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Abstract: We propose a deep reinforcement learning approach for solving a mapless navigation
problem in warehouse scenarios. In our approach, an automatic guided vehicle is equipped with two
LiDAR sensors and one frontal RGB camera and learns to perform a targeted navigation task. The
challenges reside in the sparseness of positive samples for learning, multi-modal sensor perception
with partial observability, the demand for accurate steering maneuvers together with long training
cycles. To address these points, we propose NavACL-Q as an automatic curriculum learning method
in combination with a distributed version of the soft actor-critic algorithm. The performance of the
learning algorithm is evaluated exhaustively in a different warehouse environment to validate both
robustness and generalizability of the learned policy. Results in NVIDIA Isaac Sim demonstrates that
our trained agent significantly outperforms the map-based navigation pipeline provided by NVIDIA
Isaac Sim with an increased agent-goal distance of 3 m and a wider initial relative agent-goal rotation
of approximately 45◦. The ablation studies also suggest that NavACL-Q greatly facilitates the whole
learning process with a performance gain of roughly 40% compared to training with random starts
and a pre-trained feature extractor manifestly boosts the performance by approximately 60%.

Keywords: deep reinforcement learning; automatic curriculum learning; autonomous navigation;
multi-modal sensor perception

1. Introduction

Mobile robot navigation has received broad applications and has been intensively
studied in recent decades, ranging from urban driving [1,2] to indoor navigation [3]. One
popular approach is Simultaneous Localization and Mapping (SLAM) [4] via a combina-
tion of various algorithms. In the SLAM procedure, the map is generated via sensors,
and planning algorithms [5] are used on top of the map. Nonetheless, the limitations
are also manifest. In particular, the efforts to build a map can be expensive in case of
dynamic environments. Usually, disparate sensory sources are necessary for non-stationary
environment, which additionally requires sensor fusion [6,7], complicating the process.
The generated map accuracy also plays a vital role for navigation quality and to generate a
sufficiently accurate map, extra human engagements for data acquisition are entailed [8].

On the other hand, Deep Reinforcement Learning (DRL) has found successful appli-
cation in games [9,10] and robotic applications such as robot manipulation [11,12] and
navigation [13,14] by combining the power of Deep Neural Network (DNN) and Reinforce-
ment Learning (RL) [15]. The component RL serves as an approach for optimal decision
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making based on a Markov decision process, where the agent learns to act given the
observations in a loop to maximize the long-term utility. DNNs empower the RL with
extension to high-dimensional observations, for instance, visual data, LiDAR readings and
etc. One major appealing point of DRL is the ability to learn from scratch without expert
demonstration, which makes DRL an end-to-end learning approach. A second benefit lies
in its non-reliance on a transition model (model-free). The agent learns via interactions
with the environment in a trial-and-error manner. In contrast, optimal control algorithms
like model predictive control [16] necessitate a carefully derived physical model, which can
be demanding for computing. This could be particularly helpful in the case of multi-sensor
observations, where it is extremely sophisticating to manually define the rules for sensor
fusion and to calculate transition dynamics. We give an illustration of previous works on
model-free DRL algorithms in Section 2.

In our work, we aim to address a navigation problem in a warehouse scenario, where
the Automatic Guided Vehicle (AGV) aims to navigate underneath a dolly purely relying
on its own sensor readings. The mobile robot is equipped with frontal Red-Green-Blue
(RGB) camera and two LiDAR sensors measuring the distance, illustrated in Figure 1. Based
on these two types of sensor readouts, i.e., multi-modal sensor perceptions, the AGV is
supposed to steer towards the target. In a typical warehouse setting, the environment is
non-stationary, where the location of the target and obstacles are subject to change. In this
work, we are especially interested in the ability of DRL to directly map the agent’s multi-
modal sensory reading to the control commands via neural networks, without the efforts
to generate a map or human demonstrations or manually processing multi-modal sensor
fusions. Moreover, it is desired that the learned strategy shows generalizability with respect
to different interior settings, e.g., room sizes, position of the obstacles, etc.

Figure 1. Illustration of the dolly (blue) and the robot in our simulated warehouse environment.
The lines connected to the robot’s chassis visualize the LiDAR distance measuring beams. In this
figure, NVIDIA Omniverse™ [17] is used for visualization. The front-facing camera is placed right
in the center of the chassis of the vehicle, highlighted by the red square and captures images with a
resolution of 80× 80 pixels. Two additional LiDAR sensors are placed at the diagonal corners of the
vehicle, with each emitting 128 beams and covering a field of view of 225◦, respectively.

Formulating the navigation task fulfilling the aforementioned criteria as a DRL prob-
lem introduces a lot of difficulties. A first challenge is the sparseness of positive samples,
where the sparseness stems from the low likelihood of reaching a constricted goal space
(underneath the dolly). It is shown in [18] that DRL algorithms learn a robust policy only
when both sufficient positive and negative samples are provided for learning. A second
challenge is the multi-modal sensor perception together with partial observability, where
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the mobile agent may not perceive the target given only the frontal RGB camera and there-
fore loses the goal information. The robot needs to learn to behave rationally to search for
the goal and to infer whether the goal is present merely from its own sensory readings.
Moreover, DRL algorithms converge to a reasonable performance after huge amounts
of interaction experience [19], resulting in a long training cycle. Hence, we investigate
potential approaches to reduce the overall training duration without compromising the
reward design that can facilitate the training, which is only feasible in simulation but not in
real application. It is noteworthy that parking under the dolly is demanding as it requires
accurate steering maneuvers and the robot directly learns the low-level differential drive
command instead of a set of pre-defined movement primitives.

To address these challenges, we proposed a distributed version of Soft Actor-Critic
with automatic curriculum learning (ACL) to increase the number of positive samples the
and to reduce the overall training cycle. We extend one ACL algorithm NavACL [20] to
a more general case, named as NavACL-Q. The performance of the learned policy is also
systematically evaluated in a different testing scenario for robustness and generalizability
check. The ablation studies are conducted to check the effects of a pre-trained feature
extractor and ACL on the performance gain, respectively. We finally show that our approach
outperforms a baseline map-based navigation pipeline provided by Nvidia SDK [21].

2. Related Work

In this section, we present an overview on the recent progress of DRL algorithms in
Section 2.1 and their applications in navigation tasks in Section 2.2. Moreover, previous
work on curriculum learning on RL tasks are also investigated and studied in Section 2.3.

2.1. Model-Free Deep Reinforcement Learning Algorithms

Model-free DRL algorithms have become increasingly successful in solving com-
plex tasks featuring high dimensional observations without the need of knowing the
transition dynamics of the environment. In the first impressive work, Deep Q-network
(DQN) [19], an agent was trained to play Atari video games and reached human-level
performance. They applied a DNN to map raw-pixel visual input to the correspond-
ing Q-values. The work introduced a frozen target network to alleviate the deadly-triad
problem [15,22]. Another major contribution is the usage of an experience replay buffer
to decorrelate the temporal dependence between samples within one episode, therefore
enhancing the performance. These components are widely used in other off-policy DRL al-
gorithms.

There are several improvements proposed to enhance the performance of DQNs.
Double deep Q-networks [23] address the problem of the maximization bias analogously
to Double Q-learning [15]. Noisy networks [24] improves the exploration strategy of the
agent by replacing the standard ε-greedy algorithms by the noisy networks, where the
weights of network are injected with zero-mean Gaussian noises, resulting in randomness
in choosing the action.

All previous methods are designed for discrete action spaces. Other approaches
generalize to continuous action space. These algorithms, so-called Policy-Gradient (PG)
methods, have an additional learnable component, actor, which maps states to actions
maximizing the return. The on-policy algorithm asynchronous advantage actor-critic [25]
reduces the variance on actor learning compared to REINFORCE [15] and reduces the
overall training cycle by having multiple threads collecting the experience in parallel.
Asynchronous advantage actor-critic outperforms vanilla DQN on Atari Games. Proximal
policy optimization [26] tries to achieve monotonic policy improvements while avoiding a
large change of the policy that could cause performance collapse. It updates the policy by
additionally penalizing the KL-divergence between previous policy and the new policy.

Despite the success of on-policy PG algorithms, they are not as sample-efficient as
off-policy variants [27]. This disadvantage becomes more apparent in case of an expensive
simulator. The off-policy policy algorithm deep deterministic policy gradient [28] extends
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DQN to the continuous action case. The algorithm Twin-Delayed deep deterministic
policy gradient [29] further improves deep deterministic policy gradient by addressing
maximization bias and proposes to add noise to the action with delayed policy update for
a more stable training.

However, the shortage of deep deterministic policy gradient and twin-delayed deep
deterministic policy gradient is that the exploration scheme must be done explicitly and
that they can only model deterministic optimal policies. In their original work, they
applied Gaussian noise to enable exploration. A sufficient exploration is crucial for the
final performance for any RL algorithm. However, in contrast to some explicit explo-
ration strategies [10,30–32], the work in [33,34] proposed a new category of RL algorithms,
maximal-entropy reinforcement learning, in particular, the Soft Actor-Critic (SAC) algo-
rithm. SAC tries to address the exploration problem by incorporating the entropy of
policy as an exploration bonus into the return, equivalent to an implicit exploration sched-
ule. A second benefit of SAC is the ability to model multi-modal optimal policies with
a probabilistic characterization. SAC was reported to outperform (twin-delayed) deep
deterministic policy gradient in some continuous control problems in Mujoco [35], e.g., Half
Cheetah, Humanoid.

In our task of intralogistics navigation, the mobile robot requires accurate steering
abilities, i.e., continuous action commands, to navigate beneath the target dolly. Moreover,
the agent only shows signs of learning with the presence of adequate successful trials,
which requires sufficient exploration in the environment. For these reasons, we choose SAC
for our use case.

2.2. Deep Reinforcement Learning for Robot Navigation Tasks

There has been extensive research in robot indoor navigation tasks [36–38] using
SLAM. The work [39] focuses on improving the navigation accuracy of AVG in an indoor
environment via SLAM, i.e., first positioning the AVG via multiple sensor readouts and
then performing navigation. They improve the positioning accuracy via multiple sets
of measurements and multilaterations. DRL has been investigated for the task of robot
navigation in recent years. The contribution of [40] proposes virtual-to-real DRL for mapless
navigation on mobile robots with continuous actions. In their work, the mobile robots
acquire LiDAR observations, relative angles and distances from the current robot pose to the
goal. They trained the agent using asynchronous advantage actor-critic and demonstrated
both success and generalizability in new environments in Gazebo simulator [41]. However,
their state and reward formulation is impractical for training directly in real environments,
as they assume the knowledge of goal position and current robot pose, which are expensive
to acquire in the real world. The work of [42] explores the potential of using discrete actions
for navigating and they adopted the similar problem setting as [40]. In their findings,
training discrete action space using double deep Q-network and PER is more efficient
than a continuous action space via deep deterministic policy gradient and proximal policy
optimization. However, their approach has restricted the degree of freedom in trajectory
space due to the choice of discrete actions and also encounters the same problem in real
application as [40]. The authors of [43] apply the similar problem formulation on a multi-
agent scenario, where a swarm of robots learn to navigate to their own targets (in group
formation) without colliding with each other. Despite the impressive result in simulation,
the information on relative pose to goal is still required. We also see such settings in [44,45].
Some other work [46] also proposes deep learning approaches for traffic flow prediction.

Some other work implements a target-driven approach for visual navigation, where
an image of the target is also provided as a part of the observation. In [47], they used
a pre-trained network ResNet-50 [48] to transform both the current and target visual
observation into the embedding space and afterwards mapped to policy and critic values.
Their work mainly addresses the generalizability among different scenes and the learned
agent demonstrates the ability to reach manifold targets in various interior environments.
However, the actor outputs only four discrete high-level actions, which greatly alleviates
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the difficulty of DRL training. The work of [49] also exploits the same idea with two major
improvements. Firstly, they resorted to additional auxiliary tasks, e.g., learning meaningful
segmentation and reward prediction, for performance boost, where the convolutional
encoders are learned end-to-end. Secondly, they mitigated partial observability by keeping
a longer historical observation using long short-term memory (LSTM) [50] instead of frame
stacking. The performance boost could be seen with their proposed approach. Both of the
two works used asynchronous advantage actor-critic as DRL algorithm.

A third category implements map-based DRL, where the map is either given or
generated online. The work of [51] generates egocentric local occupancy maps for local
collision avoidance via SLAM. A second component local planner proposes local goals
given the final target position. This is ensued by a DRL algorithm that maps the agent’s
velocity, the planned local goal and local occupancy maps to 28 discrete actions. They
used dueling double deep Q-network [52] with PER and randomized the number of
obstacles and initial position to facilitate learning. However, their problem formulation
only enables robot to navigate to the local goal instead of the final target, which greatly
alleviates the difficulty in RL, but heavily relies on the quality of SLAM and the local
planner. In comparison, our approach does not require any complicated SLAM-related
information or any local planners. It only resorts to multi-modal sensor readouts, fuses
them, and maps to continuous control commands for reaching the final goal in a blackbox
fashion, where we purely rely on the power of DNNs.

2.3. Curriculum Learning for Reinforcement Learning Tasks

One main challenge of RL is that it requires prohibitive number of interactions steps
with the environment to reach a reasonable convergence. Moreover, it is also crucial that the
agent keeps a reasonable proportion of the positive experience leading to high returns and
negative experiences with low returns so as to grant the agent a effective learning signal.
In our navigation task, where the robot has to go through a long time-horizon to reach
its target state, the probability of positive experiences, i.e., reaching goal state, is merely
marginal. In such settings, the agent suffers severely from the class imbalance problem and
will mostly learn from negative experience, only avoiding obstacles but failing to arrive at
the goal. One solution is to resort to expert demonstrations. Nevertheless, it breaks the nice
property of learning from scratch. In some challenging tasks, it is even hard for a human to
demonstrate. In this work, we focus on learning from scratch. The second alternative is
Curriculum Learning (CL). It proposes a set of curricula (intermediate tasks) starting from
easy tasks and progressively increasing the task difficulty until the desired task is solved.
With such curricula, the agent is more likely to get positive experience from easy tasks
and can transfer the gained knowledge to the upcoming tasks, which decreases the overall
training time as compared to directly learning from scratch on a hard task [53]. For these
reasons, we also apply CL together with DRL for our case.

The term Curriculum Learning was first proposed by [54]. They find providing an
ordered sequence of the training samples rather than random sequence can facilitate the
learning speed and generalizability. Such ideas were present in Prioritized Experience
Replay (PER) [55], where the samples with high TD-errors get higher priorities to be
sampled. This is equivalent to an implicit curriculum on the samples. PER is reported
to have better performance than normal replay buffer in DQN. Alternatives for different
definition of priorities on sample-level are also presented in [56], where they further
considered a user-defined self-paced priority function and a coverage function to avoid
repetitive sampling of only high priority samples. In [57], the PER is extended in another
manner by using a network to predict the significance of each training sample. It can
therefore even predict the importance of unseen training samples.

The above work mainly proposes various heuristics to reach sample-level curriculum
learning. Other work involves how to generate intermediate tasks, how the tasks can
be sequence properly to accelerate training and how to transfer the knowledge between
tasks. In [58], a number of methods are introduced to create intermediate tasks with the
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assumption that all the tasks can be parameterized as a vector of features. The overall
process is incrementally developing subtasks that are dependent on the trajectories of
learned policies and the current tasks. They propose several heuristics to generate new
subtasks, i.e., Task Dimension Simplification, Promising Initializations to deal with sparse-
reward signals, Mistake-Driven Subtasks with a focus on avoiding unwanted behaviors
etc. Hindsight Experience Replay (HER) [59] forms a curriculum by storing additional
trajectories with imaginary goal states as training samples. HER incorporates the goal state
g together with the current state s to learn the value function vπ(s, g). The target task may
be originally hard to achieve, but positive experience could be easily obtained when the
goal state is changed to the terminal state of this episode. Relying on the expressiveness
of DNNs, the policy learned from the ever-changing goal states can be beneficial for
generalizing to the desired goal tasks. The algorithm Curriculum-guided HER (CHER) [60]
improves the PER by adaptively selecting the imaginary goal state. The selection criteria
are goal diversity and proximity to the desired goal state. The curriculum is created by
initially allowing for diverse imaginary goal sets and gradually converging to the proximity
to the true goal. However, these HER-variants necessitate the explicit knowledge of the
goal state and the fictitious reward function for arbitrary goal states.

Some other work defines the curriculum by generating a set of initial states instead
of goal states. The work of [61] proposes reverse curriculum generation, where the distri-
bution of the initial states become farther away from the goal states. Candidates of initial
states for the next episode are generated by random walk from the existing starting states.
To select the exact starting state, the expected return for these candidates is computed
and the one lying in the pre-defined interval is selected. The approach in [62] shares a
similar idea, whereas it generates the candidate starting states not by random walk but via
approximated transition dynamics, i.e., estimating the number of steps to reach the goal.
They sampled from a mixture of successfully-trained tasks and new candidates to avoid
catastrophic forgetting.

Our work also generalizes a recent ACL approach NavACL [20]. NavACL generates
a set of curricula based on a parallelly-learned success prediction network that estimates
the probability of the agent to reach goal given the current policy. In the original work,
NavACL is reported to greatly improve the whole learning procedure in terms of success
probability of the navigation task. The details are presented in Section 3.4.

3. Materials and Methods

The task of load carrier docking in the context of intralogistics considers the targeted
navigation of a transport robot underneath a target dolly. A first challenge of our task is to
learn accurate steering commands so as to reach a very constricted goal space, where the
area underneath the target dolly is deemed as the goal. We provide the detailed specification
of navigation vehicle and the target dolly together with the simulation environment in
Section 3.2 for a direct view on how challenging the task is. In a goal-reaching task, one key
for any DRL algorithm to reach a reasonable performance is that the agent has an adequate
number of successful trails. A first solution is to deploy efficient exploration strategy, where
we used soft actor-critic [34], introduced in Section 3.1. With a more informative exploration
strategy, the agent will reach the target given sufficient number of trials. Soft actor-critic also
features continuous action output and for accurate control. However, the agent behaves
more exploratorily at the onset of training. The majority of explorative trials can end up
with failure, interpreted as negative experience, especially when the required time horizon
for reaching the goal is long and a constricted goal space. This results in sparseness of
positive experience, potentially making DRL fail in learning. Therefore, we apply automatic
curriculum learning to increase the probability of positive experience by starting training
from easy tasks. We elaborate our proposed automatic curriculum learning algorithm
NavACl-Q as a generalization of NavACl in Section 3.4. To further accelerate DRL training,
we first parallelize multiple agents collecting the experience, giving rise to a distributed soft
actor-critic. Moreover, some ablation variants are conducted to examine if the performance
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can be further enhanced, shown in Section 3.5. A complete formulation of the intralogistics
navigation task as a DRL problem and algorithm hyperparameters are also elaborated in
Section 3.3.

3.1. Maximum Entropy Reinforcement Learning–Soft Actor-Critic

An RL problem can be seen as a sequential decision problem in a Markov Decision
Process (MDP). It is defined as a tuple (S, A, P, R, γ), where S and A are, respectively,
the set of states and actions, P denotes state transition probability matrix, specifically,
the probability of transiting to a successor state st+1 from the state st by taking action at.
The reward function R : S × A → R, which returns a number indicating the utility of
performing an action in the current state. The last element is the discount factor γ ∈ [0, 1],
which leverages the importance on short-term rewards against long-term rewards.

In RL, the agent interacts with the environment to collect experience and tries to learn
an optimal policy π∗ such that the return, namely cumulative reward, is maximized.

π∗ = arg max
π

E
τ∼π

[
T

∑
t=0

γtrt+1

]
,

where rt refers to the immediate reward at time point t, τ is the trajectory, characterized as a
sequence of {s0, a0, r1, . . . , sT , aT , rT+1} following the policy π and T is the time horizon to
reach the terminal state.

The maximum entropy RL algorithm Soft Actor Critic (SAC) [33,34] differs from the
standard RL in that it changes the goal by incorporating an additional weighted policy
entropy term H(π(· | st)), The policy entropy describes the stochasticity of the policy,
indicating the degree of exploration. In this manner, the greedy policy returned by SAC
includes an internal exploration bonus, which is advantageous for maximum entropy RL,
as no explicit exploration strategy needs to be formulated. The objective function of SAC is
defined as:

π∗ = arg max
π

E
τ∼π

[
T

∑
t=0

γt(rt+1 + αH(π(· | st)))

]
,

where α is the temperature coefficient determining the weight for policy entropy. In [33],
the weights are pre-determined by the users and need manual tunning for different tasks.
As an improvement, the work [34] proposed automatically adjusting α for different tasks.
To enable a learnable α, the authors impose a constraint that E(st ,at)∼ρπ

[H(π(· | st))] ≥ H,
where H is a pre-defined entropy lower bound to ensure a minimal level of exploration.
The constraint can be cast into a dual optimization problem shown below so that the
temperature α turns a learnable parameter. For an exact theoretical derivation, please refer
to the original work [34].

α∗t = arg min
αt

Eat∼π∗t

[
−αt log π∗t (at | st; αt)− αtH

]
.

The critic part learns the Q-values with the additional policy entropy term based on a
re-defined Bellman update:

Q̂(st, at) = rt+1 + γ
(

Qφ̃(st+1, ãt+1)− α log πθ(ãt+1 | st+1)
)

,

where ãt+1 ∼ πθ(· | st+1), φ and φ̃ refer, respectively, to the running and target critic
network for training stability similar to DQN. The critic loss is then computed by sampling
a minibatch from the replay buffer D.

JQ(θ) = E(st ,at)∼D

[
1
2
(
Qφ(st, at)− Q̂(st, at)

)2
]

.
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In the policy improvement step, the actor is updated towards an exponential of the
Q-values to still allow for a distribution of the policy via Kullback–Leibler divergence.

Jπ(φ) = Ese∼D

[
DKL

(
πθ(· | st)‖

exp
(
Qφ(st, ·)

)
Zθ(st)

)]
.

In our implementation, we also apply similar tricks as Double Q-learning [63,64] to
avoid maximization bias. Furthermore, SAC with a learnable temperature coefficient α [34]
is used, as a fixed one requires good domain knowledge which is assumed to be unknown
in most cases.

3.2. Simulation Environment

We run our experiments on the simulator NVIDIA Isaac SDKTM [21]. The target dolly
consists of a steel frame that can be loaded with a pallet. The dolly stands on four passive
wheels, which makes it transportable. Figure 1 illustrates the mobile robot and the dolly
used for this paper. The simulated vehicle is a platform robot which is specifically built
for load carrier docking and is actuated by a differential drive. The vehicle and dolly
specification is shown in Appendix D. It is noteworthy that the width of the dolly is only
21 cm wider than vehicle so that very accurate steering efforts are required to successfully
navigate underneath the dolly, corresponding to a constricted goal space.

3.3. Reinforcement Learning Problem Setup

Here we present how the AVG navigation problem can be formulated as an DRL
problem. In this work, the observation space O is defined as a concatenation of [Ov, Ol , Oar].
To deal with partial observability, we stack 4 most recent RGB image Ov along the channel
dimension exactly as how DQN processed Atari games [19]. The second observation
component is LiDAR observation Ol , since it mostly reaches fully-observability, we just
retain the most recent LiDAR readings. To further increase the information content, we also
keep the same length of historical actions and rewards as a part of observation similarly
to [65]. Note that no additional handcrafted high-level information, e.g., the position of the
robot or the dolly is given. Furthermore, neither a method for localization nor mapping
is used. The complete state design is summarized in Table 1. The visual perception Ov
and the LiDAR readings Ol are rescaled to [0, 1]. All these post processed features serve as
input to critic and actor network in SAC, as shown in Figure 2.

Table 1. Summary of the sensory observations and additional statistics that describe the state design
of this thesis.

Observation Components

Description Dimensions

Sequence of the four most recent camera RGB images R4×3×80×80

Current LiDAR sensor input
(front and back sensor concatenated) R1×256

History of the four previously taken
actions R4×2

History of the four previously received
rewards R4×1
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U

U

Figure 2. An illustration of the Critic network architecture, consisting of ResNet blocks [48] for
feature extraction (highlighted by the yellow shape) and fully-connected layers for LiDAR inputs
and historical action and rewards. We concatenate the outputs of the three parts (illustrated by the
∪ symbol) to establish a learned sensor fusion. For actor part, only the output layer is changed.
The details of ResNet blocks are shown in Appendix A.

The action space A is defined as differential drive command for the AVG, which is a
2-dimensional input ~at =

[
vt, ωt

]
with vt ∈ [−1 m/s, 1 m/s] and ωt ∈ [−1 rad/s, 1 rad/s].

Here vt and ωt are linear and angular target velocity inputs for the differential drive. The ac-
tions are carried out for 180 ms, resulting in an approximately 5.5 Hz operation frequency.

The reward function is formulated as:

r(t) = rS(t) + 1CDrCD(t) + 1CrC(t) + 1FrF(t) + 1GrG(t),

where rS = −0.1 represents a negative reward for each time step, rCD = −0.1 denotes a
small negative reward for collision with the dolly, and rC = −10 corresponds to a large
penalty for collision with non-dolly objects, i.e., walls or other obstacles. We set a small
penalty for collision with dolly so as to encourage the agent to reach the proximities to the
dolly. The term rG = 10 is a positive reward when the forklift ends up with successfully
reaching underneath the dolly. The last component rF = −0.05 acts as a penalty of not
driving forwards, i.e., when the velocity of the AVG is below 0.3 m/s. The symbol 1CD, 1C,
1F and 1G denotes the corresponding indicator function of whether that event happens.
Note that our reward design does not require any map information, e.g., the distance
between the dolly and the agent, so that it can be well applicable also to real-world training.
Terminal state is reached once the Euclidean distance between the center of the dolly and
the center of the robot is less than 0.3 m. Collisions with any objects will also result in an
instant termination of the task.

To increase the generalizability of the learned policy, we inject domain randomization
for each worker environment, e.g., shift of light sources, shape of cells, pattern of the floors
and walls etc. The designed arena is shown in Figure 3. Particularly, we randomize the
number of obstacles, the position of target dolly and initial pose of the AVG in the cell to
avoid overfitting of the sensor readings on a single environment. The exact randomization
scheme is demonstrated in Appendix C.

To accelerate training, we also implement proportional-based PER [55] as well as
distributed RL, where we parallelize 9 agents for collecting the experience in different
environments and a main training process. We followed an asynchronous update approach.



Appl. Sci. 2022, 12, 3153 10 of 30

The worker thread sends the trajectory experience to the main training thread and gets
an updated model copied from as long as it finishes an episode, the training thread is in
charge of updating the actor and critic networks. The details of distributed version of SAC
and its hyper-parameter setting are described in Appendix A.

Figure 3. An Illustration of the designed training arena. It consists of 9 total cells of different sizes
and layouts. For instance, the walls and floors feature different colors and patterns, the light sources
differ also in each cell. The initial pose of robot, target dolly and the obstacles are also placed with
some random settings. For details, please refer to Appendix C.

3.4. Automatic Curriculum Learning: Extension of NavACL to NavACL-Q

In this part, we introduce our improved Automatic Curriculum Learning approach
NavACL-Q based on the original study NavACL. NavACL [20] is an Automatic Curriculum
Learning method that specially addresses the challenges of robotic navigation. The idea of
NavACL is to autonomously propose tasks of suitable difficulty to reduce overall training
cycle and enhance the final performance. To automatically form a curriculum, NavACL
uses a neural network fπ to estimate the probability of the current policy π solving task l,
with f ∗π (l) = 0 for certain failure and f ∗π (l) = 1 for certain success. The success probability
f ∗π (l) is estimated based on a list of pre-defined task-specific geometric properties l rele-
vant of map knowledge, i.e., geodesic distance between goal and initial state, agent/goal
clearance, relative initial angle and etc., altogether 5 properties.

The neural network fπ is updated concurrently with the training of the policy π.
For training, the network is provided with the input of l from the most recent trained task
and a binary label that indicates whether or not the respective task was solved successfully.

To determine which curriculum should be posed next, NavACL samples on easy,
frontier, and random tasks with some defined probabilities. Frontier tasks refer to challenging
situations and random tasks encourage exploration, while easy task prevents the catastrophic
forgetting. Since agent’s ability to solve the task changes dynamically during the training,
the authors of NavACL used adaptive filtering (AF) as a criterion to evaluate in which
category the generated candidate tasks fall into. Specifically, AF proposes a set of candidate
tasks characterized by their respective geometric properties Lc are forwarded through the
network fπ . Then a normal distribution is fitted to the estimated success probabilities,
which is formally expressed as µ f , σf ← FitNormal( f ∗π (Lc)). A task is regarded as easy
if f ∗π (l) > µ f + βσf and is classified as frontier when µ f − ησf < f ∗π (l) < µ f + ησf .
The coefficients η and β are hyper-parameters.

Now we illustrate our improvements and extensions of NavACL algorithm to NavACL-
Q algorithm. We adapt the 5 geometric properties of the network to our use case as
shown in Table 2. Among them, we reduce the number of geometric properties by one,
and combine our proposed idea. Rather than fully relying on the map properties, it is more
favorable that the input features to success probability network can be more generalizable
for tasks in different domains, e.g., navigation tasks, robotic manipulation tasks, games, etc.
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In contrast, the current input features (geometric properties) need redesigning to fit other
tasks. To cope with this, we propose using the initial Q-value from the critic network, as the
learned Q-value should give a good estimate on how well the initial pose is, as shown in
Section 3.1 . Thus, the Q-value is highly correlated with the success given the initial state.
In this work, we append the estimated initial Q-value with other geometric properties
together as the input to NavACL.

Table 2. The inputs for the success prediction network fπ in NavACL-Q.

Agent-Goal Distance Euclidean distance from s0 to sg

Agent Clearance Distance from s0 to the nearest obstacle

Goal Clearance Distance from sg to the nearest obstacle

Relative Angle The angle between the starting orientation and −−→s0, sg

Initial Q-Value The predicted Q-value Qφ(s0, a0) from SAC critic network

Moreover, we spot that AF could result in an undersampling on the easy tasks if
µ f + βσf > 1. This could happen when either µ f approaches 1 or σf is large. The first
case indicates that the agent reaches near-final performance and is thus of minor impor-
tance. Here we simply introduce an additional hyperparameter χ ∈ [0, 1), which acts as
a threshold for easy tasks during the final stage of the training. The second corner case is
handled by an additional condition that checks for the case that µ f + βσf > 1. If so, the easy
condition is replaced with f ∗π (l) > µ f . All these modifications are shown in Algorithm 1.

Algorithm 1: GetDynamicTask-Q.
input :Training timestep t; fπ ; µ f ; σf ; Hyperparameters β, γ, χ, nT
output :Task l

1 taskType← GetTasktype(t);
2 for i = 0 to nT do
3 l ← RandomTask();
4 switch taskType do
5 case easy do
6 if µ f + βσf < 1 then
7 if f ∗π (l) > µ f + βσf or f ∗π (l) > χ then
8 return l;
9 end if

10 else
11 if f ∗π (l) > µ f then
12 return l;
13 end if
14 end if
15 end case
16 case f rontier do
17 if µ f − γσf < f ∗π (l) < µ f + γσf then
18 return l;
19 end if
20 end case
21 case random do
22 return l;
23 end case
24 end switch
25 end for
26 return RandomTask()
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In the original work, they used proximal policy optimization [26], an on-policy DRL
algorithm, whereas we implement SAC [34]. The advantage of SAC is mentioned in
Section 3.1. We elaborate on the hyper-parameter of NavACL-Q in Appendix B.

3.5. Pre-Training of the Feature Extractor

We also investigate other alternatives to potentially increase the training speed besides
automatic curriculum learning. One potential way is to pre-train the convolutional encoder
in unsupervised learning manner, e.g., via auto encoders [66]. After pre-training, we
initialize and fixed the weights of convolutional blocks shown in Figure 2 during the whole
DRL training phase and the decoder are discarded. We examine whether a meaningful
feature representation can facilitate the learning or not.

Here we demonstrate the details of pre-training the convolutional encoders in actor
and critic network. The encoder structure is mentioned above. For decoder, we use symmet-
ric architecture with transposed convolution [67] to increase feature map size. The output of
the decoder has exactly the same shape as input with 4 channels, i.e., 4 consecutive frames.
The loss function is defined as l2 pixel-loss between the reconstructed image and ground
truth image averaged over all channels so that the underlying temporal relation between
each frame is also reckoned with. The dataset consists of 50,000 interaction sequences from
the agent’s random interaction with the training environment.

4. Results

In this section, the training and testing results of our DRL approach on the navigation
task are presented. We start by showing the training performance of the best variant in
Section 4.1. For testing, we evaluate the learned policy systematically in an unseen environ-
ment featuring larger space with different layout and obstacles in Section 4.2. The testing
also extrapolates the training scenarios in case of higher relative orientations between
vehicle and dolly so that the robustness of the learned policy can be seen. In Section 4.3,
a set of ablation studies are conducted, where the effects of our ACL approach NavACL-Q
and a pre-trained feature extractor on the performance gain and training efficiency are
investigated. We reveal their effects both in term of training and testing experiments.
Specifically, NavACL-Q is compared with training with random starts and a pre-trained
convolutional encoder is compared with a completely end-to-end training fashion. In
Section 4.4, we compare all ablation variants to a map-based pipeline approach provided by
Nvidia Isaac SDK [68] as a baseline approach to check whether our DRL agent outperforms
the standard approach for navigation task.

4.1. Training Results

During the experimental phase, we investigate three variants for ablation studies. We
name the variant that combines both NavACL-Q algorithm and pre-trained convolutional
blocks as NavACL-Q p.t., the variant with NavACL-Q algorithm but with end-to-end training
(i.e., the convolutional encoder is also learned from scratch) as NavACL-Q e.t.e., while the
variant with pre-trained convolutional encoder but with random initial poses is abbreviated
as RND. We append our abbreviation list also at the end of our script. A comprehensive
comparison among three variants reveals how automatic curriculum learning and pre-
trained feature extractor can facilitate learning process, which is presented in Section 4.3.
In this section, we first demonstrate the training result of the best variant NavACL-Q p.t.

4.1.1. Pre-Trained Convolutional Encoders

In this section, we are presenting the quality of the pre-trained convolutional blocks
using auto encoder in Figure 4 with the training procedure mentioned in Section 3.5.
After 100 epochs of training, the auto-encoder is able to reconstruct the image sequences
with reasonable accuracy. We use these trained weights as initialization for actor and critic
network of SAC and freeze them during training.
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(a)

(b)

Figure 4. Comparison of (a) groundtruth image sequence and (b) reconstructed image sequence
from auto-encoders.

4.1.2. Performance of NavACL-Q SAC with Pre-Trained Convolutional Encoders

We are presenting the learning curves of the best DRL variant during the complete
training episodes in Figure 5. The algorithm is run a total number of three times, with each
run consisting of 0.25 M episodes. This approximately corresponds to the wall clock time
of 28 h and 5 M frames, where the training is split across three GPUs (Quadro RTX 8000
48 GB) with the CPU Intel Xeon Gold 5217. Figure 5 outlines the episodic return and
success probability of reaching underneath the dolly. It can be observed that the final
success probability approached 1, i.e., the mobile robot succeeds mostly in navigation
from arbitrary defined initial position domain as shown in Appendix C. The episodic
return also converges to the final value stably, which can be interpreted as converging to
a near-optimal policy. The variance of episodic return and success probability is small at
the end of training, signifying the learned policy registers similar patterns among three
runs. The robustness of our algorithm is therefore evident. Moreover, our trained DRL
agent further exhibits the adaptability to a non-stationary environment. We show that the
agent is even able to reach the goal dolly that changes its location during the navigation
process. For instance, the dolly is originally placed left front to the AVG, and the agent
steers towards the goal direction. Then the target dolly is shifted from the left front of the
agent to its right front, the AVG drives first backwards and adjusts its orientation towards
the goal direction and then advances to the goal. The video illustrations of leaned policy
are available in our supplementary materials. The generalizability of the trained agent
serves as a great advantage of DRL and will be further discussed in Section 5.1.

4.2. Grid-Based Testing Scenarios

To exactly examine the robustness and the generalizability of the trained policy, we
perform a systematic testing in an arena distinct from training. The test environment
differs from the training environments in terms of shape, texture, and lighting conditions
to enable the analysis of the methods generalization potential. We set the initial pose of
the (2D location and orientation) in an exhaustive grid-based manner and checked the
success probability of each initial position. The exhaustive testing features a 5 m× 5 m grid,
partitioned into 0.5 m grid-cells, centered in front of the dolly. The grid thus represents
11× 11 initial positions for the mobile robot. Figure 6 illustrates a schematic representation
of the testing scenario. Furthermore, we test each initial positions with eight different initial
robot orientations, given by the following list: {0◦,±45◦,±90◦,±135◦, 180◦}. For simplicity,
the orientation of 0◦ can be approximately understood as the case where the robot is facing
straight towards the goal and 180◦ corresponds to facing backwards from the goal. Please
refer to Appendix C for details. The effect of partial observability aggregates with the



Appl. Sci. 2022, 12, 3153 14 of 30

increasing angle. Each combination of position and rotation is tested nine times to obtain
an averaged estimation of the success probability for each configuration (x, y, orientation),
which corresponds to the total number of 11× 11× 8× 9 = 8712 runs for each ablation
variant. Figure 6 visualizes the test-scenario graphically.

Figure 5. Learning curves of the three variants. (a) The episodic return, (b) The docking success prob-
ability per episode. These two statistics are presented as a moving-average over 500 episodes, where
the solid line and shaded area illustrates, respectively, the mean and the variance over three runs.

It is noteworthy that the testing case features wider initial AVG orientation, lying
between the interval of [−180◦, 180◦], which extrapolates the defined one of [−90◦, 90◦] in
the training phase. In this way, one can also examine the performance of learned policy
under the effect of partial observability.

Grid

Y

X

D

(a) (b)

Figure 6. (a) Schematic representation of the grid-based test-scenario. The coordinate system to
which the test-scenario refers is shown in red. The fixed dolly position is marked with “D”. The blue
grid represents the test zone divided into 11× 11 positions. The grid and the dolly are scaled up for
this illustration to improve visibility. (b) Graphical illustration of a 0◦ rotation test, conducted in the
simulated testing-environment.

The best run among the three runs of NavACL p.t. is illustrated in Figure 7a. It is
manifest that the agent scores approximately 100% probability to reach the dolly from a
favorable initial starting position. The term ‘favorable’ stands for a relatively small initial
robot orientation from the target dolly, e.g., 0◦,±45◦,−90◦. These cases suffer minimally
from partial observation and the agent can reach goal mostly with proper turning and
maneuvering. With aforementioned favorable initial rotation angle, the mobile agent
mostly succeeds in navigating to the goal, except for left/right upper corner cases, i.e., the
region near −3 m in x-axis and −2 m in y-axis for rotation angle −90◦. This result is
reasonable as such corner case is deemed as difficult start position as the robot cannot
capture the target from the RGB camera and the mobile robot has to make a series of
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adjusting maneuvers to reach upright underneath the dolly, similar to parking the cars
to a narrow slot, hence resulting in a sub-optimal policy. Additionally, such corner cases
are not sufficiently frequently sampled, resulting in a potential class imbalance problem.
Consequentially, DRL algorithm fails to learn from these samples well.

With the increasing initial rotation angle of ±135◦ and 180◦, which extrapolates the
defined orientation domain of [−90◦, 90◦] during training, the success probability drops
significantly and the partial observability severely affects the performance. For the majority
of failure cases, the mobile robot exhibits one of following behavior patterns: (i) Consistently
making cycling movement, with some runs tending to gradually approach the target,
but ending up with reaching maximal allowed steps. (ii) Going straight towards collision
without moving forwards or backwards. (iii) Going towards an obstacle, but circling
around in its proximity, exceeding maximal allowed steps. A potential reason for such
failure cases is that the learned policy cannot generalize well to extrapolated tasks not seen
in training, whereas the for intrapolated tasks (±45◦ and 0◦), the policy generalizes well.

4.3. Ablation Studies

In the above sections, we demonstrate the training and testing results of the best
variant NavACL-Q p.t. In this section, we examine the effect of a pre-trained convolutional
encoder and NavACL-Q on the learning performance, which, respectively, corresponds to
two additional variants RND and NavACL e.t.e. We also run the remaining two variants in
the exact setting as NavACL-Q p.t. also with three runs for each variant and demonstrate
the complete training and testing results in Figures 5 and 7.

4.3.1. Ablation Studies: Effects of Automatic Curriculum Learning

To investigate the effects of our automatic curriculum approach NavACL-Q, we com-
pare it with the variant RND, where RND has the same setting as NavACL-Q p.t. except
that it samples the initial state randomly from the defined boundary. It is first to be noted
that RND is already an approach encouraging the exploration and alleviates the task diffi-
culty compared to a fixed distant initial position from the target [15]. If a better training
performance can be witnessed from NavACL-Q, then the effectiveness of our automatic
curriculum learning approach can be verified. We demonstrate the comparison both in
training and testing performance.

Figure 5 reveals that in the training phase the RND method imposes the highest train-
ing variance. One of the three trials meets the 90% threshold in the RND case, though the
other two trials have not exceeded 40% performance, resulting in an average final per-
formance of approximately 50%. In contrast, the variance of NavACL-Q e.t.e. remains
small, i.e., more robust. This can also be validated from the variant NavACL-Q e.t.e., which
also incorporates the component of NavACL-Q. Moreover, the NavACL-Q p.t. exhibits a
consistently faster improvement at the initial stage of training. With 1M steps, RND just
starts to show a sign of improving in terms of success rate whereas NavACL-Q p.t. has
already reached the average success rate of 30% in Figure 5b. From these observations,
it can be concluded that NavACL-Q indeed facilitates the training in terms of both final
converged value and rate of convergence.

We further present a summary statistics for a comparison on the testing performance in
Table 3, NavACL-Q p.t. achieves approximately 90% success rate in navigating underneath
the dolly among four out of five intrapolated initial orientations, outperforming RND by
at least 30%. Moreover, NavACL-Q p.t. reveals the best performance averaged over all
orientations, surpassing RND by 11% for all tested orientations including the extrapolated
ones. Overall speaking, NavACL-Q p.t. converges to a better policy than RND in the testing
case. Moreover, both RND and NavACL-Q p.t. suggest general decreasing tendencies of
success rates with increasing relative initial orientations, which is reasonable as the effect
of partial observability aggregates with higher relative orientations.
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(a)

(b)

(c)

Figure 7. Color-coded illustration on the grid-based testing result of one fully trained NavACL-Q
agent. The average performance for each position on the grid is represented by a colorized circle,
where yellow color indicates a high success rate and blue color indicates near-zero success probability.
(a) The testing result of NavACL-Q p.t. (b) The testing result of RND (c) The testing result of NavACL-Q
e.t.e. A further summary of the statistics is available in Table 3.
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Table 3. The statistics of testing results are presented. The averaged success rate of reaching the target
for each ablation variant and baseline approach are shown. The averaged success rate is calculated as
the mean success rates over 11× 11 grid points from Figure 7.

Relative Orientation
of AVG to Target

Average Success Rate

NavACL p.t. RND NavACL e.t.e. Baseline

0◦ 86.6% 58.5% 50.3% 16.5%

−45◦ 93.7% 55.6% 25.5% 3.3%

+45◦ 88.0% 52.2% 53.5% 5.0%

−90◦ 90.5% 43.2% 8.9% 0%

+90◦ 18.5% 45.5% 32.0% 0%

−135◦ 48.2% 36.9% 2.2% 0%

+135◦ 11.9% 37.1% 19.8% 0%

+180◦ 15.7% 34.2% 8.0% 0%

Mean of {0◦,±45◦,±90◦}
(Intrapolated Tasks) 75.5% 51.1% 34.1% 5.0%

Mean of {±135◦, 180◦}
(Extrapolated Tasks) 25.3% 36.1% 10.0% 0%

Mean of All Orientations 56.6% 45.4% 25.0% 3.1%

We take a closer look at whether the success prediction network fπ in NavACL-Q
p.t. shows meaningful predicted success probability and how it evolves with the training
stages. To examine this effect, the outputs of fπ are evaluated across different stages of
training from one of the three runs. Figure 8 illustrates predicted task success rate in the
defined regions with respect to two geometric properties, initial robot orientation and
the Euclidean distance between initial robot pose and target dolly. These two properties
give a straightforward view on the task difficulty. For instance, a small initial rotation
angle with close distance is regarded as optimistic initial position. It is hypothesized that a
well-learned fπ should show a increasing tendency on success probability as the training
progresses. Besides, the prediction network should also distinguish favorable initial poses
from unfavorable ones.

Figure 8. Two-dimensional interpolation of the success probability estimated by fπ at different stages
of training, where red areas indicate high success probability estimates and blue areas indicate low
success probability estimates. In this case, the plot is generated across the geometric properties
Agent-Goal Distance and Relative Angle. The individual plots consist of the success predictions of the
10,000 tasks that followed the displayed episode.

As can be observed from Figure 8, at the initial training stage, e.g., episode 0, the agent
behaves totally in a random fashion and a general low predicted success value can be
expected. With the training progressing, e.g., episodes 50,000 and 100,000, the prediction
network suggests an increment in success rate in the regions of favorable initial poses,
where the increment also spreads to non-favorable initial pose. In both cases, tasks with
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low relative rotation and distances less than 4 m exhibits a significantly higher success
probability. Towards the end of training, the entire task space reaches an estimated success
probability close to 100%.

We further inspect task distribution from the curriculum in different training stages.
Figure 9 displays a set of histograms, which accounts for the number of tasks in terms
of one geometric property Agent-Goal Distance. In the first 10,000 episodes, a random
pattern with respect to the Agent-Goal Distance for the agent NavACL p.t. is present. This is
reasonable as the agent behaves more randomly at the beginning and mostly ends up with
not reaching the target. With merely negative experience, the success prediction network
cannot distinguish easy task from frontier task, hence reaching a more or less random pattern.
In the intermediate stage, represented by episodes 50,000:60,000, where the agent starts
to learn in the initial positions with small relative distance but still fails in large initial
distance. This can additionally be verified in Figure 8. In this phase, easy and frontier task
corresponds to the regions with close distances. This is referred to as a more concentrated
distribution that can be found with the featured goal distances in the range of 1.5 m to
1.5 m. Note that the definition of easy and frontier task also evolves with the training stage.
In a later training stage, represented by episodes 150,000:160,000, the success prediction
network fπ has mostly successful predictions covering all the relative distances in Figure 8.
In this case, large initial distances can also be classified as easy task or frontier one, resulting
in a random sampling. This tendency is in accordance with the anticipated behavior of
NavACL-Q. The RND agent on the other hand, is trained based on randomly sampled tasks
only, therefore it shows a uniform distribution across the defined distance domain.

Episode  0 : 10,000 Episode  0 : 10,000

Episode  50,000 : 60,000 Episode  50,000 : 60,000

Episode  150,000 : 160,000 Episode  150,000 : 160,000

Figure 9. Comparison of the task selection histograms with respect to the Agent-Goal Distance
geometric property of exemplary training outcomes. We have recorded the statistics of initial
position in terms of Agent-Goal Distance among different training stages, each with 10,000 episodes.
The histogram counts the corresponding number of initial states in the defined distance bins among
each 10,000 episodes. (a) represents task distribution of a NavACL-Q agent and (b) illustrates the task
distribution of an RND agent.

4.3.2. Ablation Studies: Effects of Pre-Trained Convolutional Encoder

For the training performance, Figure 5 demonstrates that NavACL-Q and NavACL-Q
e.t.e. perform similarly in terms of return and success rate during the first quarter of the
training stage. Intermediate training performance with an approximately 30% success
rate is reliably achieved by both approaches. Nevertheless, robust policies with final
performance over 90% are exclusively learned by agents that utilize the pre-trained feature
extractor. NavACL-Q e.t.e. attain similar variances as NavACL-Q, but the final performance
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stagnates around 30%. In an additional experiment, the maximum number of episodes is
increased to 0.4 M, yet still no robust policy with success rates above 60% can be achieved
in the NavACL-Q e.t.e. case.

In the grid test case, NavACL-Q e.t.e. also ends up with overall worse performance than
NavACL-Q p.t. and RND. Table 3 demonstrates that NavACL-Q e.t.e achieves 41% lower
success rate in navigation than NavACL-Q p.t. among all intrapolated tasks and 31% lower
for all tested orientations. The most successful navigation trials happen when the initial
robot rotation is 0◦, corresponding to the easiest scenario. As the rotation angles increases,
the successful probability drops quickly. With such comparison, it is obvious that the pre-
trained network greatly boosts the performance as well as reduces the overall computation
expense. We discuss this effect in Section 5.2. Interestingly, it can be also observed that
the performance gain of a pre-trained convolutional encoder is more significant than how
NavACL-Q boosts the performance, especially in the test case, as Table 3 demonstrates that
NavACL-Q e.t.e exhibits 16.4% lower success rate than RND among all intrapolated tasks
and 20% lower rate averaged for all orientations.

4.4. Comparison to a Map-Based Navigation Approach

We further compare the result of our learning approach to a full perception and
navigation pipeline provided by NVIDIA Isaac SDK™ [21], which is deemed as a baseline
approach. This baseline application is specifically designed for the load carrier docking task.
In contrast to our solution, the baseline uses a global map for multi-LiDAR Localization of
the robot. The target pose for the robot is determined by object detection followed by 3D
pose estimation of the dolly. In the baseline application the camera resolution is 720× 1280
and the number of the LiDAR beams used for localization is 577 per sensor, which have a
maximum detectable range of 20 m. The used mobile robot except for the camera and the
LiDAR resolution, remains the same.

To find the goal position for the robot, the pose of the dolly is inferred from the frontal
facing camera of the robot. This poses a constraint that the dolly has to be detected in the
input image. For the baseline approach, this is done by using DetectNetv2 [69], which was
pre-trained on real images and then fine-tuned for dolly detection by using randomized
images of the dolly, created with IsaacSim Unity3D [21]. DetectNetv2 generates a 2D
axis-aligned bounding box for a detected dolly. The detected bounding box is used to create
a cropped image of the dolly, which forms the input into a pose estimation model. In this
case, the pose estimation model is based on PoseCNN [70]. The output of the PoseCNN
network is an estimated orientation and translation of the dolly. Given an image of the
dolly, the perception pipeline estimates the 3D pose of the dolly. This pose is transformed
into the global coordinate-frame and serves as a target pose. Then, a local planner based on
the linear quadratic regulator navigates the robot under the dolly.

We also conduct the same grid testing as mentioned in Section 4.2 for the baseline
approach. Since the baseline approach enforces that the target dolly must be captured with
a RGB camera, it is only possible to show the result with the initial orientation angle of 0◦

and ±45◦. The baseline method achieves the success rate of 100% in the 0◦ orientation case
under the condition that the displacement on x-axis remains below 1 m, and the distance
in y-direction remains below 5 m, which is illustrated in Figure 10. However, the baseline
approach proves incapable of performing the docking maneuver once the distance on the
x- or y-axis surpasses the mentioned limitations. In the ±45◦ case, only few positions
are solved successfully, all of which provide full visibility of the dolly. The ±45◦ cases
require y-displacements between −2 m and −4 m for successful docking maneuvers. From
Table 3, it can also be witnessed that the baseline approach achieves overall much worse
performance compared to all other DRL variants in all initial orientations. As a conclusion,
our learning approach definitely outperforms the baseline with larger initial orientation
and distances to the target.
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Figure 10. Similar to Figure 7, we demonstrate a color-coded illustration of the grid-based testing
result of the baseline approach. The yellow color indicates a high success rate and blue color indicates
near-zero success probability.

5. Discussion

In this section, we discuss the pros and cons of our learning approach compared to
the map-based baseline approach in Section 5.1. Additionally, we provide some intuitive
learned trajectories of our ablation variants and baseline approach for a qualitative descrip-
tion. In Section 5.2, we interpret the results from ablation studies as well as its correlation to
other related works. For Sections 5.3 and 5.4, the result of intermediate trials and potential
improvements of NavACL-Q approach as future work are discussed.

5.1. Learned Behavior of the Agent

As mentioned in Section 4.1.2, one major advantage of a successfully-trained DRL
agent on the navigation task is the adaptability to a non-stationary environment. The map-
ping from raw sensory observation to the action fully relies on the learned DNN. As a
comparison, map-based approaches require updating of a map and perform re-planning,
which causes additional computation overhead and suffers from potential error of an
inaccurate map. The corrective maneuver of DRL agent is naturally acquired from the
experience encountered during training given sufficient exploration, i.e., learning from trial
and error.

In addition, we are illustrating the learned trajectories of the map-based baseline
approach and DRL variants. For a fair comparison, three scenarios have been chosen in a
way that the baseline is able to perform the navigation successfully, i.e., dolly visibility in
the frontal RGB camera is given. Each of subplots in Figure 11 illustrates one scenario with
the leaned trajectories from NavACL-Q p.t., NavACL-Q e.t.e., RND and baseline given the
same initial and goal state.

NavACL-Q e.t.e.
NavACL-Q p.t.

RND
Baseline

Figure 11. A selection of driven trajectories from three different initial positions, where the orange
line represents the baseline trajectory, the blue line represents the NavACL-Q e.t.e. trajectory, the green
line illustrates the NavACL-Q trajectory and the red line depicts the trajectory of the RND case. Some
clipped trajectories signifies that the agent ended up with collision.

The quantitative illustration shows that the map-based approach provided by NVIDIA
Isaac SDK returns optimal trajectory with minimal maneuvers in orientation adjustments,
while DRL agents exhibit near-optimal ones. This sinusoidal behavior is natural as the
DNNs can hardly eliminate approximation errors to 0. Additionally, SAC encourages the
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agent to show stochastic behavior by maximizing the policy entropy and the illustrated
trajectory is one sample from the learned policy distribution.

Our intermediate trials also reveals that a good randomization of the training is
essential to a more generalized policy. In our setting, the position of the goal dolly needs to
be sufficiently randomized in the cells. In some intermediate trials, where the degree of the
randomization of the goal dolly is limited, e.g., more concentrated on one area in the cell,
the ultimately learned agent tends to merely reach the defined target regions in training,
but not towards the true target position in testing. This interesting phenomenon indicates
that the robot is sometime more reliant on the LiDAR readings to infer the goal position
instead of visual observation. Therefore, a good randomization of the target’s position in
the arena helps prevent the agent from relying merely on the LiDAR distance reading to
infer the goal position.

We have also tested the agent’s ability to navigate from very far distance to the goal,
i.e., larger than 10 m. It is first spotted that the agent also makes cycling movements with
a tendency of approaching the target, when the agent is within the distance of roughly
4 m away. Then it ceases the cycling motion and behaves near-optimally towards the
goal. This motion pattern can be interpreted as having not yet learned to reach the goal
positions in extrapolated task with larger initial distance than in the training task. Hence,
our hypothesis for further improving the generalizability of learned policy is to equate the
training domain to the target domain, otherwise the DRL is likely to exhibit very limited
performance in extrapolated tasks.

5.2. Effects of Pre-Trained Feature Extractor

We have already seen that the variant NavACL-Q p.t. definitely outperforms NavACL-
Q e.t.e. Such findings are also consistent with other research work. In [71], the car (agent)
learns to drive in the street rationally with frontal cameras and it is expected to stop at the
red light. They pre-train a feature extraction layer similar to an auto-encoder version with
additional loss on the traffic lights, so that the information from traffic lights is accentuated.
Hence, the car has learned to react correctly to the traffic light signal. They report a signifi-
cantly better training efficiency and converged performance with a pre-trained semantic
segmentation feature extraction layer than learning from scratch. The work of [72] further
explores the possibility of performance enhancement when decoupling feature extraction
from policy learning. They propose learning meaningful feature extraction via considering
inverse dynamics p(at|st, st+1), reward prediction p(rt+1|st, at) and reconstruction from
visual observations. In their ablation studies, the variants of auto-encoder, random feature
extraction and end-to-end learning are also compared jointly. The result shows that there
is no variant dominating other pre-trained feature extractor, but with pre-trained feature
extraction, it generally outperforms end-to-end learning. This is also similar to the findings
of [73], where the agent behaves better with a set of pre-trained feature extractors than
its counterpart. In addition, different sets of pre-trained feature extractors are beneficial
to different purposes, e.g., exploring the environment or reaching the goal state. With a
pre-trained network, the overall training time is also greatly reduced, however, at a cost of
being no more end-to-end learning.

5.3. Potential Improvements on NavACL-Q

We have indeed verified the effectiveness of our automatic curriculum learning ap-
proach NavACL-Q in Section 4.3.1. Nonetheless, we still spot some cases where NavACL-Q
may fail despite the improvements on the original NavACL algorithm. This happens when
the agent fails even in the initial optimistic regions quite often, ending up with much more
negative samples than positive ones. As a result, NavACL cannot distinguish easy tasks
from frontier ones or random tasks due to severe class imbalance problems. Under these
circumstances, the initial poses with low success probability are interpreted as easy. Conse-
quentially, the curriculum fails to propose beneficial intermediate tasks, and is behaving
similarly to random starts.
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One potential solution to this issue is to start curriculum proposing when the agent
performs sufficiently well on the favorable initial state. With guaranteed success on a
favorable initial task, the NavACL algorithm can distinguish easy task from frontier task.
This idea will be investigated in our future work.

The other improvement is the generalization of NavACL-Q to be domain independent.
The current input of the success prediction network fπ still considers the domain dependent
properties such as distance to goal and initial rotation, which requires additional manual
design. A more meaningful approach is to leave out domain-dependent handcrafted
features and to retain only domain-independent ones, for instance, Q-value of the initial
state-action pair, which will be used in most DRL algorithms. Such settings will easily
generalize NavACL-Q to other tasks, which is worth future investigation.

5.4. Effects of Problem Formulations on the Performance

To address the partial observability, we have taken a simple approach by stacking
3 previous frames along the channel dimension according to [19]. However, the trained
agent still shows limited performance with larger initial rotation angle away from the
target dolly. One potential explanation is that the historical observation is still not long
enough to mitigate partial observability. In the work of [49], they use LSTM with increasing
the historical length of 20 steps. The performance is reported to be better than stacking
3 previous frames. This approach be potentially effective, but at the cost of a longer
training duration.

We have also tried a simpler environmental setting, where the agent tries to navigate
to the door and the mobile robot is only equipped with frontal grey-scaled camera and
three previous frames are stacked. Importantly, the door is designed with distinct grey-
scaled color from other objects so that the agent can recognize the target state from the
grey-scaled observation. We have merely implemented the SAC algorithm with random
starts, but without pre-trained feature encoders. Interestingly, the learned policy is mostly
optimal and the agent learns to rotate at the beginning to search for the goal and moves
towards the door as soon as it gets detected. An investigation of whether increasing
historical length can significantly increase the performance with larger initial rotation
angles will be investigated further.

In some intermediate trials, we have found that the agent relies on the LiDAR readings
to infer the goal position instead of relying on the visual observations. Therefore, we have
tried one variant forcing our RL agent to perform goal detection via visual observation,
whereas LiDAR readings are only intended for collision avoidance. To this end, the maximal
detectable range of LiDARs has been set to a maximum of 1.5 m, and the pre-processing
of the LiDAR observation is also rescaled into [0, 1] correspondingly. Strangely, only with
this change, the complete training ends up with failure. The agent fails highly frequently
even with the simplest optimistic initial state. The reason for this is still unknown, might
be potentially related with network initialization as mostly of beams ends up with the
maximal readings of one after rescaling, breaking the assumption that the input features a
normal distribution on which most weight initialization is based.

We have also conducted some simple trials for reward shaping. In one attempt,
the reward term rCD has been set to be of the same as rC, namely, not distinguishing
collision with dolly or other obstacles. Our findings show that the small penalty of dolly
collision definitely encourages the agent to approach that area and simplifies the training.

6. Conclusions

In this paper, we have demonstrated an approach of deep reinforcement learning with
automatic curriculum learning on solving challenging navigation tasks with LiDAR and
frontal-view visual sensors in intralogistics. The key challenge of task lies in a DRL problem
formulation to deal with sparse positive experience, multi-modal sensory perception
with partial observability, long training cycles and the need for accurate maneuvering.
To address these problems, distributed soft actor-critic with NavACL-Q algorithm haven
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been proposed. Our learning approach is completely mapless (no efforts for mapping
and localization) and without human demonstration and relies entirely on the power of
neural networks to directly map multi-modal sensory readouts to the continuous steering
command. In addition, the reward formulation has been designed in a manner that can be
directly used in real case.

The results show that our DRL-agent has a significantly better performance than the
baseline map-based navigation approach provided by Nvidia. The baseline approach is
only applicable to the case where the frontal RGB camera captures the target dolly and
is merely within 3 m distance from the goal. In contrast, our DRL-agent has managed
navigation task from up to 3 m further distances and up to 45◦ higher relative angles
compared to the baseline approach. In testing case, our learning approach achieves the
task with average success rate for different initial robot orientations, outperforming the
baseline approach by 53%. Furthermore, our ablation studies reveal that our automatic
curriculum learning approach NavACL-Q facilitates the learning efficiency compared to
random starts with a final performance gain of roughly 40% in training and 11% in testing
on average, and a pre-trained feature extractor boosts final training and testing performance
by approximately 60% and 31%, respectively.
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Appendix A. Details for Training Via Soft Actor-Critic

In this part, we elaborate on the settings of distributed SAC as our DRL algorithm.
The network architecture of actor and critic is firstly shown. Figure 2 has already

demonstrated an overall network design, and the detailed structure of convolutional blocks
is illustrated in Figure A1. We also perform zero-padding for all previous rewards and
actions Oar when the current time horizon is smaller than the defined historical length,
i.e., four in our case. For the visual observation Ov, we perform replicate paddings of the
RGB image at t = 0.

64 x 40 x 40

Residual Block, 64

128 x 20 x 20

Residual Block, 128

256 x 10 x 10

Residual Block, 256

Residual Block, 128

Flatten(128 x 5 x 5)

1 x 3200

Stacked
Camera Images

4 x 3 x 80 x 80Residual Block

Conv2d (3x3) Padding =1

ReLU

128 x 40 x 40

Conv2d (3x3) Padding =1

ReLU

Conv2d (2x2)

128 x 20 x 20

ReLU

64 x 40 x 40

128 x 40 x 40

128 x 40 x 40

Conv2d (1x1)

Figure A1. Illustration of encoder part for the stacked camera images. Four Residual blocks are used.
In the left panel, the architecture of the residual blocks is illustrated. The first two convolutions use
(3× 3) filters, then the identity is concatenated to the output of the first two convolutions. Finally, we
down-sample the image by half using a convolution with a filter of (2× 2) and a stride of 2 according
to [74].

As described in Section 3.3, we accelerate the training speed and improve the general-
izability of the agent by paralleling nine agents, resulting in a distributed version of SAC.
We show the pseudo code in Algorithms A1 and A2 for both worker process and master
process. The asynchronous method for experience gathering is analogous to asynchronous
advantage actor-critic [25]. Each worker process gets a copy of the shared actor from the
main process and collects experience asynchronously. After one worker has completed an
episode, the gathered experience is stored in a shared episode replay queue, and a new
version of the shared policy is obtained from the master process. Concurrently, the master
process updates the actor and critic networks and gathers all workers’ experience from
the shared episode replay queue to fill a PER buffer. The hyper-parameter settings are
demonstrated in Table A1.



Appl. Sci. 2022, 12, 3153 25 of 30

Algorithm A1: Distributed Soft Actor-Critic—Worker Process.

input : φ, θ, fπ , Es, env ; . Shared parameters for the policy, the Q-Function
and the NavACL-Q network, shared episode replay queue, and a target
environment for interaction

input : L ; . A task database consisting of initial states based on env
1 while True do
2 E ← ∅ ; . Initialize an empty local episode replay buffer
3 φ← φ ; . Create a local policy network copy φ for the next episode
4 Lr ← randomly sample 100 tasks from L µ f , σf ← FitNormal( f ∗π (Hr))

task = GetDynamikTask−Q(θ, µ f , σf , H) ; . Use Nav-ACL-Q to get a task
that fits the current ability of φ

5 while maximal episodic length not reached do
6 at ∼ πφ(at|st) ; . Sample an action according to the local policy

7 st+1 ∼ p(st+1|st, at) ; . Sample transition from the environment
8 E ← E ∪ {(st, at, rt, st+1)} ; . Store the transition in the local episode

replay buffer
9 end while

10 Es ← Es ∪ E ; . Append the locally recorded episode to the shared episode
replay queue

11 end while

Table A1. Hyperparameter settings of SAC algorithm.

Distributed Soft Actor-Critic Hyperparameters

Parameter Value

Discount factor γ 0.999

Target smoothing coefficient τ 1 (hard update)

Target network update interval η 1000

Initial temperature coefficient α0 0.2

Learning rates for network optimizer λQ, λα, λπ 2× 10−4

Optimizer Adam

Replay buffer capacity 220 (Binary Tree)

(PER) prioritization parameter c 0.6

(PER) initial prioritization weight b0 0.4

(PER) final prioritization weight b1 0.6
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Algorithm A2: Distributed Soft Actor-Critic—Master Process.

input : θ1, θ2, φ, Env, b,m ; . List of environments and the batch sizes for the
SAC and the NavACL updates

1 θ1 ← θ1, θ2 ← θ2 ; . Initialize target network weights
2 D ← ∅ ; . Initialize an empty PER replay buffer
3 Es ← ∅ ; . Initialize an empty, shared episode replay queue
4 Lm ← ∅ ; . Initialize an empty task result set
5 init( fπ) ; . Initialize the NavACL-Q network weights
6 n_updates← 0 ; . Number of SAC updates
7 for agent_index ← 0 to num_agents do
8 Spawn Process
9 AsynchronousExperienceGathering(φ, θ, fπ , Es, env = Env[agent_index])

10 end
11 end for
12 while True do
13 for agent_index ← 0 to num_agents do
14 if Es 6= ∅ then
15 Ep← Es.pop() ; . Pop one episode from Es

16 D ← D ∪ Ep ; . Append the episode to the PER buffer
17 Lm ← Tm ∪ Epl ; . Append the task of Ep and the result of Ep to

Lm

18 end if
19 if Lm contains m tasks and task-results then
20 fπ ← Train( fπ ,Lm) ; . Train fπ

21 Lm ← ∅
22 end if
23 end for
24 B, wi ← sample(D, b) ; . Sample a batch of interactions from the PER

replay buffer
25 for each iteration in B do
26 for each gradient step do
27 θi ← θi − λQ∇̂θi wi JQ(θi) for i ∈ {1, 2} ; . Update the Q-function

parameters
28 φ← φ− λπ∇̂φ Jπ(φ) ; . Update policy weights

29 α← α− λ∇̂α J(α) ; . Adjust Temperature

30 end for
31 end for
32 n_updates← n_updates + 1;
33 if n_updates % η = 0 then
34 θi ← θi for {1, 2} ; . Hard Update since τ = 1
35 end if
36 end while

Appendix B. Details for Training the NavACL-Q Algorithm

Here, we show the hyper-parameters of NavACL-Q algorithm. The success prediction
network fπ consists of two dense hidden layers with 32 nodes each and the ReLU [75]
as non-linear activation function. We use a sigmoid function for the output layer to limit
the output-range to [0, 1] together with binary entropy loss. Relevant details are listed in
Table A2.
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Table A2. Hyper-parameter settings related to the NavACL-Q algorithm.

NavACL-Q Hyperparameters

Parameter Value

Batch size m 16

Upper-confidence coefficient for easy task β 1.0

Upper-confidence coefficient for frontier task γ 0.1

Additional threshold for easy task χ 0.95

Maximal number of trials to generate a task nT 100

Learning rate for fπ 4× 10−4

Appendix C. Arena Randomization

In this part, we show the randomization for each training arena cells including the
initial pose of mobile robot and the target dolly in Table A3. For instance, the initial Yaw-
Rotation (either robot or dolly) of 0◦ corresponds to alignment with the y-axis illustrated by
Figure 6 (frontal robot camera heads towards the dolly), and−90◦ corresponds to alignment
with the x-axis (frontal camera points towards the right wall).

Table A3. Summary of the task randomization, including the initial pose of AVG, the pose of the
target dolly and obstacles.

Description Randomization
Induced Randomization
with Respect to
Geometric Property

Initial Robot Yaw-Rotation
Uniform sampled from the
interval [−90◦, 90◦]

Relative Rotation: [1.5 m, 5 m]
Initial Dolly Yaw-Rotation

Uniform sampled from the
interval [−15◦, 15◦]

Number of Obstacles 1 to 4
Agent Clearance/
Goal Clearance:
[2 m, 8 m]Position of Obstacles

Randomly placed left and right
of the dolly, with a distance
uniformly sampled from the
interval [2 m, 5 m]

Initial Robot Position
−0.5 m to 0.5 m
on y- and x-axis

Agent-Goal Distance:
[1.5 m, 5 m]

Initial Dolly Position

Uniformly sampled from a circle
segment with radius = 5 m and
central angle 30◦, where
the center of the segment
corresponds to the center of
the robot, with minimum 1.5 m
distance to the robot

Appendix D. Mobile Robot and Target Dolly Specification

In Table A4, we show the specification of mobile robots and the target dolly. One can
see that the goal state for the mobile robot is strict and therefore posing great challenges to
DRL algorithms.
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Table A4. Technical details of the mobile robot and the target dolly.

Mobile Robot

Length, Width, Height 1273 mm × 630 mm × 300 mm

Maximum Speed 1.2 m/s

LiDAR Sensor
2× 128 Beams, each FOV 225°,
Max Distance: 6 m

Frontal RGB Camera 80× 80× 3 pixel , FOV 47◦

Dolly

Length, Width 1230 mm × 820 mm
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