# Buffeting Response Prediction of Long-Span Bridges Based on Different Wind Tunnel Test Techniques

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Analysis

#### 2.1. Traditional Buffeting Response Calculation

#### 2.2. Calculation of Buffeting Response Based on Sectional Model Vibration Test

#### 2.3. Buffeting Response Prediction Based on Taut Strip Model Test

## 3. Test Preparation

#### 3.1. Structural Overview

#### 3.2. Analysis of Structural Dynamic Characteristics

#### 3.3. Test Equipment

#### 3.4. Turbulence Field Simulated

## 4. Test Arrangement

#### 4.1. Three-Component Force Test

#### 4.2. Aerodynamic Derivative Identification Test

#### 4.3. Aerodynamic Admittance Identification Test

#### 4.4. Integrated Transfer Function Identification Test

#### 4.5. Taut Strip Model Test

## 5. Test Results

#### 5.1. Three-Component Force Coefficient

#### 5.2. Aerodynamic Derivative

#### 5.3. Aerodynamic Admittance

#### 5.4. Integrated Transfer Function

#### 5.5. Taut Strip Model Test

## 6. Buffeting Response Prediction and Analysis

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Fung, Y.C. Fluctuating lift and drag acting on a cylinder in a flow at supercritical Reynolds numbers. J. Aerosp. Sci.
**1960**, 27, 801–814. [Google Scholar] [CrossRef] - Scruton, C. Aerodynamic buffeting on bridges. Engineer
**1955**, 199, 654–667. [Google Scholar] - Davenport, A.G. The response of slender, line-like structures to a gusty wind. ICE Proc.
**1962**, 23, 389–408. [Google Scholar] [CrossRef] - Davenport, A.G. Buffeting of a suspension bridge by storm winds. J. Struct. Div.
**1962**, 88, 233–270. [Google Scholar] [CrossRef] - Scanlan, R.H.; Tomko, J. Airfoil and bridge deck flutter derivatives. J. Eng. Mech. Div.
**1971**, 97, 1717–1737. [Google Scholar] [CrossRef] - Scanlan, R.H.; Gade, R.H. Motion of suspended bridge spans under gusty wind. J. Struct. Div.
**1977**, 103, 1867–1883. [Google Scholar] [CrossRef] - Scanlan, R.H. The action of flexible bridges under wind, I: Flutter theory. J. Sound Vib.
**1978**, 60, 187–199. [Google Scholar] [CrossRef] - Scanlan, R.H. The action of flexible bridges under wind, II: Buffeting theory. J. Sound Vib.
**1978**, 60, 201–211. [Google Scholar] [CrossRef] - Lin, Y.K.; Yang, J.N. Multimode bridge response to wind excitation. J. Struct. Mech.
**1983**, 109, 586–603. [Google Scholar] [CrossRef] - Kiviluoma, R. Coupled-mode buffeting and flutter analysis of bridges. Comput. Struct.
**1999**, 70, 219–228. [Google Scholar] [CrossRef] - Jain, A.; Jones, N.P.; Scanlan, R.H. Coupled flutter and buffeting analysis of long-span bridges. J. Struct. Eng.
**1996**, 122, 716–725. [Google Scholar] [CrossRef] - Xu, Z.; Wang, H.; Zhang, H.; Zhao, K.; Zhu, Q. Non-stationary turbulent wind field simulation of long-span bridges using the updated non-negative matrix factorization-based spectral representation method. Appl. Sci.
**2019**, 9, 5506. [Google Scholar] [CrossRef] [Green Version] - Kim, S.; Jung, H.; Kong, M.J.; Li, D.K.; An, Y.K. In-situ data-driven buffeting response analysis of a cable-stayed bridge. Sensors
**2019**, 19, 3048. [Google Scholar] [CrossRef] [Green Version] - Yan, L.; Ren, L.; He, X.; Lu, S.; Guo, H.; Wu, T. Strong wind characteristics and buffeting response of a cable-stayed bridge under construction. Sensors
**2020**, 20, 1228. [Google Scholar] [CrossRef] [Green Version] - Domaneschi, M.; Martinelli, L. Refined optimal passive control of buffeting-induced wind loading of a suspension bridge. Wind Struct.
**2014**, 18, 1–20. [Google Scholar] [CrossRef] - Chen, W.; Li, H.; Hu, H. An experimental study on the unsteady vortices and turbulent flow structures around twin-box-girder bridge deck models with different gap ratios. J. Wind Eng. Ind. Aerodyn.
**2014**, 132, 27–36. [Google Scholar] [CrossRef] - Li, H.; Chen, W.; Xu, F.; Li, F.; Ou, J. A numerical and experimental hybrid approach for the investigation of aerodynamic forces on stay cables suffering from rain-wind induced vibration. J. Fluids Struct.
**2010**, 26, 1195–1215. [Google Scholar] [CrossRef] - Chen, W.; Zhang, Q.; Li, H.; Hu, H. An experimental investigation on vortex induced vibration of a flexible inclined cable under a shear flow. J. Fluids Struct.
**2015**, 54, 297–311. [Google Scholar] [CrossRef] - Tao, T.; Wang, H.; Yao, C.; He, X. Parametric sensitivity analysis on the buffeting control of a long-span triple-tower suspension bridge with MTMD. Appl. Sci.
**2017**, 7, 395. [Google Scholar] [CrossRef] - Liu, H.; Lei, J.; Zhu, L. Identification and application of the aerodynamic admittance functions of a double-deck truss girder. Appl. Sci.
**2019**, 9, 1818. [Google Scholar] [CrossRef] [Green Version] - Gao, D.; Chen, W.; Li, H.; Hu, H. Flow around a circular cylinder with slit. Exp. Therm. Fluid Sci.
**2017**, 82, 287–301. [Google Scholar] [CrossRef] - Chen, W.; Gao, D.; Li, H.; Hu, H. Passive jet control of flow around a circular cylinder. Exp. Fluids.
**2015**, 56, 201. [Google Scholar] [CrossRef] - Yan, L.; Zhu, L.; He, X.; Flay, R.G.J. Experimental determination of aerodynamic admittance functions of a bridge deck considering oscillation effect. J. Wind Eng. Ind. Aerodyn.
**2019**, 190, 83–97. [Google Scholar] [CrossRef] - Chen, W.; Xin, D.; Xu, F.; Li, H.; Ou, J.; Hu, H. Suppression of vortex-induced vibration of a circular cylinder using suction-based flow control. J. Fluids Struct.
**2013**, 42, 25–39. [Google Scholar] [CrossRef] - Laima, S.; Li, H.; Chen, W.; Li, F. Investigation and control of vortex-induced vibration of twin box girders. J. Fluids Struct.
**2013**, 39, 205–221. [Google Scholar] [CrossRef] - Su, Y.; Li, M. Integrated transfer function for buffeting response evaluation of long-span bridges. J. Wind Eng. Ind. Aerodyn.
**2019**, 189, 231–242. [Google Scholar] [CrossRef] - Li, M.; Yang, Y.; Li, M.; Liao, H. Direct measurement of the Sears function in turbulent flow. J. Fluid Mech.
**2018**, 847, 768–785. [Google Scholar] [CrossRef] - Li, M.; Li, M.; Yang, Y. A statistical approach to the identification of the two-dimensional aerodynamic admittance of streamlined bridge decks. J. Fluids Struct.
**2018**, 83, 372–385. [Google Scholar] [CrossRef] - Li, M.; Li, M.; Zhong, Y.; Luo, N. Buffeting response evaluation of long-span bridges with emphasis on three-dimensional effects of gusty winds. J. Sound Vib.
**2019**, 439, 156–172. [Google Scholar] [CrossRef] - Chen, X.; Kareem, A. Equivalent static wind loads for buffeting response of bridges. J. Struct. Eng.
**2001**, 127, 1467–1475. [Google Scholar] [CrossRef] - Fung, Y.C. An Introduction to the Theory of Aeroelasticity; John Wiley & Sons: New York, NY, USA, 1955. [Google Scholar]
- Larose, G.L.; Livesey, F.M. Performance of streamlined bridge decks in relation to the aerodynamics of a flat plate. J. Wind Eng. Ind. Aerodyn.
**1997**, 69, 851–860. [Google Scholar] [CrossRef] - Larose, G.L.; Mann, J. Gust loading on streamlined bridge decks. J. Fluids Struct.
**1998**, 12, 511–536. [Google Scholar] [CrossRef] - Hjorth-Hansen, E.; Jakobsen, A.; Strømmen, E. Wind buffeting of a rectangular box girder bridge. J. Wind Eng. Ind. Aerodyn.
**1992**, 42, 1215–1226. [Google Scholar] [CrossRef] - Jakobsen, J.B. Span-wise structure of lift and overturning moment on a motionless bridge girder. J. Wind Eng. Ind. Aerodyn.
**1997**, 69, 795–805. [Google Scholar] [CrossRef] - Kimura, K.; Fujino, Y.; Nakato, S.; Tamura, H. Characteristics of buffeting forces on flat cylinders. J. Wind Eng. Ind. Aerodyn.
**1997**, 69, 365–374. [Google Scholar] [CrossRef] - Ma, C.; Wang, J.; Li, Q.; Liao, H. 3D aerodynamic admittances of streamlined box bridge decks. Eng. Struct.
**2019**, 179, 321–331. [Google Scholar] [CrossRef] - Ma, C. 3D Aerodynamic Admittance Research of Streamlined Box Bridge Decks. Ph.D. Thesis, Southwest Jiaotong University, Chengdu, China, 2007. (In Chinese). [Google Scholar]
- Li, S.; Li, M.; Larose, G.L. Aerodynamic admittance of streamlined bridge decks. J. Fluids Struct.
**2018**, 78, 1–23. [Google Scholar] [CrossRef] - Su, Y.; Li, M.; Yang, Y.; Mann, J.; Liao, H.; Li, X. Experimental investigation of turbulent fluctuation characteristics observed at a moving point under crossflows. J. Wind Eng. Ind. Aerodyn.
**2020**, 197, 104079. [Google Scholar] [CrossRef] - von Kármán, T.; Howarth, L. On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. Ser. A-Math. Phys. Sci.
**1938**, 164, 192–215. [Google Scholar] [CrossRef] - Simiu, E.; Scanlan, R.H. Wind Effects on Structures; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Xie, J.; Hunter, M.; Irwin, P. Experimental and analytical approaches in wind engineering studies for bridges. In Proceedings of the Budapest: Responding to Tomorrow’s Challenges in Structural Engineering, Budapest, Hungary, 13–15 September 2006. [Google Scholar]
- Li, M.; Li, M.; Su, Y. Experimental determination of the two-dimensional aerodynamic admittance of typical bridge decks. J. Wind Eng. Ind. Aerodyn.
**2019**, 193, 103975. [Google Scholar] [CrossRef] - Yang, Y. Aerodynamic Admittances of Airfoil and Rectangular Cylinder. Ph.D. Thesis, Southwest Jiaotong University, Chengdu, China, 2019. (In Chinese). [Google Scholar]
- Li, M. Buffeting Response Analysis of Long-Span Bridges with Emphasis on the Three-dimensional Effects of Turbulence and the Study on the Equivalent Static Wind Loads. Ph.D. Thesis, Southwest Jiaotong University, Chengdu, China, 2019. (In Chinese). [Google Scholar]

**Figure 6.**Longitudinal and vertical turbulence spectra in XNJD-1 spire turbulence field. (

**a**) Longitudinal; (

**b**) vertical.

**Figure 7.**Longitudinal and vertical turbulence spectra in XNJD-3 spire turbulence field. (

**a**) Longitudinal; (

**b**) vertical.

Turbulence Field | Turbulence Intensity | Turbulence Integral Scale | ||
---|---|---|---|---|

${\mathit{I}}_{\mathit{u}}$ | ${\mathit{I}}_{\mathit{w}}$ | ${\mathit{L}}_{\mathit{u}}$ | ${\mathit{L}}_{\mathit{w}}$ | |

XNJD-1 | 14.2 | 12.3 | 0.153 | 0.092 |

XNJD-3 | 15.7 | 11.3 | 1.187 | 0.650 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Su, Y.; Di, J.; Li, S.; Jian, B.; Liu, J.
Buffeting Response Prediction of Long-Span Bridges Based on Different Wind Tunnel Test Techniques. *Appl. Sci.* **2022**, *12*, 3171.
https://doi.org/10.3390/app12063171

**AMA Style**

Su Y, Di J, Li S, Jian B, Liu J.
Buffeting Response Prediction of Long-Span Bridges Based on Different Wind Tunnel Test Techniques. *Applied Sciences*. 2022; 12(6):3171.
https://doi.org/10.3390/app12063171

**Chicago/Turabian Style**

Su, Yi, Jin Di, Shaopeng Li, Bin Jian, and Jun Liu.
2022. "Buffeting Response Prediction of Long-Span Bridges Based on Different Wind Tunnel Test Techniques" *Applied Sciences* 12, no. 6: 3171.
https://doi.org/10.3390/app12063171