, the param-
eters of Sample 3 were used for some of the curtain parameters in this study. Suppose
that the parameters of non-equilibrium solid–liquid dissolution followed Gawin’s model.
The parameters of the bedrock and curtain are shown in Table 2. The calculation parameters
of the model are indicated in Table 3.

Table 2. Calculation parameters of rock and grout curtain.

Material Parameter Notation Value

Rock Bulk density γr 25.40 kN/m3

Rock Initial porosity ϕ f 0.10
Rock Initial diffusivity Dr0 1.47 × 10−11 m2/s

Concrete Bulk density γc 23.51 kN/m3

Concrete CH content Cc_CH 3027 mol/m3

Concrete CSH content Cc_CSH 6054 mol/m3

Concrete Initial porosity ϕc0 0.10
Concrete Initial diffusivity Dc0 7.10 × 10−12 m2/s

Impervious curtain CH content CCH 3027 mol/m3

Impervious curtain CSH content CCSH 6054 mol/m3

Impervious curtain Initial porosity ϕ0 0.15
Impervious curtain Initial diffusivity D0 9.87 × 10−12 m2/s
Impervious curtain Intact/leached bulk density ρ0/ρL 30.6/145.8

Table 3. Parameters for the solid-phase calcium disequilibrium decomposition model.

Skeleton
Compound

Ca2+(
mol/m3) dsCa/dcCa

Diffusivity(
m2/s

) τleach
(s)

1
η

(mol/(J·s))
CH 19~22 2142 1.47 × 10−9 1.17 × 104 3.45 × 10−8

C-S-H 2~19 203 1.62 × 10−9 5.88 × 102 7.00 × 10−9

C-S-H 0~2 1910 1.83 × 10−9 6.52 × 103 6.20 × 10−8

5.3. Results of the Simulation
5.3.1. The Simulated Parameters

The iterative search process for the optimal calcium leaching parameters was carried
out through GA, SA, SSA, and PSO, respectively. In the GA strategy, the population size is
40 and the termination evolution algebra is 200. The crossover and mutation probability
are 0.7 and 0.01, respectively. In the SA strategy, the maximum number of iterations is
100, the temperature attenuation coefficient is 0.95, the initial temperature is 100, and the
minimum temperature is 1 × 10−6. In the SSA strategy, the number of sparrows is 50,
the proportion of discoverers is 0.7, the proportion of followers is 0.1, the proportion of
vigilants is 0.2, the maximum number of iterations is 200, and the safety threshold is 0.6.
In the PSO strategy, the updated speed of the particle is the sum of its own speed inertia,
self-cognition, and social cognition in the previous step. The initial population number is
20, the maximum number of iterations is 200, and the inertia weight is 0.8. The first and
second learning factors are 1.5 and 1.5, respectively.
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Table 4 lists the calculated calcium leaching parameters of the impervious curtain at
the initial moment. The calculated values of Ω0, n, and kr are within the corresponding
parameter ranges.

Table 4. Results of the simulated parameters for four algorithms.

Inversion Parameter
Optimization Algorithm

Ω0 n kr
(m/s)

GA 9334 1029 5.36 × 10−7

SA 13,583 1036 1.53 × 10−7

SSA 12,756 1225 1.48 × 10−7

PSO 12,253 1594 8.83 × 10−8

Range of parameter 5000~17,000 500~1700 1.0 × 10−8~1.0
× 10−6

5.3.2. Simulation Results of Hydraulic Head and Leakage

For verifying the validity of the simulations and the reasonableness of the calculated
results, the leaching parameters determined by the four algorithms were substituted into
the finite element model. The variations in the hydraulic head at measurement point
P9

4 and dam base leakage between 2013 and 2010 were calculated. The monitoring data
documented the actual hydraulic head and dam foundation leakage changes in these
eight years. The position of the piezometer P9

4 is presented in Figure 1.
The leakage quantity of the dam foundation is roughly estimated by Equation (9).

qb =
x

vL0dxdz (9)

where qb is the leakage quantity of the dam foundation; v denotes the flow velocity per-
pendicular to the overflow surface; and L0 represents the total length of the dam, taken as
645 m.

Figure 5a shows the comparison between the calculated and monitored heads at
the piezometer P9

4 . Linear fitting was carried out according to the observed values of
the hydraulic head. The hydraulic heads determined by PSO show the best consistency
with the monitoring data, while the results simulated by GA give the worst performance.
The poor performance of GA may be due to the easy convergence of the algorithm to the
local optimal solutions. The results of PSO embody the high accuracy in this analysis and
demonstrate the validity of the simulation.

Figure 5. Comparison of measured and simulated values at piezometer P9
4 : (a) hydraulic head;

(b) hydraulic head relative error.
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The relative error of the hydraulic head is calculated by Equation (10).

δP =
P− P

P
× 100% (10)

where δP is the relative error of hydraulic head; P represents the monthly average of
predicted hydraulic head; and P means the monthly average of measured hydraulic head.

The annual average head at the piezometer P9
4 was applied to calculate the relative

error values. Figure 5b shows the relative error line graph of the four algorithms at the
piezometer P9

4 from 2003 to 2010. The maximum value of relative error in the hydraulic
head is −5% in 2007. Among the four algorithms, PSO reflects the slightest relative
error fluctuation. The hydraulic head relative error corresponding to PSO is between
−3% and 3%.

Figure 6a presents the comparison between the calculated and measured dam founda-
tion leakage by the four algorithms. Similarly, a fitting curve was made according to the
observed leakage of the dam foundation. The simulated results by PSO agree well with
the measurements, illustrating the accuracy of the simulation. The results determined by
SA and SSA show medium accuracy in the analysis. The simulated results by GA deviate
furthest from the monitoring data.

The relative error of leakage quantity is calculated by Equation (11).

δQ =
Q−Q

Q
× 100% (11)

where δQ is the relative error of hydraulic head; Q means the annual average of predicted
leakage; and Q denotes the annual average of measured leakage.

Figure 6. Comparison of measured and simulated values at the dam foundation: (a) leakage;
(b) leakage relative error.

Relative error values were calculated using the annual average dam base leakage from
the water measuring weir. Figure 6b shows the histogram of the relative error in dam base
leakage determined by these algorithms from 2003 to 2010. The relative error of leakage
simulated by GA is much larger than that of the other three groups. The maximum value of
the relative error in dam foundation leakage is 170% in 2007. The results simulated by PSO
demonstrate the most excellent performance. The leakage relative error of PSO is basically
between −10% and 10%.

In the simulation of hydraulic head and leakage, the performance of GA is worse than
that of PSO. This may be the result of the high dimensions of the model. It is challenging to
meet the expected requirements in convergence accuracy by GA. The PSO strategy requires
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no complex operations such as selection, crossover, and mutation, which adapts to this
problem’s solution better and achieves the global optimal solution more quickly.

5.3.3. Permeability Coefficient of the Impervious Curtain

Considering the excellent results of the PSO simulation in terms of head and leakage
volume, the change in curtain permeability coefficient by PSO was analyzed to justify the
simulation further. Figure 7a demonstrates the variation in curtain porosity for leaching
times of 25, 50, and 100 years, respectively. The contour distribution of porosity shows that
the calcium leaching effect leads to greater porosity on the upstream side of the curtain
than on the downstream side and greater porosity in the upper part than in the middle
and lower parts. The difference in porosity distribution intensifies with increasing leaching
time. Figure 7b shows the porosity evolution at the height of 63 m for leaching times of
25, 50, and 100 years. After a century of leaching time, the porosity on the upstream side
of the curtain is 0.206, with an increase of 0.056 compared to the porosity at the initial
moment. The porosity on the downstream side is 0.170, increasing 0.020 in comparison
with the porosity initially. Figure 7c presents the porosity distribution at different eleva-
tions of the curtain (at the elevation of 54 m, 63 m, and 72 m) after 50 years of leaching
time. There is little difference in porosity distribution at the elevation of 54 m and 63 m.
The upstream and downstream side porosity at the elevation of 72 m is 0.018 greater than
the other two locations. The higher the altitude, the more significant the difference in the
porosity distribution.

Figure 7. Impervious curtain porosity evolution in the leaching process: (a) porosity distribution;
(b) porosity evolution at 63 m elevation in a century; (c) porosity evolution of three positions.

Figure 8a shows the distribution of the curtain permeability coefficient at 25, 50,
and 100 years of leaching time, respectively. Similar to porosity, the permeability coefficient
on the upper and upstream sides of the curtain increases significantly compared to other
areas. The distribution difference of different parts is more evident with the increase of
leaching time. Figure 8b shows the influence of different leaching times on the distribution
of the curtain permeability coefficient at the altitude of 63 m. After 100 years of evolution,
the permeability coefficient of the upstream side of the curtain is 2.60 × 10−6, two orders
of magnitude higher than the initial permeability coefficient. The permeability coefficient
on the downstream side of the curtain is 2.72 × 10−7, with an increase in one order of
magnitude. Figure 8c presents the distribution of the curtain permeability coefficient at
different elevations after the leaching time of 50 years. The permeability coefficient of
the upstream side of the curtain at the elevation of 72 m is 1.45 × 10−6, while that of
the downstream side is 3.45 × 10−7. The permeability coefficient at the altitude of 72 m
is almost half an order of magnitude higher than the other two elevations. The higher
the elevation, the more pronounced the increase in the permeability coefficient of the
impervious curtain.
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Figure 8. Impervious curtain permeability coefficient evolution in the leaching process; (a) perme-
ability coefficient distribution; (b) permeability coefficient evolution at 63 m elevation in a century;
(c) permeability coefficient evolution of three positions.

6. Discussion

The permeability coefficient of the curtain increases with the operating time, affecting
the benefit and safety of water conservancy projects. In this paper, the inverse analysis
method is introduced into solving the parameters of curtain calcium leaching, which solves
the problem that curtain samples are not easy to obtain and leaching parameters are not
easy to determine. This method can be used to predict the permeability coefficient of the
curtain for many years.

Based on ELM and four optimization algorithms, accurate calculation results are
obtained. The calculated leaching parameters are used for finite element forward analysis.
The results show that PSO has the best simulation performance. This may be due to the
multi-dimensional nature of the model. Compared with other optimization algorithms,
the PSO strategy is simple to operate and can better adapt to the solution of this model so
as to obtain the global optimal solution more efficiently. It is suggested that ELM and PSO
be combined to obtain reasonable simulation results.

The simulation results of the permeability coefficient show that the permeability
coefficient of the upstream side and upper part of the curtain increases more significantly
than that of other areas. These areas need to be intensely focused on and monitored to
prevent leakage caused by the calcium leaching effect, which is of great significance for the
safety of the project.

7. Conclusions

Aiming at the calcium leaching model in porous media, this study proposed the
inverse method into the calcium leaching parameter solution process. Then, a back anal-
ysis for permeability coefficients of the curtain at Shimantan gravity dam was realized.
The objective function was constructed from time-series measurements of hydraulic head
and leakage. Finite element analysis was performed to construct neural network learning
samples. ELM was applied to build a non-linear mapping of leaching parameters and
error values. Four optimization algorithms were devoted to accelerating the computation
process. The hydraulic head and leakage errors of the positive analysis for the four opti-
mization algorithms were compared, and the trend of the curtain’s permeability coefficient
in 100 years was analyzed. The reliability and uniqueness of the inverse results were
improved. The main conclusions of the paper are indicated as follows:

(1) Based on ELM and four optimization algorithms, the inversion values of leaching
parameters by four algorithms show small differences. The results are all within the
parameter range.
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(2) Four sets of leaching parameter results were used in the positive analysis. Among the
four results, the curves fitted by PSO corresponding to the leaching parameters are
in the best agreement with the measured values and show the highest prediction
accuracy, which indicates that the inversion method is reliable and effective.

(3) The values of permeability coefficients on the upper and upstream sides are greater
than in other areas, showing that these areas are the most vulnerable parts of the grout
curtain. Focusing on these vulnerable parts and strengthening safety management
is necessary for the safety of water conservancy projects. The results illustrate the
feasibility of the inversion analysis for obtaining the calcium leaching parameters
under advection-diffusion-driven leaching processes.
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