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Abstract: The biological investigation of a population’s shape diversity using digital images is typi-
cally reliant on geometrical morphometrics, which is an approach based on user-defined landmarks.
In contrast to this traditional approach, the progress in deep learning has led to numerous applications
ranging from specimen identification to object detection. Typically, these models tend to become black
boxes, which limits the usage of recent deep learning models for biological applications. However, the
progress in explainable artificial intelligence tries to overcome this limitation. This study compares
the explanatory power of unsupervised machine learning models to traditional landmark-based
approaches for population structure investigation. We apply convolutional autoencoders as well
as Gaussian process latent variable models to two Nile tilapia datasets to investigate the latent
structure using consensus clustering. The explanatory factors of the machine learning models were
extracted and compared to generalized Procrustes analysis. Hypotheses based on the Bayes factor are
formulated to test the unambiguity of population diversity unveiled by the machine learning models.
The findings show that it is possible to obtain biologically meaningful results relying on unsupervised
machine learning. Furthermore we show that the machine learning models unveil latent structures
close to the true population clusters. We found that 80% of the true population clusters relying on
the convolutional autoencoder are significantly different to the remaining clusters. Similarly, 60% of
the true population clusters relying on the Gaussian process latent variable model are significantly
different. We conclude that the machine learning models outperform generalized Procrustes analysis,
where 16% of the population cluster was found to be significantly different. However, the applied
machine learning models still have limited biological explainability. We recommend further in-depth
investigations to unveil the explanatory factors in the used model.

Keywords: generalized procrustes analysis; machine learning; convolutional autoencoder; Gaussian
process latent variable models

1. Introduction

The systematic visual inspection of specimen’s morphological traits has a long history
in biology, allowing divergent traits among species and populations of the same species to
be defined and forming the field of morphometrics [1,2]. This inspection lately relies on
digital images where landmarks are placed on diagnostic structures of the organism and
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their relative position and distance are measured [3]. These manually placed landmarks
provide some standardizations and automation of morphometrics analysis [4]. Their
application to the field of fish biology has been especially successful because, due to
their bilateral symmetry, it is possible to capture biologically significant traits in a two-
dimensional image [5–8]. Nevertheless, placing landmarks in pictures can be quite labor-
intensive and it requires prior biological knowledge (e.g., [4]). In this context, machine
learning models can solve some of these limitations.

Since the publication of Alexnet [9] and its successors (e.g., VGG16 [10] or ResNet [11]),
convolutional neuronal networks (CNNs) became a standard model for computer vision
tasks. In contrast to landmark-based approaches where scientists carefully place the land-
marks on images, CNNs learn to extract features in order to fulfil a user-defined task. CNNs
are frequently implemented to solve object recognition or object detection applications. In
fish biology, these models were successfully used for fish recognition [12–17]. Nevertheless,
convolutional neuronal networks are black boxes and are hard to interpret [18]. Their be-
havior needs to be investigated after model training relying on prediction samples [19–22].
The latent explanatory factors learned by the CNN, which were previously discussed to
be the key factor for reliable machine learning models [23], still cannot be unveiled. This
means that biological factors contributing to the results of a neuronal network-based model
cannot be extracted and analyzed.

This is a strong shortcoming in contrast to landmark-based analysis, where the land-
marks can be interpreted in a biological manner. The authors of [24] compared landmark-
based approaches to machine learning approaches for a Nile tilapia population classification
task. The authors relied on supervised methods and found that the machine learning mod-
els, including CNNs, used image regions with no biological meaning that happened to
be correlated with the specimen’s population. This effect is known as clever-Hans predic-
tors [18].

In contrast to the CNN-based approaches, the biological processing steps for visual
diversity investigation differs. In geometric morphometry the landmarks are processed
(e.g., generalized Procrustes analysis [25]) and the results are interpreted statistically. From
a machine learning perspective, these landmarks represent manually defined features.
These landmarks were defined without a priori information such as the specimen’s location.
However, the features learned by CNNs differ significantly and typically rely on a super-
vised training procedure. These learned features and the manually extracted landmarks
cannot be discussed in the same way.

CNN features are typically learned using a priori information [9–11]. These features
must not have biological meaning and may not be representative of a population’s visual
diversity [18]. In order to obtain reliable results, unsupervised machine learning was
reported as an alternative to supervised methods [24,26,27]. Furthermore, to be able to com-
pare machine learning-based visual diversity to landmark-based approaches, the feature
extraction must be trained without a priori information in an unsupervised manner.

This study investigates the latent structure and visible diversity of populations in
digital images unveiled by unsupervised machine learning models. We quantify the perfor-
mance of the applied methods by measuring their capability to unveil known population
clusters. These clusters were reported at the molecular genetic level [28–30] or are known
due to geographical separation.

Since they breed among each other and tend to be exposed to similar environmental
conditions, individuals of the same population are likely to share morphological features.
In this study, we propose an unsupervised machine learning-based visual diversity in-
vestigation pipeline which is compared to landmark-based approaches. From two image
datasets showing Nile tilapia specimens, landmarks are manually extracted and unsu-
pervised machine learning models are trained to obtain features for each specimen. We
hypothesize that:

Hypothesis 1. The machine learning models learn biological meaningful features.
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Hypothesis 2. These features have a higher relation to the actual population clusters in contrast to
landmark-based approaches.

The former hypothesis is evaluated by a visual inspection of the learned features. The
latter hypothesis is evaluated in two ways. Initially, hypotheses tests are performed to
investigate the relation between the features as well as landmarks to the known population
clusters. Furthermore, we propose a novel non-parametric test to investigate the unambigu-
ity of the known clusters in the learned feature space as well as in the extracted landmarks.

The contribution of this study is the investigation of the expressiveness of machine
learning models in a biological context and the comparison of the results to landmark-
based approaches. The hypotheses of this study are evaluated based on two Nile tilapia
datasets that originate from specimens from Ethiopia and Uganda. These datasets were
previously analyzed. In [24], the relation of populations from Ethiopia were investigated
using supervised (deep) machine learning-based specimen classification. The authors
were able to achieve a prediction accuracy above 90%. However, they showed that this
accuracy was achieved using clever-Hans predictors, and the classifiers used biological
uninformative parts of the image. Ref. [5] investigated Nile tilapia specimens from Uganda
relying on landmark-based methods. The authors discussed population differences and
showed overlapping population distributions.

To evaluate the hypotheses of this study, two unsupervised machine learning mod-
els are implemented. We use the Bayesian Gaussian process latent variable model [31]
previously used for Nile tilapia images [24] and plant recognition [26]. Furthermore, we
implement an unsupervised deep learning counterpart, namely a convolutional autoen-
coder [32]. These two models were chosen due to reported success in a biological context.

The remaining part of this study is structured as follows. Section 2 introduces the
materials and methods used for the evaluation of the aforementioned hypotheses. Section 3
describes the results obtained by applying the proposed pipeline. Afterwards, the results
are discussed before Section 5 summarizes this work.

2. Materials and Methods

To evaluate the research hypotheses of this study, two main strategies were imple-
mented. Initially, the learned features were visualized and manually inspected. For this
inspection, the existing biological knowledge represented by the proposed landmark posi-
tions was used. The biological explainability of all used models was investigated. For the
purpose of this study, we defined the biological explainability as the ability of models to
explain the reasoning process based on meaningful biological information. To this end, we
used the explainability of generalized Procrustes analysis, relying on landmarks placed on
specimens as the reference for biological explainability.

In addition to this visual inspection, the features and landmarks were investigated
using hypothesis tests. Initially we used Spearman’s rank correlation tests to investigate
the relation between the features as well as landmarks to the known population clusters.
However, these tests do not compare the capability of the machine learning models and
landmark-based approaches to identify visible information which is useful to unveil the
actual population clusters. In this study, we aimed to measure the unambiguity of known
population clusters relying on processed landmarks or features obtained by machine
learning models. The performance of the unsupervised machine learning models in contrast
to the landmark-based approaches was evaluated by comparing the unveiled cluster
unambiguity. To investigate this unambiguity of the known clusters in the learned feature
space as well as in the extracted landmarks, we proposed a novel and non-parametric test.
For this test, we created several population cluster hypotheses and used a novel Bayesian
extension of consensus clustering [33] as well as the principle of self-similarity for the
formulation of a Bayesian hypothesis test for population discriminability.

The technical core problem of this study was the quantification of a model’s capability
to unveil morphological structure. However, this quantification is a complex task due to
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ambiguity. Different models and optimization strategies maybe result in biological mean-
ingful morphological clusters using the same dataset [29]. Similarly, a model may unveil
subpopulations, but fail to quantify obvious differences in water bodies and vice versa.
This effect is visualized in Figure 1. On the left side, two dimensional representations of
specimens (e.g., two principal coordinates of generalized Procrustes analysis features) are
shown as blue points. The right side shows the visual representation of two models (red
and green) with different global parameters φ and local parameters ψ. Using different
optimization strategies, two valid cluster hypotheses, namely four clusters (red model) or
two clusters (green model) in the two-dimensional space, maybe occur.

𝑁
𝜓

𝜙

𝑥𝑛

Figure 1. Two-dimensional representation of a specimen dataset and two valid clusters unveiling the
latent structure (left side). Two models (right side, red and green model) with global parameter Φ
and local parameter Ψ may result in two or four clusters.

Both cluster models unveil biological interpretable structures and may differ as a
result of different mathematical formulations or optimization strategies. In order to be able
to quantify methods, and inspired by infinite mixture models [34] as well as the idea of
cluster ensemble [33,35], this study combined multiple population structure hypotheses
unveiled in landmark and machine learning-based visual diversity data. These visual
diversity data were generated relying on generalized Procrustes analysis and unsupervised
machine learning models. We aimed to fuse the information of all population structure
hypotheses. The combined results, as well as known clusters, were used to compare the
landmark-based approaches with the machine learning approaches.

Our developed processing pipeline is shown in Figure 2.
The remaining part of this chapter introduces the used data, landmark process-

ing methods, machine learning models and morphological diversity investigation. The
Supplementary Materials (software as well as the used data including landmarks) is avail-
able under https://github.com/TW-Robotics/MorphoML (accessed on 17 February 2022).

2.1. Data Sources

This study relied on two image datasets, namely from Ethiopia (209 images, six popu-
lations) and Uganda [5] (462 images, 19 populations). All images were carefully gathered,
prepared for digital processing and converted to grayscale images. The specimens in the
images were cut out and resized to 224× 96 pixels. A summary of the used image datasets
is available in Table 1.

The population locations are visualized in Figure 3.
For the purpose of this study, the locations of the specimens were used to quantify

the capability of the models to unveil meaningful structure. This approach was motivated
by the previous work of [5,24], where the authors showed morphological differences for
populations of Uganda and Ethiopia. However, if visible differences did not exist our
approach would fail and no meaningful structure could be extracted.

https://github.com/TW-Robotics/MorphoML
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Figure 2. The pipeline used in this study to investigate the biological interpretation of the learned
features as well as the statistical analysis of the discriminability of the known population clusters.

Table 1. Summary of image dataset from Ethiopia (209 specimens) and Uganda [5] (462 specimens).
During this study, we used the location name as well as the abbreviation.

Water Body Abbr. Nr. Spec. Latitude Longitude

Et
hi

op
ia

Chamo Cham 36 5.83333 37.55
Hawassa Hawa 38 7.05 38.43333

Koka Koka 31 8.39197 39.07679
Langano Lang 26 7.61666 38.76666

Tana Tana 38 12.0166 37.29194
Ziway Ziwa 40 8.00083 38.82111

U
ga

nd
a

Victoria Kakyanga ViKak 28 −0.18079 32.29332
Victoria Masese ViM 28 0.4365 33.24081
Victoria Gaba ViG 23 0.25819 32.63727

Victoria Sango Bay ViSB 20 −0.86772 31.71332
Victoria Kamuwunga ViKam 16 −0.12747 31.93999

Albert Ntoroko AlN 22 1.05206 30.53464
Albert Kyehooro AlK 16 1.5099 30.9361

George Hamukungu Ge 34 −0.01739 30.08698
Kazinga Channel Katungulu KaC 30 −0.12541 30.04744

Edward Kazinga EdK 21 −0.20783 29.89252
Edward Rwenshama EdR 19 −0.40459 29.77283

Kyoga Kibuye KyK 32 1.40028 32.57949
Kyoga Bukungu KyB 3 1.43873 32.86809

River Nile Kibuye Ni 29 1.18734 32.96865
Mulehe Musezero Mu 27 −1.21345 29.72668

Kayumbu Rugarambiro Ka 28 −1.34679 29.78446
Bangena Farm BF 34 −1.25617 29.73622

Sindi Farm SF 22 −1.17578 30.06198
Rwitabingi Farm RF 30 0.97116 33.13924
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Figure 3. The locations in Ethiopia (left) and Uganda (right) used for this study. All images were
also gathered in these locations. The cran R [36] package rosm [37] relying on the OpenStreetMap was
used to generate the maps.

2.2. Visible Information Extraction

The image datasets from Uganda and Ethiopia were processed individually. We
initially placed landmarks on the digital images and applied generalized Procrustes analysis
(GPA) [25]. To obtain features from the machine learning models, we used the Bayesian
Gaussian process latent variable model (B-GP-LVM) [31] previously used for Nile tilapia
population classification [24]. Motivated by the success of deep learning, we used a
convolutional autoencoder (cAE) [32] as a deep learning counterpart to the B-GP-LVM.

However, both machine learning models were based on image datasets {I1, . . . , In}
of n gray-scaled images. Each image Ij ∈ RR×C consists of R rows and C columns. The
B-GP-LVM as well as the cAE tackles the problem of estimating a latent representation ~f j
for the image Ij. This latent representation is referred as feature. The models estimate the
features for the specimens using different strategies and architectures. The features contain
major information of the images and thus may represent visible characters representative
of the populations.

2.2.1. Landmark Placement and Processing

The GPA relies on landmarks previously used for the Nile tilapia populations from
Ethiopia [24] as well as Uganda [5]. 14 landmarks were used for Ethiopia and ten landmarks
were used for Uganda. In order to investigate the impact of the number of landmarks,
we used this different number of landmark positions for the images. The used landmark
positions are shown in Figure 4 as well as Table 2.

OpenCV [38] was used to place the landmarks on the specimens. The landmarks were
processed using the GPA implementation in the cran R [36] package shapes [39]. We used an
F-test to investigate the relation between the Procrustes distances and the known specimen
locations [40–43].
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Figure 4. The used landmarks for GPA coordinate scaling. The green landmarks were not used for
the images obtained in Uganda.

Table 2. Description of the landmarks used in this study. The asterix (*) indicates landmarks not used
on Ugandan samples.

Landmark Name Landmark Abbreviation

Upper tip of snout UTP
Center of eye EYE
Anterior insertion of dorsal fin AOD
Posterior insertion of dorsal fin POD
Dorsal insertion of caudal fin DIC
Ventral insertion of caudal fin VOC
Posterior insertion of anal fin PIA
Dorsal base of pectoral fin BPF
Most posterior edge of operculum PEO
Ventral edge of operculum VEO
Anterior insertion of anal fin * AOA
Anterior insertion of pelvic fin * AOP
Halfway between dorsal and ventral insertion of caudal fin * HCF
Posterior end of mouth * EMO

2.2.2. Bayesian Gaussian Process Latent Variable Model

A Gaussian process latent variable model (GP-LVM) [44,45] introduces a randomly
initialized latent representation for each image sample and a set of approximated Gaussian
processes [46] to recreate the images. In an optimization procedure, the parameters of the
Gaussian processes as well as the latent image representations are adapted to the data.
Using GP-LVM for images [47], each image Ij ∈ RR×C is interpreted as a vector~yj ∈ RR·C×1

and the latent counterpart is a low-dimensional vector ~xj. The GP-LVM defines p(Y|X),
which maps the features p(X) = ∏N

n=1N (~xn|~0, I) to Y =
[
~yT

1 . . . ~yT
n
]T . This mapping is

performed using a set of sparse Gaussian processes [46].
Since this mapping is intractable, the authors of [31] proposed the Bayesian Gaussian

process latent variable model. The authors used variational inference [48], where the prior
Q(X) = ∏N

n=1N (~xn|~µn, Σn) was used to optimize

ln(p(Y)) ≥ F(Q) =
∫

X
Q(X)ln

(
p(X)p(Y|X)

Q(X)

)
dX. (1)

After optimization of Equation (1), we interpreted E(~xj) as features for the image Ij.
E(~xj) was obtained from the optimized Gaussian distribution in the latent space.

The number of features D as well as the number of auxiliary points used by the
sparse Gaussian process are estimated using the log marginal likelihood ln(p(Y)) and the
step-wise procedure:

1. Analyze Y using the principal component analysis [49]. Estimate the latent dimension
D∗, which explains 75% of the data.

2. Keep D∗ fixed and find the minimum number of auxiliary points reaching 95%
of ln(p(Y)).
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3. Keep the number of auxiliary points fixed and find the number of features D maxi-
mizing ln(p(Y)).

To visualize the visible characters learned by the B-GP-LVM, we applied the method
of [24,47]. For this visualization of the D features, we generated n vectors ~fn,d ∈ RD×1

for each features. In this vector, we fixed all dimensions to the expectation except for the
d-th dimension, which was set to the true specimen value. Following this procedure, n
vectors for each feature could be generated. These vectors were projected to the image
space. We calculated the pixel-wise variance and interpreted the resulting image as a
visualization of the latent features space. For the interpretation of the images, we applied
the pixel-wise hypothesis test for saliency maps (heatmaps) previously introduced in [24].
The visualization procedure is visualized in Figure 5.

Machine learning 
model training

Image 
reconstruction

𝑥1,1 ⋯ 𝑥1,𝑑
⋮ ⋱ ⋮

𝑥𝑛,1 ⋯ 𝑥𝑛,𝑑

Obtained features
from GP-LVM for
the specimens

Vary one dimension
(here first dimension)
and fix the other
dimensions.

Heatmap per latent dimension
shows focus of dimension. Pixel-
wise significance test is used to
threshold significant regions of
the image.

Figure 5. The procedure to visualize the latent dimensions. The image databases were used to
obtain a latent space. For each dimension in the latent space, a heatmap was generated showing the
variability generated by this dimension’s variability.

We used the GPy [50] implementation of the B-GP-LVM relying on the radial base
function (RBF) kernel including automatic relevance determination (ARD) [51]. The models
were initialized using the principal component analysis. The optimization was based on
sklearns L-BFGS-B optimizer [52]. We used the default parameters and analyzed the log
marginal likelihood at each 10th step. If the log marginal likelihood had not increased at a
minimum of 0.1%, we aborted the optimization.

2.2.3. Convolutional Autoencoder

The GP-LVM learns features by optimizing the probabilistic mapping p(Y|X), where
Y represents flattened images. This methodology can be interpreted as the generalization
of the principal component analysis [44]. An autoencoder (AE) [53] is a (deep) neuronal
network-based counterpart to the GP-LVM. For visual problems, the AE is typically ex-
tended using convolution layers in order to obtain spatial relations. This model is referred
as a convolutional autoencoder (cAE).

A cAE estimates features relying on an architecture of artificial neurons. This ar-
chitecture is based on an encoder part which extracts features using ~xj = g(Ij) and an
decoder part estimating and image reconstruction Rj = h(~xj). During model training,
a loss function L(I , h(g(I))) is optimized. If this optimization converges, h(g(I)) ≈ I
and the encoder extracts useful features for image reconstruction. These features are not
guaranteed to be independent.

Our implementation is based on Keras [54]. To this end, our encoder relies on the
VGG-16 model [10] and the decoder is based on the inverted structure of the encoders
architecture. We used an ImageNet [55] initialization of the encoder. The cAE was trained
using the binary cross-entropy [53] loss. The loss was optimized using ADAM [56] im-
plemented in Keras [57]. The default parameters were used. We trained models with
{2, 5, 10, 25, 50, 75, 100, 125, 150, 200} features relying on five iterations. The training was
stopped after 1000 epochs.

The model selection was implemented by investigating the last 50 epochs of the train-
ing and tackled the identification of an appropriate number of features. We applied a
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kernel density estimation relying on a Gaussian kernel. For each model, we extracted
the maximum of the resulting density. We chose the model with the lowest maximum
loss value obtained by the aforementioned procedure. Our model selection was imple-
mented using the default kernel density estimation implementation in cran R [36] using
the default parameters.

For visualization, we proposed an adaption of the same principle described in
Section 2.2.2 for B-GP-LVM features. We fixed all elements in the feature vector to the mean
value and varied the values for each dimension according to the obtained values. The
vector was used to predict images using the decoder. We analyzed the pixel-wise variability
of the obtained images.

2.2.4. Visual Interpretation of the Features

We obtained visual characters using the optimized B-GP-LVM as well as cAE. Nev-
ertheless, both models reconstruct the image content using different strategies. This re-
construction includes background information (e.g., mounting frame) or location specific
information (e.g., the mounting pin). As previously discussed by [18,24], machine learning
algorithms may use biological uninformative image regions to obtain technical reasonable
results. However, these image regions are not useful in the context of this study, where
visible characters should be used to investigate the population’s structure.

We followed the procedure proposed in [24] and carefully selected biological infor-
mative features manually. After model optimization and model selection, we visualized
the learned features using the aforementioned methodology. All features containing non-
biological information were rejected and not used for further investigation. The remaining
features were analyzed using Spearman’s rank correlation test [58], where for each feature
we used j and population k H0,j,k: There is no relation between feature j and the population k.
For our visualization in the remaining part of this study, we showed 1− p instead of the
p-value for the machine learning-based models.

2.3. Multivariate Data Analysis

The data investigation methods and models discussed above mainly focus on the GPA
coordinate and feature visualization as well as statistical tests. Nevertheless the aim of
this study is the investigation of the latent structure of the used methodologies. The data
complexity and population correlation relying on multivariate analysis of extracted GPA
coordinates as well as machine learning features was investigated and visualized. For this
analysis, the GPA coordinates as well as the cAE features were reduced to three dimensions
relying on the principal component analysis (PCA) ([49], Chapter 12) as well as the fast
independent component analysis (ICA) [59,60]. For the GP-LVM results, the first three
independent dimension ranked relying on the relevance value of the kernel were used.

The visualization as well as correlation analysis was based on the GGally R pack-
age [61].

2.4. Investigation of Morphological Diversity

The application of the same models for structure investigation using the processed
landmarks as well as the machine learning-based features may result in different popu-
lation clusters. In genetics, this problem is tackled by seeking the optimal model using
metrics such as cumulative ancestry contribution [62] or the log marginal likelihood [63,64].
However, these numerical values must not be useful for the biological question, and several
models may contain useful information about the visible diversity of the data. Furthermore,
the numerical optimization may differ using different data pre-processing methods such as
GPA or machine learning.

To be able to compare the results obtained by the landmark-based methods and
machine learning-based methods, we created several structure hypotheses and sought
consensus in these models. We argue that this consensus contains the morphological
structure unveiled by multiple hypotheses. The comparison was performed using the
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fused hypotheses. In this study, we used Gaussian mixture model clustering [49] relying
on different numbers of possible clusters to generate data structure hypothesis. The cluster
models were fused by extending consensus clustering [33]. We empathize that any cluster
model resulting in probability matrices may be used instead of Gaussian mixture models.

In the remaining subsections, the GPA scaled coordinates and machine learning
features are referred to as “features”.

2.4.1. Visible Features Clustering and Population Structure Investigation

The proposed clustering method is based on the Gaussian mixture model (GMM) [49].
The GMM is based on a set of k multivariate Gaussian distributions. Each specimen j
represented by its features ~f j is assigned to one of the k clusters. The model is based on

p(F|~π, µ, Σ) =
N

∏
n=1

k

∑
j=1

πjN (~fn|~µj, Σj). (2)

The affiliation of a specimen feature ~f j to the cluster i is calculated by the variable
~z =

(
z1, . . . , zk

)
, which is a 1-of-K coded vector, and the conditional probability

p(zi = 1|~f j) =
πiN (~f j|~µi, Σi)

∑k
m=1 πmN (~f j|~µm, Σm)

. (3)

During optimization, the parameters {Σ1, . . . , Σk}, {µ1, . . . , µk},~z and ~π are optimized.
After optimization, we use the class probability p(zi = m|~f j) as an estimate for specimen j
belongs to the cluster m ∈ {1, . . . , k}.

We use the mclust [65] package relying on expectation maximization [49] for opti-
mization. For the investigation of the morphological structure, k must be defined by the
user. However, several strategies for k optimization exist, e.g., the Bayesian information
criterion [66].

The optimization of the k parameter is a fundamental problem in genetics as well. In
genetics the marginal log-likelihood [63], evidence lower bound [48] or biological motivated
criterion [62] are used. Nevertheless, these optimization criteria are mainly focusing on
technical parameters. Motivated by the facts,

1. That the used models may not be a good approximation for the unknown probability
density functions,

2. The data are typically restricted as well as incomplete, and
3. Different k’s may capture biological significant information on different scales [67].

We hypothesize that by finding consensus in a set of reasonable cluster models relevant
pattern representative for the overall population can be obtained.

2.4.2. Consensus Clustering

Finding consensus in several cluster models or clustering ensembles [35] may be used
to combine evidence unveiled by different models. The principle of co-association [33]
is a model-free methodology, where the consensus of several cluster models is found by
analyzing the pairwise occurrence of samples in the same cluster in several partitions. The
cluster model i results in a partition Pi = {Ci

1, . . . , Ci
k}, where Cn

m is the m-th cluster in
the n-th partition. All models results in the set {P1, . . . , Pm}. The co-association (CA) of
samples j and k relying on m cluster models is measured by

CAj,k =
1
m

m

∑
t=1

δ
(

Pt(~xj), Pt(~xk)
)
. (4)

The function δ(.) returns 1 if both samples happens to be in the same cluster in partition
Pt. This methodology results in the co-association matrix, where the entries at j, k is CAj,k.
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After the investigation of all m clustering models, the co-association matrix contains a
consensus about all models.

We propose a probabilistic extension of this method referred to as probabilistic co-
association (pCA), where the cluster uncertainty is included. On one hand, this extension
includes the probabilistic perspective of the structural investigation and allows on the
other hand hypothesis testing. To investigate the pCA, the probabilistic formulation of
Equation (4) is the probability of two samples m and n happens to be in the same cluster j
of partition p. This probability is calculated using

p(pCA(m,n)|~fm,n) = p(pzm
j = 1,p zn

j = 1|~fm, ~fn) = p(pzm
j = 1|~fm)p(pzn

j = 1|~fn). (5)

The variable pzm
j indicates the affiliation of sample m to cluster j in partition p. As-

suming that the p cluster models are independent given the features, we can estimate the
co-association CAm,n between sample m and n by

p(CAm,n|~fm,n) = p(1CAm,n, . . . ,p CAm,n|~fm, ~fn) =
p

∏
t=1

p(tCAm,n|~fm,n). (6)

In this analysis, we assume that specimens belonging to the same population cluster
happen to be in the same model cluster with a higher frequency as well as higher probability
than specimens from different clusters. We visualize the conditional probability of CAm,n
in a n× n matrix referred as the pCA matrix. Specimens that happen to be frequently in
the same cluster appear bright in the entries of the pCA matrix.

Finally, the performance of the probabilistic consensus clustering for morphological
data is evaluated. This evaluation is performed by analyzing the population intra co-
association to the inter co-association. In a biological context, this analysis investigates the
visual similarity of the specimens to the true population location and foreign population
locations. We formulate a hypothesis test relying on the Bayes factor [68], where we
evaluate the probabilistic consensus of inter-population specimens. The intra co-association
is measured by analyzing the similarity of a specimen i ∈ loc to all members of the location
loc using the pCA. The inter location co-association is measured by analyzing the similarity
i /∈ loc to all specimens belonging to another location. If the method used for visual
information extraction results in useful information, the intra co-association will exceed the
inter co-association. Note, that we use a priori knowledge in this test, namely the known
specimen population location. The test is implemented using

Bloc =
N

∏
i=1

∑n∈loc\i p(CAi,n|~fi,n)

∑n/∈loc p(CAi,n|~fi,n)
. (7)

The index n ∈ loc \ i describes all members of the populations location loc without the
actual specimen i of the population. Hence, we do not compare the visual similarity of the
specimen to itself.

The evaluation of our hypothesis H0,loc,model : The locations morphological structure signifi-
cantly differs from the other locations for the location loc and given model (GPA, B-GP-LVM or
cAE) relies on the Bayes factor. We found significant morphological differences (e.g., accept
the hypothesis) between a location loc and the remaining specimens if Bpop > 10 [68].

Our method was implemented in cran R [36]. For numerical stability, we analyzed
the log of p(CAm,n|~fm,n) as well as log(Bloc) instead of raw probabilities. We analyzed
{2, 3, . . . , 45} cluster partitions for Ethiopia and Uganda. To avoid numerical instabilities,
we added a uniform distributed jitter using U (0.005, 0.01), which is the probability of 0.5%
to 1.0% that the specimens are in the same population.
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3. Experimental Results

This section initially provides insight into information extracted relying on the landmark-
based approach and machine learning models. Afterwards, the structure investigation as
well as the result of the hypothesis test are presented.

3.1. Visible Diversity Relying on Landmarks

The landmarks were manually placed on the digital images. Analysis for specimens
from Ethiopia was based on 14 landmarks, while for specimens from Uganda it was
performed with ten landmarks. The result of the GPA feature scaling is illustrated in
Figure 6. For the purpose of visibility and readability, the water bodies of Victoria, Albert,
Edward and Kyoga were visualized together.

UTP EYE

AOD

POD

DIC

VOC

PIA

BPF

PEO

VEO

AOA

AOP

HCF

EMO

−0.1

0.0

0.1

0.2

−0.2 0.0 0.2
X Coordinate

Y
 C

oo
rd

in
at

e

Label

Cham

Hawa

Koka

Lang

Tana

Ziwa

Ethiopia GPA

UTP EYE

AOD

POD

DIC

VOC
PIA

BPF

PEO

VEO

−0.1

0.0

0.1

0.2

−0.25 0.00 0.25
X Coordinate

Y
 C

oo
rd

in
at

e

Label

Al

BF

Ed

Ge

Ka

KaC

Ky

Mu

Ni

RF

SF

Vi

Uganda GPA

Figure 6. Visualization of the GPA coordinates for the population of Ethiopia (left) and
Uganda (right).

An F-test for the investigation of the relation of the population to the coordinates
relying on the Procrustes distance [40–43] showed significant relations between the locations
and the Procrustes distance with a p-value below 0.01 for both datasets.

Furthermore, the relation of the X and Y coordinates of the landmarks to the population
locations was tested. The p-values of Spearman’s rank correlation test are visible in Figure 7.
For the purpose of visibility, 1− p is shown. Landmarks above α = 0.1 are visualized
in red.

The hypothesis test results indicate that there are significant relations between the
X and Y GPA coordinates and the locations of the populations. No differences between
the usage of ten or 14 landmarks were found. However, these tests did not unveil the
differences between the populations relying on the GPA data.
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Figure 7. Cont.



Appl. Sci. 2022, 12, 3158 13 of 26

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

AlK

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

AlN

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

BF

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

EdK

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

EdR

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

Ge

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

Ka

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

KaC

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

KyB

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

KyK

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

Mu

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

Ni

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

RF

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

SF

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

ViG

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

ViKaK

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

ViKam

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

ViM

0.0

0.2

0.5

0.8

1.0

UTP X

EYE X

AOD X

POD X
DIC

 X

VOC X
PIA

 X

BPF X

PEO X

VEO X

Landmarks

1−
p 

va
lu

e

ViSB

(b)

Figure 7. Visualization of Spearman’s rank correlation test for the relation between GPA coordinates
and the specimens population. 1− p is shown instead of the p-value. A p-value below α = 0.1
indicates a significant correlation of the GPA landmarks coordinate to the population. GPA coordi-
nates with a p-value above α = 0.1 are shown as red bars. (a) Result of Spearman’s rank correlation
test for the relation between the GPA coordinate and population locations in Ethiopia. (b) Result
of Spearman’s rank correlation test for the relation between the GPA coordinate and population
locations in Uganda.

3.2. Visible Diversity Relying on Machine Learning Models

This section presents the results of the learning procedures as well as the visualization
and biological interpretation of the feature vectors.

3.2.1. Gaussian Process Latent Variable Model

The GP-LVM was optimized using the aforementioned procedure. This optimization
approach resulted in 125 features as well as 200 auxiliary points for Ethiopia and 50 features
as well as 125 auxiliary points for Uganda. Afterwards, noisy features and all features
focusing on background information such as mounting pins or specimen fixtures were
removed using a visual inspection of the features. After this manual procedure, 26 features
for Ethiopia and 22 for Uganda remained in the feature set.

The relation of the remaining features to the population’s locations were tested using
Spearman’s rank correlation test. The results of these tests as well as the visualization of
the used features are shown in Figures 8 and 9. This visualization shows the eight GP-LVM
features with the highest ARD value of the optimized kernel. For better visualization 1− p
is visualized instead of the p-value. The features above α = 0.1 are indicated with red bars.
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Figure 8. Result of Spearman’s rank correlation test for the relation between the manually selected
GP-LVM features and population locations in Ethiopia. The features with highest ARD values are
shown. Features with a p-value above α = 0.1 are shown as red bars.
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Figure 9. Result of Spearman’s rank correlation test for the relation between the manually selected
GP-LVM features and population locations in Uganda. The features with highest ARD values are
shown. Features with a p-value above α = 0.1 are shown as red bars.
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The analysis of both datasets results in similar image regions. These image regions
are in a similar position as the landmarks used for GPA. However, in contrast to the GPA
coordinates, the heatmaps show the variability of image regions. While the GPA relies on
the variability of discrete points, the GP-LVM analysis results in image regions in which
the variability was tested to have a high relation to the population locations. The head and
caudal fin region can clearly be seen in the visualization with a significant relation to the
population’s location.

3.2.2. Convolutional Autoencoder

The optimization of the number of features used in the cAE was performed using the
investigation of the loss after optimization discussed above. This optimization results in
25 features for Ethiopia and 100 features for Uganda. All extracted features were visualized
relying on the GP-LVM feature visualization technique adapted for cAE [26]. These features
were manually investigated in a similar manner to the GP-LVM features. The selection
procedure resulted in 23 features for Ethiopia and 46 features for Uganda. The number of
features for Ethiopia was similar to the GP-LVM results. However, the number of features
for Uganda exceeded the GP-LVM model selection.

Furthermore, the feature relation to the population location was tested using Spear-
man’s rank correlation test. This procedure is visualized in Figures 10 and 11 for randomly
selected features. Similarly, for better visualization 1− p was is visualized instead of the
p value of Spearman’s rank correlation test, and the features above α = 0.1 are indicated
with red bars.
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Figure 10. Result of Spearman’s rank correlation test for the relation between the manually selected
cAE features and population locations in Ethiopia. Randomly selected features are visualized.
Features with a p-value above α = 0.1 are shown as red bars.
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Figure 11. Results of Spearman’s rank correlation test for the relation between the manually selected
AE features and population locations in Uganda. Randomly selected features are visualized. Features
with a p-value above α = 0.1 are shown as red bars.

Again, the heatmaps result in similar image regions used for GPA. However, the heatmaps
are noisy and not as clear as the GP-LVM heatmaps. Nevertheless, the features show signifi-
cant relation to the population locations.

3.3. Multivariate Data Analysis

The multivariate analysis is shown in Figure 12. All applied methodologies suffer
from overlapping population locations. Nevertheless, several populations such as Tana,
Langano or Chamo in Ethiopia do show different densities. However, relying on the
presented low-dimensional data, no population location is separable.
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Figure 12. Visualization of the multivariate analysis of Ethiopia (left column) and Uganda (right
column). The figures show the PCA/ICA reduced landmarks (top), GP-LVM features (middle) as
well as reduced cAE features (bottom). The symbols ‘***’, ‘**’, ‘*’ as well as ‘.’ next to the numeric
correlation values indicates significant levels below 0.001, 0.01, 0.05 and 0.1. If no symbol is given,
the significance level was obtained to be larger than 0.1.
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3.4. Latent Structure Investigation Relying on pCA

The pCA result for GPA for both datasets is summarized in in the pCA matrix as well
as the Bayes factor plot in Figure 13.
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Figure 13. Visualization of the results obtained by pCA and the Bayes factor hypothesis test relying on
GPA. Both pCA matrices show minor visible structure. Three of six locations of Ethiopia were found
to be significantly different to the remaining populations. Similarly, one out of nineteen locations
were identified to be significantly different in Uganda’s locations. (a) pCA and Bayes factor results
for Ethiopia relying on GPA scaling. (b) pCA and Bayes factor results for Uganda relying on GPA
scaling. The KyB population label in the pCA matrix was removed due to readability.

The results show that minor individual population location structure was identified to
be different. Three out of six locations in Ethiopia (Hawassa, Langano and Ziway) and one
out of nineteen locations in Uganda (Victoria Sango Bay) were identified to be significantly
different. We emphasize that the pCA matrix visualization may lead to incomprehensible
results in the Bayes factor analysis due to the brightness. The Bayes factor investigation is
based on the comparison of the intra-location similarity. Thus this value decreases, even if
minor obvious relations were measured in the remaining locations.

The results obtained by the B-GP-LVM are visualized in Figure 14.
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Figure 14. Visualization of the results obtained by pCA and the Bayes factor hypothesis test relying
on GP-LVM. Both pCA matrices show visible structure. Four of six locations in Ethiopia were found to
be significantly different to the remaining locations. Eleven out of nineteen locations were identified
to be significantly different in Uganda’s locations. (a) pCA and Bayes factor results for Ethiopia
relying on GP-LVM. (b) pCA and Bayes factor results for Uganda relying on GP-LVM. The KyB
population label in the pCA matrix was removed due to readability.

The pCA matrix for Ethiopia appears to be noisy. However, the individual probability
values of the intra population locations exceed the probability values of inter population lo-
cations. This led to four out of six populations in Ethiopia which were significantly different
to the other populations. Different to the GPA, lake Tana appears to be significantly differ-
ent to the remaining locations. This significant difference and distinctiveness of the Lake
Tana population has also been reported at molecular genetic level [28,29]. The pCA matrix
for Uganda shows visible structure for the individual locations. The different locations in
the same water bodies (e.g., the lake Victoria locations) are visible. However, similarities of
these water bodies (e.g., Albert or Victoria) are visible as well. Eleven out of nineteen of
Uganda’s population locations significantly differed from the remaining locations.

Finally, the results for cAE are summarized in the visualizations in the Figure 15.
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Figure 15. Visualization of the results obtained by pCA and the Bayes factor hypothesis test relying
on cAE. Both pCA matrices show visible structure. All locations of Ethiopia were found to be
significantly different. Fourteen out of nineteen locations were identified to be significantly different
in Uganda’s locations. (a) pCA and Bayes factor results for Ethiopia relying on cAE. (b) pCA and
Bayes factor results for Uganda relying on cAE. The KyB population label in the pCA matrix was
removed due to readability.

In both pCA matrices, the majority of locations can be clearly distinguished. All
locations of Ethiopia were found to be significantly different to the remaining locations.
Fourteen of nineteen locations in Uganda differed significantly. However, again the loca-
tions of Lake Viktoria did show similarities.

We summarize our findings of the proposed approach in Table 3, where the population’s
locations (which were observed to be significantly different) are marked with a cross (×).

We observed that for all applied methods the locations Langano and Ziway signif-
icantly differed from the remaining populations in Ethiopia. Furthermore, the location
Victoria Sango Bay in Uganda was observed to be significantly different, only relying
on GPA scaled landmarks. The locations Kyoga Bukungu, Mulehe Musezero as well
as the Sindi Farm in Uganda were never observed to be significantly different to the
remaining locations.
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Table 3. Summary of results obtained with generalized procrustes analysis (GPA), Gaussian process
latent variable models (GP-LVM) as well as deep convolutional autoencoder (cAE). The significantly
different locations are indicated with a cross (×).

Abbr. GPA GP-LVM cAE

Et
hi

op
ia

Chamo Cham ×
Hawassa Hawa × ×

Koka Koka × ×
Langano Lang × × ×

Tana Tana × ×
Ziway Ziwa × × ×

U
ga

nd
a

Victoria Kakyanga ViKak ×
Victoria Masese ViM × ×
Victoria Gaba ViG × ×

Victoria Sango Bay ViSB ×
Victoria Kamuwunga ViKam ×

Albert Ntoroko AlN × ×
Albert Kyehooro AlK ×

George Hamukungu Ge × ×
Kazinga Channel Katungulu KaC × ×

Edward Kazinga EdK × ×
Edward Rwenshama EdR ×

Kyoga Kibuye KyK × ×
Kyoga Bukungu KyB

River Nile Kibuye Ni ×
Mulehe Musezero Mu

Kayumbu Rugarambiro Ka × ×
Bangena Farm BF × ×

Sindi Farm SF
Rwitabingi Farm RF × ×

4. Discussion

This study investigated the quality of extracted GPA scaled coordinates in contrast
to machine learning-based features. The quality was measured by the differentiability of
the known population locations. To obtain comparable latent structures, the consensus
clustering method was extended by a probabilistic interpretation as well as a hypothesis test.

Manually placed landmarks were extracted from image datasets obtained in Ethiopia
and Uganda. These landmarks were processed using GPA. The results were statistically
investigated. We observed significant relation of the GPA scaled coordinates to the pop-
ulation locations. Furthermore, a significant relation of the locations to the Procrustes
distance was obtained. Relying on the visualization of the GPA coordinates (see Figure 6),
as well as the Spearman’s rank correlation tests, we concluded that the landmark-based
approach results in a interpretable reduction of the image data with significant correlation
to the populations location. Nevertheless, the GPA-scaled coordinate visualizations and
hypotheses tests do not quantify the discriminability of the populations unveiled by the
GPA approach. Furthermorer, the multivariate analysis showed overlapping population
distribution in the PCA and ICA reduced GPA coordinates.

The proposed pCA was able to unveil significant differences for three out of six
locations in Ethiopia. One of nineteen locations was found to be significantly different
from the other locations in Uganda. Ref. [24] obtained similar results for supervised Nile
tilapia location classification using biologically interpretable GP-LVM features as well as
GPA-scaled coordinates. Their results, enhanced by the latent structure investigation of this
study show, that classic landmark based-approaches are limited in terms of information
discovery. Regardless, the landmark-based approaches outperform the autonomous deep
learning counterparts in terms of biological explainability. The machine learning-based
approaches were investigated with visualization methods and major focus on biological
uninformative image regions was removed.
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In contrast to the manually placed landmarks of the GPA, the GP-LVM learns a latent
representation of the specimen images. After training, the model reproduces the image
content including background information such as specimen mounting material. We
manually removed uninformative biological features using the variance-based feature
visualization technique. The automation of this procedure is still an open problem in
machine learning [69].

The features which were visualized and shown to focus on biological meaningful
information were in similar specimen locations to the GPA results. These features were
tested using Spearman’s rank correlation test. This test indicates a significant relation of
the chosen features to the population’s locations. Similar to the GPA-scaled landmarks,
the multivariate analysis showed overlapping population location distributions. However,
the pCA method was able to obtain population structures significantly different to other
locations. Four of six locations of Ethiopia were shown to be significantly different. Eleven
out of nineteen locations in Uganda were shown to be significantly different. This already
shows an improvement compared with previous analyses based on classical morphometrics,
where just a few populations were clearly separated [5]. However, the GP-LVM still has
limitations. The GP-LVM learns the latent representation of the image datasets using a
set of Gaussian processes. On the one hand, the learning procedure is limited in terms
of statistical black-box modeling [31]. Furthermore the optimization procedure does not
include biological knowledge. The learning procedure could be enhanced using prior
biological knowledge in the variational approximation of the model [46].

Similar to the GP-LVM, the cAE learns a latent representation using a learning proce-
dure. Instead of a set of Gaussian processes, the cAE relies on an architecture of artificial
neurons including convolutional layers. The latent features were processed in the same
manner as GP-LVM features, including manual feature selection focusing on biologically
meaningful image regions. All locations in Ethiopia and fourteen of the nineteen loca-
tions in Uganda were obtained to be significantly different relying on the pCA. However,
the visualization of the selected features show noisy image regions. The reasons for this
noisy visualization may be related to the dependent feature space learned by the cAE. The
independent variation procedure for visualization may not be applicable for the learned
feature space. Furthermore, the limitations of the GP-LVM are the same for the cAE.

We conclude this section by emphasizing the biological explainability of the manually
placed landmarks. However, minor population location differences were obtained relying
on GPA-scaled coordinates. The machine learning-based methods resulted in major popu-
lation location differences relying on the pCA. We emphasize that the machine learning
models were trained without knowledge of the known population clusters.

Thus, we fail to reject both hypotheses of this study and conclude that the machine
learning models can learn biological meaningful features and that these features have a
higher relation to the true population clusters than landmark-based features. We conclude
that these features do contain information useful for population location discriminability
and that the machine learning features exceed the explanation power of the used landmark-
based method. Furthermore, our results indicates that larger parts of the specimens
(e.g., the head in its entirety or the caudal fin region) are related to population locations.
The visualizations of the learned features show that the machine learning models focus on
areas with no landmarks. We recommend the investigation of these areas using GPA with
additional landmarks. Furthermore, we recommend the GP-LVM for further investigation,
including the integration of biological knowledge in the model as well as additional
explanation investigation of the deep convolutional autoencoder due to the results of
the pCA.

5. Summary

This study unveiled the explanatory power of image processing methodologies for
visible diversity investigation. Generalized Procrustes analysis was compared to Gaussian
process latent variable models as well as a convolutional autoencoder. Relying on two
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image databases, GPA-scaled coordinates as well as GP-LVM- and cAE-based features
were extracted. The biological explanatory power of all applied methods was investigated.
Furthermore, Spearman’s rank correlation test was used to investigate the relation of the
obtained features to the population’s locations. However, a multivariate analysis of the
aforementioned features showed that the population distributions overlaps. In order to
overcome this problem and unveil the latent structure available in the image representations,
a probabilistic consensus analysis was proposed.

Relying on the pCA, several GMMs were combined and the overall latent structure
was visualized using the pCA matrix. Based on the model consensus, a Bayesian hypothesis
test was formulated. The machine learning models outperformed the landmark based
method. However, restricted explainability limits the biological usage of these models. The
GP-LVM resulted in explainable image regions. Regardless, the behavior of the model is
not fully explained. On the other hand, the performance of the cAE relies on very noisy
image regions. However, the visualization technique used was discussed to be limited for
cAE applications and the explanatory factors for the cAE may be still hidden in the model.

We conclude this study by emphasizing the performance of the machine learning
models in terms of unsupervised features extraction. We recommend further research to
investigate the explanatory methodologies in order to fully unveil the explanatory factors
of the models. Furthermore, we recommend including existing biological knowledge in
order to convert the black box models to fully explainable statistical tools.

Supplementary Materials: The used data sets as well as the implemented software are available at
https://github.com/TW-Robotics/MorphoML (accessed on 17 February 2022).
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B-GP-LVM Bayesian Gaussian process latent variable model
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GPA Generalized Procrustes Analysis
GP-LVM Gaussian process latent variable model
ICA Independent component analysis

https://github.com/TW-Robotics/MorphoML
https://github.com/TW-Robotics/MorphoML


Appl. Sci. 2022, 12, 3158 24 of 26

MSE Mean squared error
pCA Probabilistic co-association
PCA Principal component analysis
RBF Radial base function
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