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Abstract: The majority of lab-based X-ray sources are polychromatic and are not easily tunable, which
can make the 3D quantitative analysis of multi-component samples challenging. The lack of effective
materials separation when using conventional X-ray tube sources has motivated the development of a
number of potential solutions including the application of dual-energy X-ray computed tomography
(CT) as well as the use of X-ray filters. Here, we demonstrate the simultaneous decomposition of two
low-density materials via inversion of the linear attenuation matrices using data from the energy-
discriminating PiXirad detector. A key application for this method is soft-tissue differentiation which
is widely used in biological and medical imaging. We assess the effectiveness of this approach using
both simulation and experiment noting that none of the materials investigated here incorporate any
contrast enhancing agents. By exploiting the energy discriminating properties of the detector, narrow
energy bands are created resulting in multiple quasi-monochromatic images being formed using a
broadband polychromatic source. Optimization of the key parameters for materials separation is first
demonstrated in simulation followed by experimental validation using a phantom test sample in 2D
and a small-animal model in 3D.

Keywords: materials separation; computed tomography; energy-discriminating detector; polychromatic
X-rays

1. Introduction

Polychromatic laboratory-based X-ray sources are used for imaging experiments on
a wide range of life and materials science samples [1,2]. Since its initial discovery, X-ray
imaging has undergone a process of continuous improvement in terms of data collection
speed, as well as spatial resolution [3]. A key area of current research is the separation of
composite materials into their discrete components based on the acquisition of a single im-
age at each projection angle [4]. Differentiating materials into their constituent components
is particularly challenging for weakly interacting biological samples [5,6], which typically
do not produce strong transmission features such as absorption edges. Techniques such
as X-ray phase contrast microscopy have been employed to help differentiate biological
components, but these are often only applicable with coherent, highly monochromatic
sources [7,8], particularly when very high spatial resolution is required [9].

However, a pathway towards the clinical application of phase contrast imaging using
more compact laboratory-based X-ray sources has emerged in recent years [10]. The avail-
ability of high-resolution, energy-discriminating, X-ray detectors that enable discretization
of the incident polychromatic signal, offer new opportunities for developing approaches
that allow for the effective separation of materials [11,12]. By energy thresholding the poly-
chromatic transmission image at the detector, multiple quasi-monochromatic images can
be simultaneously collected [13]. Each image corresponds to a different narrow bandwidth
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without suffering from any spectral overlap [14–16]. Here, we combine energy discriminat-
ing X-ray detection with the application of a matrix-based approach to materials separation
using the linear attenuation coefficient. We evaluate the performance of this approach for
samples composed of two constituent materials, which together form a composite sample
using X-ray CT data collected using an energy-discriminating detector.

Elemental contrast or mapping the spatial distribution of an element within samples
can be readily achieved using tunable monochromatic X-ray sources, which are typically
provided by synchrotrons. For example, by measuring the characteristic peaks associated
with X-ray fluorescence spectra, specific elements can be mapped, and their spatial location
and concentration determined [17–19]. This approach typically involves scanning a small
X-ray probe across the sample to construct a 2D or 3D elemental distribution map. The
requirements of this method include the need for tightly focused X-ray beams in order
to achieve high spatial resolution and a sufficient amount of X-ray flux that data can be
collected within a practical time frame. Another method for obtaining the distribution of
the specific elements which can be used with a full-field imaging setup is Absorption-Edge
Contrast Imaging (AECI). AECI exploits the discrete jumps (absorption edges), which are
present in the transmission spectra associated with different elements as a function of the
incident X-ray energy [20,21]. The AECI method is based on the subtraction of images
collected either side of the absorption edge of the element of interest [21]. Hence, for AECI
to work effectively, the tunability of the monochromatic source is critical.

For laboratory-based X-ray sources, which typically have a polychromatic spectrum, el-
emental mapping is more challenging; however, a number of solutions have been proposed
to address this. Methods for elemental mapping that have been successfully demonstrated
using lab-based X-rays include dual energy CT [22,23], Ross filter pairs [2] and energy-
thresholding using energy-discriminating detectors [13,24]. Dual-energy CT has previously
been used to separate bone and soft tissue by exploiting differences in their attenuation
properties as a function of energy [25]. The basic principle of dual-energy CT involves
collecting data using two distinct energy spectra peaked around different incident X-ray
energies [25,26]. In the majority of cases, both sets of spectra have some degree of overlap
which can impact the effectiveness of materials separation. Dual-energy CT has previously
been used for materials separation in the absence of an absorption edge. By creating an
in vitro ‘stone library’ comprising 37 stones of known chemical composition and attenu-
ation ratios, separation and chemical characterisation of kidney stones in twenty seven
patients was achieved via the use of a multi-layer X-ray detector [27]. Furthermore, dual
energy CT has also been used to measure mass density [28] and to extract materials specific
density for two different types of tissues [26]. Whilst dual-energy CT has been successfully
applied to soft tissue differentiation, some of the known disadvantages include limitations
in terms of flexibility and the potential need for beam-hardening correction [29].

Another approach that was recently demonstrated for both two and three dimensional
X-ray imaging uses Ross filter pairs to obtain elemental maps of the sample with a poly-
chromatic source [2]. The basic principle of this method relies on the selection of pairs of
filters which have an absorption edge located above and below the absorption edge of
the elemental of interest. The Ross filter pair method for elemental contrast provides a
very well-defined and sharp energy window which enables elemental enhancement for
materials with an absorption edge within the defined energy range. In addition, X-ray
fluorescence computed tomography (XFCT) was also used with laboratory-based X-ray
sources to characterize the different elements within the sample or tissue [30]. For biologi-
cal materials this approach generally provides excellent image contrast by incorporating
contrast-enhancing elements (often in the form of nanoparticles) such as Mo and Au. The
main limitation associated with XFCT in the context of the present work is the need to use
these additional agents and ensure they perfuse homogeneously throughout the sample.
Other issues include the contamination of the CT images due to Compton scattering and the
longer data acquisition times required to raster scan a small pencil beam across the sample,
which is particularly challenging for X-ray CT. Some of these issues have been addressed
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for example a recent study conducted by I. O. Romero et al. with the pencil-beam geometry
showed improvements in the quality and speed of XFCT using a ring of spectrometers to
detect the fluorescent signal [31]. Recent studies of elemental mapping using polychromatic
laboratory sources include the use of polycapillary lenses in a confocal geometry [32,33].
The authors of this work were able to achieve both 2D and 3D elemental mapping via
colour tomography. Their method enabled depth profile analysis for a variety of sample
types and had excellent sensitivity due to the simultaneous use of two separate detectors
optimized to measure the X-ray spectrum independently at both high and low energy.

Another approach to improving elemental selectivity using polychromatic lab-based
X-ray sources is to use energy-discriminating X-ray detectors. These types of detectors
have undergone rapid development and provide a high degree of spectral filtering via
energy thresholds which can be easily defined in software. Detectors capable of full
energy resolution imaging with a limited degree of pixelation first became commercially
available well over a decade ago, however, the limited number of pixels and large pitch
currently associated with these types of detectors [34] limits their application to high-
resolution X-ray µCT. A large number of different types of energy-discriminating detector
are now commercially available and could potentially be used with the matrix method
presented here, including the Medipix [35], Pilatus [36], XPAD [37], PiXirad [15], HEXITEC
detector [38] and more recently, the hyperspectral X-ray detector [39]. Hyperspectral X-ray
detectors are able to provide a full X-ray spectrum at each individual detector pixel, typically
by separating and classifying the incident X-ray photon energy into a very large number
(up to several thousand) of discrete energy bins. A recent example of a hyperspectral
detector used for X-ray imaging is the SLcam [40].

For a comparison of the performance and characteristics of these types of detector the
reader is referred to the recent review of this field by K. Taguchi et al. [41]. Early work
using energy-discriminating detectors to generate quasi-monochromatic X-ray images
employed sensors which comprised a relatively small number of pixels with a large pixel
pitch [42,43]. Through continuous development higher resolution energy discriminating
detectors have now become available commercially. These detectors permit the specification
of multiple energy thresholds resulting in the simultaneous production of multiple quasi-
monochromatic images, each corresponding to a different characteristic energy range with
a pixel resolution in the micron range [44]. One of the first demonstrations of material
separation using energy-discriminating X-ray detectors was published by X. Wang et al. [11].
In this paper, the authors used specific X-ray contrast enhancing agents in the sample and
based on their K-edge signature were able to obtain separate images for each of the different
elements. Similarly, P.M. Shikhaliev [45] also used contrast enhancing agents including
iodine and CaCO3 to facilitate soft tissue enhancement in Computed Tomography (CT)
using energy-resolving X-ray detectors in a fan-beam geometry. In this work, the author
used a total of 5 discrete energy bands to enable separation of the various elements within
a phantom test sample. Another study using energy discriminating detectors was also
conducted by A.S. Gogolev et al. using a semiconductor matrix direct conversion detector
and optimising the energy range in CT to enable differentiation between aluminum and a
potassium iodide solution within a phantom test sample [46].

In addition, to enabling elemental separation based on the characteristic K-edge absorp-
tion profile of different elements [13] energy-discriminating X-ray detectors also provide a
simple and effective means of eliminating or reducing beam-hardening artifacts [24,47]. In
a recent study, a high-resolution energy-discriminating detector (PiXirad) was used in X-ray
CT to separate soft-tissue from bone, without employing any contrast enhancing agents.
The tomographic reconstructions were then quantitatively analyzed enabling bone den-
sitometry using a polychromatic lab-based X-ray source [24]. In summary, the increasing
availability of energy-resolving X-ray detection has driven a significant amount of interest
in exploiting these detectors for materials differentiation.

In the present study, we have investigated the use of the energy-discriminating PiXirad
detector for materials separation in the context where there are no K-edges or contrast
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enhancing agents. Here we present the first application of the matrix method using
multiple quasi-monochromatic images generated with each single exposure to solve the
linear attenuation matrix equation resulting in the three-dimensional separation of the
sample components. We find that when combining this approach with energy-resolving
X-ray detection the method can be generalized to apply to any polychromatic X-ray source
and samples where no defined absorption edge is present in the transmission spectrum
and no contrast enhancing agent is used. In order to demonstrate this, a sample consisting
of a mouse hand is imaged and the 3D distributions of extracted bone and soft tissue.

2. Materials and Methods
2.1. The PiXirad Detector

The PiXirad detector system (PiXirad IC srl c/o INFN Pisa, Italy) was used for these
measurements. The detector consists of a CdTe solid state sensor connected to a com-
plementary metal-oxide semiconductor (CMOS) Application-Specific Integrated Circuit
(ASIC) readout [16]. The CMOS ASIC has 512 × 476 pixels arranged on a hexagonal pitch
of 60 µm × 52 µm. The sensor thickness for the PiXirad detector is 650 µm with a corre-
sponding detection efficiency of 100% at 10 keV and 98% at 50 keV [48]. Each pixel includes
an electrode, connected to a charge amplifier, which provides two discriminators and two
15-bit counters per register. This enables each pixel to discriminate photons in terms of
their energy. The X-ray photons are converted to electric charges at the semiconductor,
which are collected and transferred to the ASIC where the signal per pixel is electronically
treated. This technology enables the PiXirad detector to generate a maximum of four colour
images per single exposure, by setting four individual energy thresholds. For each energy
threshold, the PiXirad detector counts photons with energies greater than the threshold
energy up to the cut off X-ray energy of the spectrum. The four-energy thresholds produced
by the PiXirad detector (shown in Figure 1 as E1, E2, E3 and E4) are used to produce two
discrete energy bandwidths (∆Ea and ∆Eb), which only contain photon energies within the
specified energy range. The discrete energy bandwidths, ∆Ea and ∆Eb are approximated
here as two quasi-monochromatic beams each having a bandwidth (∆E/E) less than 34%.
This bandwidth can readily be defined using the PiXirad whose spectral energy resolution
is shown in Figure S2 in the Supplementary Material.

Figure 1. The measured X-ray source spectrum for a tungsten target at a 40 kVp tube voltage, with
the four chosen threshold energies E1, E2, E3 and E4 (indicated by dashed vertical blue lines) which
together, following image subtraction, create two discrete energy bands shown by the blue shaded
areas (∆Ea and ∆Eb).

A key consideration here is that the performance of the PiXirad detector can be affected
by charge-sharing. Charge-sharing is an artefact which arises when a single photon is
absorbed and produces a signal that is ‘shared’ across two or more detector pixels. The
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spread of the charge cloud during drift or cloud splitting arising from X-ray fluorescence
generally leads to a reduction in the measured energy of the detected photons [14]. In
pixelated energy-resolving X-ray detectors, charge-sharing can impact the majority of
detection events and thus needed to be taken into account in this study. The characteristics
of charge-sharing include the appearance of low energy tails in the observed photopeaks
when using monochromatic X-rays which, particularly for CdTe and CdZnTe detectors,
can be due to carrier trapping, which results in ‘hole tailing’ [49]. However, we note that
in the PiXirad (and other high-resolution energy-resolving X-ray detectors) the effect of
hole tailing is ameliorated due to the small pixel size of the detector. There are several
interconnected phenomena that determine the degree and characteristics of charge sharing
when using polychromatic X-ray sources [41]. The most obvious of these are the apparent
increase in the number of detected counts within the low energy region of the spectrum
and concomitant reduction in the number of counts within the higher energy region [12].

2.2. Matrix Equation for Materials Separation Using the PiXirad Detector

The method for separating two materials distributions requires two quasi-monochromatic
intensity images to be defined using four energy thresholds (E1, E2, E3 and E4) without
any spectral overlap. In order to separate a larger number of materials, additional energy
thresholds are required which necessitates more than one exposure per projection [13]. The
transmitted intensity image corresponding to the first energy bandwidth, I(∆Ea), is created
via the subtraction of the measured intensities corresponding to the two energy thresholds
I(E1) and I(E2). This subtraction can be represented as

I(∆Ea) = I(E1)− I(E2)

=
Ec∫

E1

S(E) exp
(

∑l
j=1 −µj(E).sj

)
dE −

Ec∫
E2

S(E) exp
(

∑l
j=1 −µj(E).sj

)
dE

=
E2∫

E1

S(E) exp
(

∑l
j=1 −µj(E).sj

)
dE

= exp
(

∑l
j=1 −

∫ E2
E1

S(E)µj(E).dE.sj

)
≈ exp

(
∑l

j=1 −µj(∆Ea).sj

)
(1)

where S(E) is the spectral density of the incident X-rays, Ec is the cut-off energy of the X-ray
spectrum, µj(E) is the linear attenuation coefficient of material j, and sj is the thickness
of material j. We note that Equations (1) and (2) are not normalized by the total intensity
and that I(∆Ea) and I(∆Ea) are a function of the integrated flux between the relevant
energy thresholds.

Similarly, the second energy bandwidth, I(∆Eb), defined by the subtraction between
the two other measured energy threshold intensities, I(E3) and I(E4), is given by

I(∆Eb) =
∫ E4

E3
S(E) exp

(
∑l

j=1 −µj(E).sj

)
dE = exp

(
∑l

j=1 −
∫ E4

E3
S(E)µj(E).dE.sj

)
≈ exp(∑l

j=1 −µj(∆Eb).sj)
(2)

By defining narrow energy bandwidths, we assume that we can approximate two
quasi-monochromatic X-ray beams represented by ∆Ea and ∆Eb for the first and second
energy bands respectively as shown in Equations (1) and (2). Note that the effective linear
attenuation coefficient at ∆Ea and ∆Eb can be defined as

µj(∆Ea) =
∫ E2

E1

µj(E).S(E).dE , µj(∆Eb) =
∫ E4

E3

µj(E).S(E).dE (3)

where the integral of S(E) should be unity within the relevant energy range.
We consider two different materials present within the sample denoted as material 1

and material 2, with µ1(E) and µ2(E) denoting their respective linear attenuation coefficient,
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and with s1 and s2 respectively their sample thicknesses. Taking the intensity of the incident
beam to be unity, we can express I(∆Ea) and I(∆Eb) as

I(∆Ea) = exp(−µ1(∆Ea).s1 − µ2(∆Ea).s2) (4)

and
I(∆Eb) = exp(−µ1(∆Eb).s1 − µ2(∆Eb).s2) (5)

These equations can be written in matrix form as:[
log(I(∆Ea))
log(I(∆Eb))

]
=

[
−µ1(∆Ea) −µ2(∆Ea)
−µ1(∆Eb) −µ2(∆Eb)

][
s1
s2

]
(6)

Inversion of Equation (6) yields the final expression for the thickness of each of
the components:[

s1
s2

]
=

1
det

[
−µ2(∆Eb) µ2(∆Ea)
µ1(∆Eb) −µ1(∆Ea)

][
log(I(∆Ea))
log(I(∆Eb))

]
(7)

where the determinant (det) is given by: (µ1(∆Ea)× µ2(∆Eb))− (µ2(∆Ea)× µ1(∆Eb)) and
cannot be vanishingly small. Equation (7) shows with a 2 × 2 matrix, two intensities at two
different energies are required to separate two materials.

2.3. Simulation Study

A simulation study was conducted using the measured incident polychromatic X-
ray spectrum of the lab source shown in Figure 1. The simulation study assumed an
energy sampling frequency of 0.2 keV and did not take into account the actual finite
experimental energy resolution of the PiXirad detector (Figure S2). For the simulation,
the MATLAB (The MathWorks Inc., Sydney, Australia) programming package was used
to model the experiment. The simulation includes the effect of the energy threshold, the
spectral distribution of the source, information about the linear attenuation as function of
energy, as well as experimental geometry and sample size and thickness. However, we note
that the simulation study did not take into account the effect of charge-sharing due to the
complex nature of this phenomenon for polychromatic X-rays. The transmitted intensity
is calculated via a summation over all energies present in the spectrum weighted by their
spectral contribution. A schematic diagram providing an overview of the simulation is
presented in Figure S3 in the Supplementary Material.

In the simulation, three different phantom samples were considered, shown in Figure 2.
Each phantom consisted of a 10-mm diameter cylinder of epoxy resin (density 1.13 g/cm3)
with three different inserts of the same resin enriched with varying amounts of hydroxyap-
atite (HA), Ca5(PO4)3(OH), with densities of 1.39, 1.65 and 1.90 g/cm3, corresponding to
HA400, HA800 and HA1200 respectively, see Table 1. The diameter of all the inserts was
2 mm. The absorption coefficients for the elements comprising the phantom as a function
of X-ray energy were obtained from the NIST materials database [50]. The polychromatic
intensity in the simulations was calculated via a summation of the monochromatic intensi-
ties over all incident wavelengths, weighted by their relative contribution to the measured
incident X-ray spectrum, S(E). sj is the one-dimensional projected thickness of the phantom
(as viewed from the XZ plane).
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Figure 2. Schematic of the simulated phantom in the XY plane (top row) and in the XZ plane (bottom
row) consisting of (a) epoxy and HA400, (b) epoxy and HA800, and (c) epoxy and HA1200. The plane
orientation is depicted in the top left corner.

Table 1. Composition and density for the components of the phantom samples (used for both
simulation and experimental studies). The manufacturer for the experimental phantom was QRM
GmbH, Germany [51].

Material Density ± 0.02 (g/cm3) Base (Epoxy Resin) (%) HA Content (%)

epoxy 1.13 100 0
HA400 1.39 71.31 28.87
HA800 1.65 51.2 48.8

HA1200 1.9 36.51 63.49

Figure 3 summarizes the workflow for the simulations applying the matrix method
to separate epoxy and HA400 (using the first phantom shown in Figure 2a). The top row
of Figure 3 shows the four transmitted intensity projections corresponding to four energy
thresholds. The second row shows the projection intensity difference at I(∆Ea) which is
obtained from Equation (1) and at I(∆Eb) which is obtained from Equation (2). The third
row shows the normalized intensity difference for I(∆Ea) and I(∆Eb) such that the value in
the absence of a sample is equal to unity. These results form the input for Equation (7) (the
matrix equation). The linear attenuation parameters for epoxy and HA400 in the matrix
equation at energies ∆Ea and ∆Eb were calculated using Equation (3). The bottom row
shows the retrieved thickness of the separated epoxy and HA400 components respectively
based on the solution of the matrix equation.

In order to investigate the optimum conditions required to separate the epoxy and
HA, three different energy bandwidths for energy threshold positions ranging from 16 keV
to 30 keV were investigated as shown in Table 2. Note that the two bandwidths at 9 keV
are overlapping. All three simulated phantom samples were analyzed. The matrix method,
employing four intensity images, enabled the separation of epoxy and HA400, epoxy and
HA800, and epoxy and HA1200. An example result of the separation of epoxy from HA400
is shown in Figure 4, together with the actual thickness value based on the input sample
parameters for comparison.
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Figure 3. Workflow for obtaining the separate thickness of the epoxy and HA400 components using a
simulated test phantom. The distance along the X-axis of the plots corresponds to the X-axis direction
in Figure 2.

Table 2. Simulation parameters used for the four energies thresholds E1, E2, E3 and E4 to obtain three
pairs of different energy bandwidths.

Threshold Position (keV)
Bandwidth (keV)

∆E = 3 ∆E = 6 ∆E = 9

E1 16 16 16
E2 19 22 25
E3 27 24 21
E4 30 30 30
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Figure 4. Example simulation result comparing the retrieved thickness from the matrix approach com-
pared to the ‘actual’ value based on the known properties of the simulated sample for the (a) HA400
insert and (b) surrounding epoxy, using a 6 keV bandwidth, with (c,d) show their corresponding
difference (actual-retrieved) in (a,b), respectively.

The difference between the resulting retrieved thickness, sretrieved, and the actual
thickness, sactual , is evaluated using:

χ2 =
∑n

p=1

(
sp,actual − sp,retrieved

)2

∑n
p=1

(
sp,actual

)2 (8)

where p denotes the pixel number p =1, 2, . . . n. The calculated χ2 error metric for
all data sets is presented in Figure 5 in the absence of noise (a, c, e) and with 1% noise
included (b, d, f). The noise was modelled by adding randomly generated values with
a standard deviation of 1% about the mean intensity value. Figure 5 shows that in the
absence of noise, the smallest bandwidth of 3 keV results in the most effective separation
(smallest χ2 value) of HA from epoxy for all material densities. This is due to the fact
that as the bandwidth increases the assumption that Equations (4) and (5) represent quasi-
monochromatic intensity images which can be represented by a single effective energy
becomes increasingly invalid decreasing the effectiveness of the materials separation.
Moreover, the 9 keV bandwidth was found to negatively impact the retrieval owing to the
larger bandwidth and subsequent breakdown of the assumption of quasi-monochromaticity
as well as the spectral overlap.

Figure 5 also indicates that, under the conditions simulated here, the most effective
materials separation occurs for the lowest density material (HA400) and epoxy with the
highest density material (HA1200) yielding the least effective separation. However, when
1% noise is added (consistent with the typical noise level observed in the experiment) the
lowest χ2 value occurs for the 6 keV bandwidth. This result likely reflects the trade-off
between monochromaticity (which is best for the 3 keV bandwidth) and signal-to-noise
(SNR), which is highest for the 9 keV bandwidth.
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Figure 5. Calculated χ2 error plots as a function of the energy bandwidth in the absence of noise
(left-hand column) and with 1% noise included (right-hand column), showing the separation of
(a,b) HA400, (c,d) HA800, and (e,f) HA1200 from the surrounding epoxy matrix.

3. Experimental Results

Experimental X-ray imaging data were collected using the Xradia© micro XCT200
(Carl Zeiss X-ray Microscopy, Inc., Pleasanton, CA, USA) polychromatic X-ray laboratory
source combined with the PiXirad detector system, as shown in Figure 6. X-ray spectra were
recorded using the XR-100T-CdTe AMPTEK detector designed to characterize X-ray tubes
and for X-ray spectroscopy applications. The source was a closed X-ray tube (Hamamatsu)
consisting of a tungsten target and operated at a tube voltage of 40 kVp at a power of
10 W. The PiXirad detector was cooled down to an operating temperature of −20 ◦C using
a combination of water cooling and nitrogen gas. A Galil motion controller was added
to the system and was connected between the PiXirad detector and the rotation stage in
order to synchronize their communication during the tomography scan. The effective
image pixel size is defined by the physical detector pixel size divided by the geometric
magnification factor, M, where M = R1+R2

R1
. Here, R1 is the source-to-sample distance,

which is equal to 125 cm, and R2 is the sample-to-detector distance equal to 115 cm. In this
experiment M = 1.9, giving an effective pixel size of 30 µm. The phantom sample (QRM
GmbH) consisted of a 10 mm diameter cylinder of epoxy resin with three inserts (of 2 mm
diameter each) of HA400, HA800 and HA1200. The phantom sample composition in the
experiment was identical to that used in the simulation.
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Figure 6. The experimental set-up consisting of the X-ray source, sample stage, and the PiXirad
detector.

The PiXirad detector system simultaneously outputs 4 images, each corresponding to
a different energy threshold. Whilst there is significant flexibility over the choice of energy
threshold, due to the finite energy resolution of the detector they cannot be chosen arbitrar-
ily and are restricted to certain ranges as determined by the PiXirad control software [16].
When setting energy thresholds in the control software for the PiXirad detector the software
takes into account the finite energy resolution of the detector and automatically limits the
minimum separation allowed between thresholds. The energy resolution values (and hence
minimum separation) for each of the thresholds used in this paper are shown in Figure S2.
Based on the possible energy thresholds, the following threshold values were used for
the experiment: E1 = 16 keV and E2 = 21.1 keV, and E3 = 23.9 keV and E4 = 29.7 keV
resulting in energy bandwidths of 5.1 keV and 5.8 keV, respectively. Note that the small
discrepancy between the experimental energy threshold values and the simulated thresh-
old values is well below the energy resolution of the PiXirad. Experimental 2D projection
data was first collected from a well-characterized phantom sample comprising a HA400
insert embedded in epoxy (identical to Figure 2a). The detector exposure time was set to
3.5 s which was determined by the dynamic range of the detector at the lowest energy
threshold (where the flux was greatest). The total time for the X-ray µCT experiment was
2 h including sample preparation and alignment; with 45 min for actual data collection
which was required in order to build up sufficient statistics for analysis. Correction of the
measured intensity to account for the effect of charge-sharing was applied according to
Equation (S1) (see Supplementary Material) and the procedure summarised in Figure 3
was used to separate the HA400 insert from the epoxy. The experimental results are shown
in Figure 7a,b. Note that in Figure 7b transmission through half of the resin matrix was
blocked due to the presence of additional inserts (HA800 and HA1200) within the phantom
sample. The application of this mask results in the sudden drop in transmission but does
not otherwise impact the separation of the insert. The tube voltage was then increased
to 80 kVp to retrieve the denser (HA800, epoxy and HA1200, epoxy) material inserts as
shown in Figure 7c–f. The thickness of the material pairs (HA400, epoxy), (HA800, epoxy)
and (HA1200, epoxy) retrieved using the combined energy-resolved detector and matrix
method are observed to be in very good agreement with the known component thicknesses
(supplied by the manufacturer). The calculated χ2 error inside the range indicated by the
black arrows can be seen on each plot.
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Figure 7. Comparison of the retrieved thickness (red solid lines) to the ‘actual’ thickness (blue dashed
lines) determined from the manufacturer’s specifications for the separation of (a,b) HA400, (c,d)
HA800, and (e,f) HA1200 from the surrounding epoxy matrix. The sudden drop in intensity in (b,d,f)
are due to the application of a mask at the detector plane to remove the transmission due to the other
inserts. Note that 100 vertical pixels were binned to improve the experimental SNR. The calculated
χ2 error inside the indicated distance range shown by black arrows, can be seen on each plot. The
experimental data of (c–f) were taken at a tube voltage of 80 kVp.

Following a successful proof-of-concept with the phantom, the matrix approach using
the PiXirad detector was applied to 3D material separation of a ‘real-world’ biological
sample comprising a mouse hand (with dimensions of 5 mm (H) × 14 mm (V)). The sample
was provided by Dr. Philippe Bouillet (based at the Walter and Eliza Hall Institute of
Medical Research) [52]. The sample was stored in formalin but removed from solution
during the measurement and placed inside a plastic container to prevent dehydration. The
same experimental conditions (e.g., energy thresholds and exposure time) were used for
tomographic imaging of the mouse hand. In the present case the attenuation coefficient
values used for bone were µbone(∆Ea) = 1109 m−1 and µbone(∆Eb) = 392 m−1 and the atten-
uation coefficient values for soft tissue are µtiss(∆Ea) = 102 m−1 and µtiss(∆Eb) = 47 m−1.
These attenuation coefficients were derived from the X-ray properties of HA400, which has
similar X-ray attenuation characteristics to mouse bone [53] and water, which is commonly
used to represent hydrated soft tissue. The variation of these coefficients as a function of the
X-ray energy were obtained from the National Institute of Standards and Technology (NIST)
database [50]. In the case that the X-ray attenuation properties of the sample components
are not known a priori, they can be measured in a separate experiment using a coupon of
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known thickness and measurements of the incident and transmitted X-ray intensity [54].
The attenuation coefficients within the energy ranges of ∆Ea and ∆Eb can then be calcu-
lated using Equation (3). The HA400 calibration data was used to correct for the effects
of charge-sharing (see Equation (S1) and Figure S1 in Supplementary Material). For the
tomography scan, 360 projections were collected by rotating the sample in 0.5 degrees
steps between −90◦ and +90◦. An example of the corrected projection showing the four
energy threshold images is presented in Figure 8a–d. The matrix equation method using
the PiXirad detector yielded the results shown in Figures 7f and 8e (with 2 × 2 binning
applied). This step was repeated for each projection resulting in two tomographic datasets,
one for the soft tissue and the other for the bone. A filtered back projection (FBP) recon-
struction algorithm together with ring artefact correction was used to obtain the final 3D
reconstruction (Figure 9).

The 3D reconstruction obtained without applying the matrix method to the energy
resolved PiXirad data to separate the components is also shown for comparison. Figure 9
shows that the matrix approach is able to effectively separate bone from soft tissue using
a lab based polychromatic X-ray source and just a single exposure per projection. How-
ever, the SNR in the retrieved images is degraded compared to the individual images
corresponding to each of the four energy thresholds. The reduced SNR arises from the
image subtraction implicit in solving Equation (7), i.e., noise will add in quadrature under
following (weighted) image subtraction, with the net effect being a reduction in SNR [55].
This is a common artifact of matrix inversion and could be addressed using the ‘brute
force’ approach of improving the statistics by collecting a larger number of images per
projection (leading to longer data collection times). However, another common method
to address this problem is matrix regularization which is able to reduce errors introduced
by the inversion process by introducing modifications into the matrix operator that bias
particular solutions with desirable properties. For example, Tikhonov regularization is
commonly used to introduce high-pass operators to enforce smoothness if, for example,
the underlying solution is known to be continuously varying [56].

Figure 8. Results for a single projection of the mouse hand sample at energy thresholds
(a) E1 = 16 keV, (b) E2 = 21.1 keV, (c) E3 = 23.9 keV and (d) E4 = 29.7 keV. The corresponding
result for the retrieved thickness after applying the matrix method is shown for (e) soft tissue and
(f) bone.

In simulations of the experiment, we applied increasing amounts of experimental noise
and where able to obtain an acceptable result up to a Poisson noise level of 6% (which is
greater than expected for the experiment). Another limitation arises from energy-resolving
X-ray detectors in general, which, to a greater or lesser degree depending on the sensor type,
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exhibit some charge-sharing effects. The quality of the final result for the retrieved sample
components thus depends both on the SNR and the characterisation of the charge-sharing
characteristics of the specific detector used. A number of factors contribute to the SNR of
the data and the degree of charge-sharing artifacts. These include, the X-ray tube flux, the
linear absorption coefficient for the sample, and the overall sample thickness. Here, we
study a sample of just 5 mm × 14 mm in dimensions, extending this method to e.g., patient
limbs or even whole animals would require a source capable of delivering higher energy
X-rays and most likely the implementation of additional matrix regularisation to maintain
an acceptable result whilst minimizing the absorbed dose which would lead to lower
SNR data.

Figure 9. Tomographic reconstruction of the mouse hand. Left column: result corresponding to the
16 keV energy threshold. Middle column: retrieved thickness from bone and Right column: retrieved
thickness from soft tissue after applying the matrix method.

4. Conclusions

We have described and demonstrated an approach to material separation based on
solution of the linear attenuation matrix equations which can be applied to polychromatic
laboratory sources using commercially available energy resolving X-ray detectors. The
approach presented here enables a more general application of this method by using the
energy thresholding capabilities of an energy-discriminating (PiXirad) detector to separate
multiple components. This concept was explored in both simulation and experiments for a
phantom sample in 2D and a ‘real-world’ biological sample in 3D. In order to separate two
materials two energy bandwidths, need to be defined based on four intensity images in
order to obtain two quasi-monochromatic images. Using the PiXirad, this can be achieved
in a single exposure. However, as we have shown previously, the number of elements
to be separated can be increased be taking multiple images with a different set of energy
thresholds defined per exposure [13]. The ability to carry out this type of experiment is
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now widely available via a variety of different commercial X-ray energy discriminating
detectors. Based on the results of this study the matrix method for materials separation
combined with commercial energy-discriminating X-ray detection appears to be a promis-
ing avenue of research with a wide range of potential applications particularly in the field
of medical imaging.

An important question is how materials with very similar densities could be separated
using the matrix method combined with energy-discriminating X-ray detection. An inter-
esting application of this would be the differentiation of glandular and adipose regions
in breast tissue or other samples that contain very similar density materials. The current
state-of-the-art for research using energy discriminating detectors for soft tissue differenti-
ation is to address the challenge of separating materials of comparable bulk density but
differing µ(E) dependence which is not amenable to analysis by traditional methods. In
the present case, the key limiting factor is likely be the signal to noise ratio in the data and
whether data of sufficient quality can be collected in order to reliably separate materials
with almost identical X-ray interaction characteristics. Moreover, in this current setup,
options for improving the SNR include increasing the number of frames per projection,
binning together pixels at the cost of reduced spatial resolution, or by using an alternate
energy-resolving detector with a higher dynamic range (e.g., 32 bit). In order to explore
this application, future work will focus on the further optimisation of the energy ranges
and bandwidths used for these measurements which, in the case of energy-discriminating
detectors, can be easily varied by the user.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app12063198/s1, Figure S1. Fitting parameter K_(E_th) which characterizes the degree
of charge sharing as a function of energy threshold for the HA400 calibration sample, Figure S2.
(a) Energy resolution of the PiXirad detector as a function of energy. Data taken from A. Vincenzi
et al. [5]. The position of the experimental energy thresholds are indicated by the orange circles.
(b) Corresponding energy resolution values for each of the four experimental en-ergy threshold
values extrapolated from (a), Figure S3. Schematic diagram showing the key steps in the forward
simulation and subsequent retrieval of epoxy and HA insert components. All simulations were
performed using MATLAB, Table S1. Values for the ratio K_(E_th) for a tube voltage of 80 kVp.
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