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Abstract: Robot automatic assembly of weak stiffness parts is difficult due to potential deformation
during assembly. The robot manipulation cannot adapt to the dynamic contact changes during the
assembly process. A robot assembly skill learning system is designed by combining the compliance
control and deep reinforcement, which could acquire a better robot assembly strategy. In this paper, a
robot assembly strategy learning method based on variable impedance control is proposed to solve
the robot assembly contact tasks. During the assembly process, the quality evaluation is designed
based on fuzzy logic, and the impedance parameters in the assembly process are studied with a deep
deterministic policy gradient. Finally, the effectiveness of the method is verified using the KUKA iiwa
robot in the weak stiffness peg-in-hole assembly. Experimental results show that the robot obtains
the robot assembly strategy with variable compliant in the process of weak stiffness peg-in-hole
assembly. Compared with the previous methods, the assembly success rate of the proposed method
reaches 100%.

Keywords: robot assembly; deep reinforcement learning; fuzzy reward; compliant control

1. Introduction

The robot operating contact environment is changeable and unpredictable. It is a
challenge that the robot could quickly perform new tasks and precisely control the contact
force in different environments. High-precision assembly is a typical contact operation [1,2],
and the assembly process needs to overcome the environmental model and controller errors.
The peg-in-hole assembly process is usually divided into the search phase and the insertion
phase [3], which is visual and tactile. In the insertion phase, the center axis of the peg-in-
hole inserts into the bottom. When the axis deviation or force/torque is not appropriate,
it can cause card resistance or wedge tightening. Due to the deformation error, friction
and robot positioning error between assembly objects, it is difficult to establish an accurate
physical model and find the optimal assembly strategy according to the model analysis.

Robot assembly control strategies could be designed with forces and torques in the
robot assembly based on mathematical models. Compared to the position feedback con-
troller with high gain, impedance control ensures that the robot and environment are
fully controllable. A natural mass-damping-spring relationship is maintained between the
contact force and the position offset, and its force control characteristics depend on inertia,
stiffness, and damping parameters [4]. The traditional method of adjusting parameters
manually adjusts the control parameters according to the characteristics of the task. For the
assembly of such complex tasks, it is difficult to set the impedance control method of fixed
parameters to achieve the target task. If the parameters of impedance control could be
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adjusted to changes in the assembly tasks, the control performance is improved. The safety
of the robot could also be guaranteed in the process of adjusting the impedance parameters.

An important feature of reinforcement learning [5,6] is that optimal performance could
be achieved by designing incentive function guidance without understanding the robot and
environmental system models. Therefore, this paper mainly studies how robots could react
to contact forces by changing the stiffness motion in the robot peg-in-hole insertion task.
The robot obtains the optimal control strategy in the assembly process through dynamic
adjustment of the impedance parameters. Aiming at the soft control problem in the robot
contact task, this paper combines the quality evaluation of fuzzy reward and the deep
deterministic strategy gradient to achieve variable impedance. The robot could adapt to
the different contact force changes in the assembly process.

The main contributions are as follows:

(1) The reward function with fuzzy logic based on assembly quality evaluation was de-
signed in the actual industrial environment to improve the system learning performance;

(2) The assembly process model was constructed and the robot completed the stiffness
workpieces assembly;

(3) The robot combined with the variable impedance in the course of operation to avoid
the damage of the workpiece during the learning process;

(4) A framework of learning robot assembly skills is proposed, and it is verified in the
peg-in-hole assembly of weak stiffness workpieces.

(5) The proposed method in this paper combines deep reinforcement learning with
robotics technology, which provides theoretical support for the improvement of com-
plex manipulation skills of a new generation of robots. It also provides a new idea for
the application of artificial intelligence algorithms in the industrial field.

The remainder of this paper is organized as follows. Section 2 introduces the re-
lated work. The assembly system and formulation of the problem to be solved are in
Section 3. Section 4 contains the description of the proposed method. Experiments were
performed to validate the proposed method, and the results are presented and discussed in
Section 5. Finally, in Section 6, we summarize the results of the current work and discuss
future directions.

2. Related Work

The robot assembly strategy is divided into traditional control strategy and learning-
based assembly control strategy. The traditional control strategy mainly depends on
position-based impedance control, which produces submissive characteristics to the contact
environment via assembling objects. That could effectively reduce jam or clam in order to
complete the assembly work. The learning-based assembly control strategy is mainly to
obtain the optimal assembly strategy using the learning algorithm, including the parameter
optimization of impedance control model.

The traditional assembly strategy is that the robot uses the control algorithm to realize
the assembly using the feedback information of the sensor [7]. The force control strategy
is the main method of peg-in-hole assembly [8]. By analyzing the contraction state and
contact force during assembly, it would reduce the contact force and torque to speed up the
assembly process. Chan uses impedance control with combining force error and motion
error to control SCARA robots to complete the PCB assembly [9]. Aljairah proposes a
gradient-based control strategy to continuously update the robot for the smooth control of
the assembly process [10]. Xu and Inouel et al. divide peg-in-hole assembly into search and
jack phases [11]. Lin Junjian solves the problem of the zero value change of the force sensor
through the gravity compensation system of the force sensor [12]. In order to achieve good
assembly effect, the traditional control strategy requires a higher contact environment.
The contact state is generally complex and dynamic [13], and all the information must be
obtained by means of the accurate environmental contact model. In the actual industrial
assembly scene, noise interference, environmental complexity and change could not be
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achieved. The application based on the learning algorithm ensures the automatic operation
of assembly work.

At present, the model-less intensive learning method is widely used in the manipula-
tion task with rich contact characteristics [14,15]. Vijaykumar et al. [16] put forward a value
function-based method, using the greedy strategy to select discrete assembly action with
long short-term memory network (LSTM). The circular neural network estimation Q value
function was used to achieve peg-in-hole assembly beyond the resolution of the robot [1].
The robot action based on the enhanced learning method of value function is discrete and
low dimensional. M. Nuttin et al. [17] put forward two components, the actor and the critic,
to derive the robot assembly strategy and evaluate the action performed. Jing et al. [18]
propose a model-driven DDPG method, combined with the feedback exploration strategy,
for multi-axis hole assembly. Guide policy search [15] combines track optimization models
with neural network strategies to learn a wealth of operational skills. Luo et al. [2] pro-
pose the MDGPS (mirror descent guided policy search) method, which does not rely on
joint torque and uses force–torque signals from wrist sensors to complete the assembly of
deformable and rigid objects.

Stiffness control could be obtained via analyzing models. Inoue et al. [1] propose
robotic skill acquisition methods that train push neural networks through intensive learning.
However, the resulting high stiffness discrete action constrains the smoothness and safety
of the assembly process. Erickson D. et al. [19] obtain the contact force error through force
sensors and estimated environmental damping stiffness models online. The environmental
models are combined with impedance control to achieve the expected force impedance
control parameter. Under the indirect excitation of the observation signal, it is difficult to
obtain accurate environmental damping parameters. Sun Xiao et al. [20] propose a method
of impedance control parameter regulation based on fuzzy adaptive, and verify the robot’s
regulation of end contact force on the PUMA560 robot.

In [21], the time-varying stiffness can be reproduced by properly controlling the energy
exchanged during the movement. It could ensure the stability of the robot if the robot moves
freely or interacts with the environment. Ficiello et al. [22] combine Cartesian impedance
modulation with redundant resolution to improve the performance of human–computer
physical interactions. It is demonstrated that a variable impedance with an appropri-
ate modulation strategy for parameter adjustment is superior to a constant impedance.
Howard et al. [23] modulate the impedance modulation strategy by imitating human be-
havior. According to the learned human-like impedance strategy, Chao et al. [24] modulate
the impedance curve online to enhance the flexibility and adaptability of the system.

The position-based impedance control could be used without accurate mathematical
modeling of robot dynamics. Therefore, the position-based impedance control is also used
in this paper to ensure the compliance of peg-in-hole assembly process.

3. Problem Formulation

In the peg-in-hole insertion phase, there are two states of jamming and wedging.
If the contact force is not appropriate, it is easy to cause damage to the assembly object.
Impedance control [25] ensures that the robot’s contact with the operating environment is
controlled, and the end contact force f and displacement ∆x remain:

f = M∆ẍ + D∆ẋ + K∆x (1)

where ∆x represents the displacement of the actual position x relative to the reference
position xv. M, D, and K represent the inertia, damping, and stiffness. In the process
of high-precision assembly, the robot’s degree of freedom is constrained, the movement
is slow and smooth, the robot assembly is regarded as a quasi-static process, the inertia
and damping in the impedance control are ignored [26], and the stiffness control is used
instead of the complete impedance control, that is, f = K∆x. Based on the stiffness control
of intensive learning, the optimal strategy is found by trial and error, which maps the
robot assembly state S to the robot’s action. In continuous motion space, the historical
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information of assembly process also has an influence on the choice of strategy, so the
state S in this paper uses trajectory deviation, contact force deviation, assembly process
representation, and the action of the robot arm includes joint angle and stiffness.

S = [F, M, θ, τ] (2)

4. Method

Assembly strategy learning is actually the parameter updating and optimization,
which requires a stable and efficient learning algorithm. This paper uses the deep determin-
istic strategy gradient (DDPG) algorithm to realize the learning of stiffness strategy and
trajectory strategy.

With the Actor–Critic framework, the Actor gets a mapping from state S to action
a(t), and the Critic uses the state action value function Q(s, a |θQ) to quantify the strategy
calculated. Here, the Actor and Critic are represented by neural networks, with parameters
θµ and θQ, respectively.

4.1. Assembly Policy Learning

The assembly process is divided into non-contact stage and contact stage. The initial
position is often random during the assembly process. In the assembly contact state, there is
a corresponding relationship between the robot action and the current state. Then the guid-
ance strategy of the subsequent stage could be carried out in turn, which could complete
the assembly action smoothly to protect the workpiece from damage. As shown in Figure 1,
the mapping between the contact state and robot action is learned with the framework.

Figure 1. The framework of the proposed method.

The Actor shows the same network structure as shown in Figure 2. The hidden
layer has three layers: the first layer contains 300 neurons, the second layer and the third
layer each contains 200 neurons, the hidden layer and the output layer between the tanh
activation function; the output layer gives an adjustment action, the output dynamic as the
joint angle of the 7 axes and the stiffness of the three directions at the end of the robot arm

a = (θ1, θ2, θ3, θ4, θ5, θ6, θ7, kx, ky, kz) (3)
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The logical relationships between layers are as follows:

layer1 = ReLU(w1 × state + b1) (4)

layer2 = so f tsign(w2 × layer1 + b2) (5)

output = so f tsign(w3 × layer2 + b3) (6)

Figure 2. Actor network structure.

The Critic network structure is shown in Figure 3. According to the current contact
state, the assembly action in the Actor network obtains the Q value, evaluates the assembly
strategy, and then guides the actor network to make strategic adjustments. The input layer
obtains the contact state information and the assembly action given by the Actor network,
passes through the ReLU function into the implied layer, and then passes through the
identity function into the output layer.

Figure 3. Critic network structure.

The logical relationships between layers are

layer1s = ReLU(w1s × s + b1) (7)

layer1a = ReLU(w1a × s + b1a) (8)

layer2 = ReLU(w2s × layer1s + w2a × layer1a + b2) (9)

output = ReLU(w3 × layer2 + b3) (10)
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4.2. Reward Function

For peg-in-hole assembly, the assembly quality evaluation is one of the most important
factors affecting the success rate. The fuzzy logic system could handle multiple parameters,
so it could evaluate the quality of the assembly system very well. Therefore, this paper sets
up a quality evaluation with fuzzy logic.

In this paper, four typical parameters are used as the parameters of fuzzy quality
evaluation, i.e., contact force FY of t-moment y axis, contact force FZ of z-axis, assembly
depth Z of t-moment shaft and assembly action amount DZ:

FY = |Fy − fy| (11)

FZ = |Fz − fz| (12)

Z = sZ (13)

DZ = d− sZ (14)

where Fz is the force of the z direction, fz is the initial force of the z direction, Fy is the force
of the y direction, fy is the initial force of the y direction, sZ is the Z axis coordinates in the
current state of the robot arm, and d is the Z axis coordinate value at the bottom of the hole
under the same coordinate system as the robot arm.

If you blur these four parameters, 625 fuzzy rules are needed if you use only one layer
of fuzzy logic system. In order to simplify the design of the reward system, the double-layer
fuzzy logic structure of Figure 4 is adopted, the first layer has two fuzzy logic systems,
the Fy − Fz fuzzy logic system takes the contact force Fy and z-axis contact force Fz as input,
and the Z− DZ fuzzy logic system takes the assembly depth Z and assembly action DZ of
the t-moment axis as the input. The output of the two systems serves as input to the second
layer of fuzzy logic systems, and finally the value of the reward required is output by the
second layer of fuzzy logic systems. Thus 75 fuzzy rules need to be made, greatly reducing
the difficulty of fuzzy rules.

Figure 4. The assembly quality evaluation with fuzzy logic.

For the above parameter input system, using triangular membership function for
fuzzy processing, each parameter is blurred into 5 fuzzy values: VG, G, M, B, and VB,
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respectively, refer to very good, good, medium, bad, and very bad. Each fuzzy value has a
membership range of (0, 1) .

f (x) =



0 x≤ a
x− a
b− a

a ≤ x ≤ b

c− x
c− b

b ≤ x ≤ c

0 x ≥ c

(15)

where a, b, c represent the parameter value in the triangular membership function, a, c
determines the width of the membership function, and b determines the location of the
membership function.

After blurring the parameters, fuzzy reasoning is based on the established rule library,
and the rule library as shown in Table 1 is established according to the experience in
peg-in-hole assembly. Additionally, use the AND operation for fuzzy reasoning.

Ri(x) = min(µA(i)(x), µB(i)(x)) (16)

where A, B are fuzzy collections. The AND operation takes the minimum value of the
membership of both and determines the membership of the fuzzy value of the output
according to the rule library.

Table 1. Rule library.

VG G M B VB

VG R1 R6 R11 R16 R21
G R2 R7 R12 R17 R22
M R3 R8 R13 R18 R23
B R4 R9 R14 R19 R24

VB R5 R10 R15 R20 R25

Finally, the resulting fuzzy value is clearly processed, that is, the last part of the fuzzy
logic system: de-fuzzing. Since there are many fuzzy values obtained after fuzzy reasoning,
which cannot be used, the data need to be processed by the de-fuzzing method, and finally
the clear value that meets our requirements is obtained.

Discrete fuzzy values are used in this paper. Use the center of gravity method to
defuse

U∗ = ∑i(C∗ iwi)

∑i(C∗ i)
(17)

where U∗ refers to the clear output after de-blurring, U∗ ∼ (−1, 0) refers to the fuzzy
collection of fuzzy reasoning, and wi refers to the weight of each membership.

4.3. Network Training

During network training, the Actor and Critic’s target networks are recorded as

µ
′
(s|θµ

′
) and Q

′
(s, a|θQ

′
), which are used to calculate the target values. These target

networks have to be updated with parameters

θµ
′
= τθµ + (1− τ)θµ

′
(18)

θQ
′
= τθQ + (1− τ)θQ

′
(19)

θµ
′

and θQ
′

are parameters of the target network, and τ = 0.0001 is the progressive update
rate for the target network.
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During algorithm training, the Critic network optimizes parameter θQ by minimizing
the loss function, Loss.

Loss =
1
N ∑

i
(yi −Q(si, ai|θQ))2 (20)

Thereinto, yi = ri + γQ
′
(si+1, µ

′
(si+1|θµ

′
)|θQ

′
) γ is a discount factor that balances the

current and long-term penalties.
State action value function Q updates Actor on the θµ gradient:

E[∇θµ Q(s, a|θQ)|s=si ,a=µ(si)
]

=
1
N ∑

i
∇aQ(s, a|θQ)|s=si ,a=µ(si)

∇θµ µ(s|θµ)|si

(21)

4.4. Algorithm Pseudocode

The Algorithm 1 pseudocode used in this article is as follows:

Algorithm 1 Fuzzy Rewards—DDPG Algorithm

1: Initialize Actor–Critic’s network parameters θQ and θµ.

2: Assign network parameters to the target network θQ
′
← θQ, θµ

′
← θµ.

3: Initialize the experience pool R.
4: for episode = (1, 1000) do
5: Go back to the initial point s1;
6: for step = (1, 30) do
7: Select Action ai = µ(si|θµ) from the actor network and send it to the robot
8: After processing
9: The Fuzzy Rewards system calculates the reward value based on Fy, Fz, ∆z, dz

10: The program executes ai and returns the bonus value ri and the new status
11: si+1
12: The state transition process: (si, ai, ri, si+1) is stored in the experience pool R
13: As a dataset for the training network
14: Randomly sample N (si, ai, ri, si+1) data from Experience Pool R as a mini-
15: Batch training data for the policy network and Q network

16: Set up yi = ri + γQ
′
(si+1, µ

′
(si+1|θµ

′
)|θQ

′
)

17: Define the loss function: Loss = 1
N ∑i(yi −Q(si, ai|θQ))2, update the Critic

18: Network with the loss function
19: Policy gradient for computing policy networks:
20: ∇θµ J = 1

N ∑i∇aQ(s, a|θQ)|s=si ,a=µ(si)
∇θµ µ(s|θµ)|si

21: Update the target network parameters:

22: θµ
′
= τθµ + (1− τ)θµ

′

23: θQ
′
= τθQ + (1− τ)θQ

′

24: end for
25: end for

5. Experiments
5.1. Platform Building

The experimental platform of the KUKA LWR iiwa robot for information collection
structure and action execution organization of assembly process is set up. The server is used
to process the acquired assembly status data and complete the model learning to trigger the
assembly control strategy, driving the robot to complete the flexible assembly task. Taking
into account the precision of repeated positioning of the assembly robot, the peg-in-hole
gap is set to 0.2 mm, stiffness (Yang’s modulus) is simulated in this experiment, consisting
of an axis fixed on the robot body and the assembly table to be assembled workpieces,
for the completion of assembly tasks. Specific parameters are shown in Table 2. The shaft
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of the assembly model consists of a steel shaft with a Estl = 2.1× 1011 Pa modulus of Yang’s
and a plastic sleeve with a Yang’s modulus of Estl = 2.8× 106 Pa, which produces less
contact force than a pure stiffness shaft with the same displacement deviation.

Table 2. Assembly workpiece parameters.

Diameter Depth Minimum Clearance Center Deviation Axis Angle

24 mm 30 mm 0.5 mm (−5 mm, 5 mm) (−0.05◦, 0.05◦)

In this paper, the communication process is established between the assembly robot
and the server through TCP/IP. As shown in Figure 5. The data transmission and command
distribution are in the form of Socket. The iiwa robot communicates with the controller with
Socket and receives feedback on the assembly status. The neural network is trained with
the server. The initial parameter settings for assembly experiment are shown in Table 3.

Figure 5. Communication structure of assembly system.

Table 3. Initial setting of each assembly experiment.

Parameter Symbol Value

Contact force threshold Fy (−10, 10) N
Fz (−10, 10) N

Track increment threshold

∆x 0 mm
∆y 1 mm
∆z 5/3 mm
∆α 0◦

∆β 0.02◦/3
∆γ 0.02◦/3

Stiffness threshold dx, dy, dz (0, 4000)

Depending on the change of force in the direction of the y- and z-axis during assembly,
the threshold of the contact force Fy and Fz is set to 10 N, which is set to 0◦ because the
assembly in this article is independent of the displacement of the x-axis direction and the
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rotation angle of the z-axis. The stiffness threshold is the maximum and minimum values
that are desirable as the threshold.

5.2. Fuzzy Reward System

The contact force Fy of the input t-moment y axis, the contact force Fz of the z-axis,
the assembly depth Z of the t-moment axis, and the assembly action quantity DZ are fuzzed
by the triangular membership function, whose respective membership functions are shown
in Figure 6.

Figure 6. The first layer of membership function: (a) Fy membership function; (b) Fz membership
function; (c) Z membership function; (d) DZ membership function.

The fuzzy set after fuzzy is fuzzy according to the set rule library to obtain the output
fuzzy set of the first layer; the output of the first layer is obtained by the deflating operation;
and the output of the first layer is shown in Figure 7.

Figure 7. The first layer of fuzzy logic system output: (a) Fy − Fz fuzzy logic system output value;
(b) Z− DZ fuzzy logic system output value
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The fuzzy logic output of the first layer is used as the input of the fuzzy logic system
of the second layer, the same as the fuzzy logic system of the first layer, and the fuzzy
operation is carried out first; its membership function is shown in Figure 8.

Figure 8. The second layer of membership function: (a) Fy − Fz membership function; (b) Z− DZ

membership function .

The resulting fuzzy set fuzzy reasoning, de-fuzzing and other operations to obtain the
final evaluation quality are as shown in Figure 9.

Figure 9. The second layer of fuzzy logic system output.

5.3. The Assembly Strategy Learning Process

The robustness and generalization capability of the model are improved, and the initial
position introduces angle errors (−0.05◦, 0.05◦) and positional errors (−10 mm, 10 mm) to
simulate real industrial environments. In this experiment, the effectiveness of the algorithm
is verified by comparing with the other two assembly methods. One is to use position
control without impedance control to realize peg-in-hole assembly; the other is to use fuzzy
logic to adjust impedance parameters. Other than that, the setup for each experiment is the
same. The initial parameter settings for learning training are shown in Table 4.

Table 4. Training parameter setting of each experiment.

Without Soft Soft with DDPG Soft with Fuzzy
Symbol Value Symbol Value Symbol Value

episode 1000 episode 1000 episode 1000
stepmax 20 stepmax 20 stepmax 20

s0 s0 s0 s0 s0 s0
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The training results of each experiment are shown in the Figure 10, including the loss
value, reward value and step value during the learning process.

As can be seen from Figure 10, the loss value during training decreases and converges
with the increase in step, indicating that the gap between the predicted action value of the
Actor network output and the action value required by the actual environment is getting
smaller and smaller.

The value of the reward in Figure 10 increases with the number of trainings, indicating
that the learning is getting better and better, and the validity of the algorithm is verified.

Figure 10. The assembly strategy learning process: (a) loss value change during training; (b) reward
value change during training; (c) step value change during training; (d–f) represent the changes of
the impedance values in the x, y, and z directions when the impedance parameters are adjusted by
the learning method and the fuzzy logic method, respectively.

The step value in Figure 10 requires six steps to complete the assembly task before the
training begins, but only four steps after training to complete the assembly task, indicating
that the assembly is getting faster and faster. Figure 10 shows the changes in impedance
parameters during training.

The force variation curve of each experiment is shown in Figure 11. Without the
addition of impedance control, the peg-in-hole assembly process generates a large contact
force/moment. The magnitude of force/torque variation produced by the method of
adjusting the impedance parameters using learning is smaller than that of adjusting the
impedance parameters using fuzzy logic. The security and effectiveness of the algorithm
are verified.

5.4. Assembly Strategy Experimental Validation
5.4.1. Test the Assembly Success Rate

After the training is completed, we save and test the trained model, a total of 10 tests,
each time with 20 peg-in-hole assembly; the test results as shown in Table 5.
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(a) (c)

(b)

Figure 11. The force variation curve of each experiment. (a) Without soft; (b) soft with DDPG; (c) soft
of fuzzy.

Table 5. Model test results.

Groups Without Soft Success Soft DDPG Success Soft Fuzzy Success

1 0% 95% 85%
2 0% 100% 85%
3 0% 95% 80%
4 0% 100% 90%
5 0% 100% 80%
6 0% 100% 85%
7 0% 100% 75%
8 10% 100% 65%
9 0% 100% 80%

10 0% 90% 90%

Results of each model performance are showen in Figure 12. It can be seen from
the test results that if there is no impedance control, the robot still cannot complete the
peg-in-hole assembly task after training. The method of adjusting impedance parameters
using fuzzy logic can achieve a success rate of more than 85%, which is less than the 100%
success rate that can be achieved using learning to adjust impedance parameters.
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Figure 12. Results of each model performance: (a) reward; (b) step; (c,d): stiffness.

5.4.2. Assembly Process Analysis

The trajectory of a peg-in-hole assembly is sampled to obtain the y and z plane’s
motion trajectory as shown in Figure 13. The track is divided into the hole-in stage and the
un-hole stage.

The joint torque in the assembly process, according to the sampled track point, reads
the torque information of each track point in the entry and exit hole stage and the unad-
dressed stage respectively, and processes it, as shown in Figure 14. The torque of each joint
does not change significantly in the unedited stage, and the mutation occurs in the hole-in
stage, which gradually converges as the jack progresses. The larger changes are J1, J2, J3,
and J4 joints.

Figure 13. The trajectory of the end of the peg during insertion.

The end contact force in the learning process, according to the sampled track point,
reads the end force information of each track point in the entry and exit hole stage and
the unedited stage, respectively, including the x-axis end moment, the y-axis end force,
the z-axis end force. The variation is shown in Figure 15.
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Figure 14. The torque of seven joints during assembly.

Figure 15. The end contact force and torque during assembly.

6. Conclusions

Robot automatic assembly of weak stiffness parts is a great challenge due to the
interaction and high degree of uncertainty of contact force in the course of robot operation.
This paper proposed a robot assembly skill learning system, combining the compliance
control and deep reinforcement, which could acquire a better robot assembly strategy.
The quality evaluation is designed based on fuzzy logic, and the assembly strategy is
studied with the deep deterministic strategy gradient. The effectiveness and robustness
of the proposed algorithm are demonstrated through a designed simplified simulation
model and realistic peg-in-hole assembly experiments. However, the impedance control
parameters of the robot are sensitive to the environmental position noise, and it is difficult to
optimize the parameters in the industrial field environment. Since the design of the reward
function is closely related to the assembly process, various factors must be considered to
improve the learning efficiency. The future work will combine with model-based intensive
learning to improve the learning efficiency and robot assembly performance.
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