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Abstract: Proton exchange membrane fuel cells (PEMFC) are considered a promising solution for
renewable energy application. To meet industrial requirements, the power source consisting of
PEMFC is required to be power regulator to generate a stable and desired current and/or voltage
under various working conditions. In this article, the adaptive sliding mode control integrating
with the radial basis function neural network (RBFNN) approach for DC/DC buck converter-based
PEMFC is presented to address perturbations from inner parameters as well as external disturbances
in terms of power conditioning. Sliding mode control (SMC) and backstepping schemes are integrated
to tackle the nonlinear and coupled outputs resulting in large control errors and slow response caused
by PEMFC characteristics. To accurately estimate the parametric uncertainties and disturbance
injections, such as buck converter parameter varying and PEMFC operation point changing, the
RBFNN adaptive law is developed according to the defined Lyapunov and Gaussian functions
overcoming the limitations of non-/linear parameter estimating. Simulations and experiments on the
PEMFC power supply prototype governed by the DS1104 board are carried out. The comparative
results indicate that the proposed RBFNN estimation associated with the backstepping SMC can
reduce up to 7.5% overshoot and smooth PEMFC voltage and inductor current when disturbance
changes in a voltage regulation experiment. Thus, the proposed method can regulate the current or
voltage of a PEMFC power supply with robustness, adaptivity, and no chattering phenomenon.

Keywords: proton exchange membrane fuel cell (PEMFC); DC/DC buck converter; adaptive
backstepping sliding mode control (SMC); RBFNN estimation; power conditioning

1. Introduction

Proton exchange membrane fuel cells (PEMFC) are a promising clean power source
for various industrial applications benefitting from its zero emission, high efficiency, as
well as low working temperature [1,2]. To meet the electricity demand, such as a stable
and constant service voltage, or desired output current, the PEMFC is usually adopted by
DC/DC converters to configure a PEMFC-fed DC power supply [3–6]. DC/DC converters
act as the power conditioner for the stepping up/down output voltage and regulating
inductor current. In an automotive application, high and low voltages are needed to
power the motor and appliances, where the low DC link is generated according to a buck
converter governed by the high input/output voltage conversion ratio [7–9]. In particular,
the PEMFC with the step-down mode converters have been reported to supply a constant
terminal voltage for a synchronous generator momentarily [10] and charge the battery pack
in a constant voltage or current mode [11].

A general DC/DC buck converter in the continuous conduction mode (CCM) exhibits
linear characteristics, whereas internal parameters are time variable or even mismatched,
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and external load demands can also be changed that result in uncertainties as well as
disturbances. Robust control approaches such as linear matrix inequalities (LMI) combined
with a Takagi-Sugeno (T-S) fuzzy controller [12] and a structured singular value-based
µ-method [13] were proposed to solve the robustness when uncertainty and disturbance
were taken into consideration. To apply optimal control schemes to achieve performance
index minimization with robust stability, a linear matrix inequalities and linear-quadratic
regulator (LMI-LQR) control was introduced, where a convex optimization problem was
finally transformed [14]. Similarly, the piecewise-affine (PWA) equations were introduced
to solve the constrained model predictive control (MPC) [15,16], in which Geyer et al. [15]
determined that disturbances in the buck converter input voltage were effectively rejected,
and Liu et al. [16] focused on a fast MPC by constructing a sparse QP problem for the linear
parameter-varying (LPV) system of a buck converter in a low CPU runtime. Moreover,
a disturbance estimator for observing the disturbance caused by load changes [17] and
real-time parameter estimation based on the Kalman filter [18] were presented to improve
the tracking performance under the buck converter working condition of disturbance and
model parameter perturbation.

A variable structure control based on the sliding mode control (SMC) has been con-
sidered as a powerful method for regulating DC/DC converters. SMC exhibits many
benefits when applied in DC/DC converters such as a wide range stability, robustness
against parameter vibrations, and fast dynamic response. However, oscillations of the state
tracking around the sliding manifold may cause a chattering phenomenon. Ding et al. [19]
proposed a second-order sliding-mode (SOSM) to achieve output voltage tracking problems
in the presence of model uncertainties and external disturbances, and the results showed
that SOSM had a faster dynamic response and smaller chattering phenomenon compared
with first-order SMC. Aiming at the smooth output of the boost-buck converter used in
PEMFC systems under perturbations and load disturbances, the high-order sliding mode
controller (HOSM) was developed in [20]. To eliminate the chattering phenomenon, the
backstepping scheme can be used in combination with SMC. The advantage of the backstep-
ping scheme is that it divides the system into several linear subsystems, and each is easily
controlled. Backstepping methods have been widely used in the DC/DC converter control.
A backstepping-based control was proposed to solve the robust problems of unmodeled
nonlinearities and dynamics of a boost converter [21]. Fehr et al. [22] presented a back-
stepping method for two-level voltage source converter trajectory planning. An indirect
backstepping approach was introduced to regulate the output voltage for flyback-type
DC/DC converters [23]. To track the maximum power point of a photovoltaic system,
Dahech et al. [24] designed a backstepping SMC. In addition, the adaptive control can
handle system uncertainties, such as parameters varying and being mismatched, as well as
external disturbances. Estimations of system perturbations including variations of capaci-
tance, inductance and load resistance [25–28], and the inductor current observation [27]
were developed according to adaptive backstepping techniques to improve the robustness.

PEMFC outputs nonlinear stack voltages under the different working currents, tem-
peratures, and pressures of reactants [1–5,28]. Additionally, in the combined PEMFC-fed
buck converter, the input voltage of the converter supplied by PEMFC is coupled with
a load current that may result in the energy conversion system operation point varying
when the load is changing. Neural network control is a competitive method of addressing
the nonlinear and coupled features of the control plant; it has outstanding advantages
in extracting and learning knowledge and strong control robustness. Wang et al. [29]
presented a control scheme with back propagation (BP) neural network for the buck circuit
and realized the idea of introducing neural network into DC/DC converter control, and the
simulation results showed that under the condition of rapid fluctuation of input voltage
and load, the controller had good dynamic response characteristics. The BP network is
a global approximation network. Each time the network learns, it needs to iteratively
update the weights of all layers, which leads to a slow training speed. At the same time,
the BP algorithm often causes many local minimal points, which makes the algorithm
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unable to guarantee the convergence to the optimal solution. Zhang et al. [30] proposed
a radial basis function neural network (RBFNN) control scheme with good dynamic and
static performance to tuning proportion integration differentiation (PID) control in an im-
proved bidirectional DC/DC converter. Neural network disturbance observer has diversity,
such as RBF, Elman neural network [31], fuzzy neural network [32], and Hermite neural
network [33]. In particular, the RBF network is a local approximation network with the
advantage of avoiding the local minimum problem. The linear mapping of the RBF neural
network (RBFNN) from the hidden layer to the output layer is the only parameter that
needs to be adjusted during the learning process of the RBFNN; because this linear relation-
ship ensures that the error surface is quadratic, it is easy to find the minimum value and
greatly improve the learning speed. In addition, the RBFNN can perform partial weight
modification without parameter iteration; therefore, the RBFNN is selected for regulating
the abovementioned PEMFC-fed power supply in this study. Unmanned aerial vehicle
(UAV) modeling and attitude controls via robust neural network estimation were reported
in [34,35]. Moreover, in the hybrid energy system [36] and the motor-driven control [37],
neural networks showed the superiority of the tracking performance against disturbances.
A series of the DC/DC buck converter adaptive control by using neural network estimator
are presented in [38–40], and the results indicated a fast and accurate response with the
disturbance rejection ability.

To address the inner parameter perturbations and external disturbances of PEMFC
power supply, the backstepping SMC integrated with RBFNN estimation controller of
PEMFC power conditioning is proposed. The main works and innovations of this paper are
summarized as follows: (1) The proposed PEMFC-fed DC/DC buck converter power sup-
ply can be applied to meet low voltage requirements, such as air conditioning and charging
ports, and the input voltage of DC/DC buck converter is coupled with load current, so
it is not modeled as a state variable. (2) To settle the chattering phenomenon as well as
system uncertainties, the RBFNN adaptive law-based backstepping scheme was proposed.
(3) RBFNN approximation was developed to estimate system uncertainties as well as exter-
nal disturbances. Compared with conventional adaptive estimator, it has the characteristic
of approximating any continuous function. In addition, the estimated accuracy can be
enhanced. The rest of the paper is organized as below. Following this part, PEMFC power
supply modeling is presented in Section 2. Current as well as voltage adaptive controls of
the power supply are developed in Section 3. Simulations via MATLAB/Simulink and their
discussions are described in Section 4. To validate the analytical results, experiments on
the prototype of PEMFC-fed DC/DC buck converter through dSPACE (DS1104) controller
board were carried out, and the experimental results are given in Section 5. Finally, the
conclusion is summarized in Section 6.

2. PEMFC Power Supply Modeling

The power supply system consists of a PEMFC and DC/DC buck converter. The
PEMFC generates electricity, and DC/DC buck converter regulates load current or stabilizes
the output voltage, which can be used for battery constant current charging or constant
voltage charging in the electric vehicles [41,42]. The model of the power supply system is
constructed based on the equivalent circuit methods.

2.1. Model of PEMFC

Equations (1) and (2) involve static and dynamic characteristics of PEMFC, respec-
tively. The variable double-layer capacitor effect is applied to simulate the dynamics of
PEMFC [3,4].

v f c = N(ENernst −Vohm −Vcon −VC) (1)

dVC
dt

=
1

Cact

(
i f c −

VC
Ract

)
(2)
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where ENernst is the reversible voltage, and Vohm is the ohmic drop. VC is the voltage of
capacitor Cact, and Vact is the activation drop. vfc is PEMFC voltage, and N is the number
of cells. ifc is PEMFC current, and Cact is variable capacity. Ract is activation polarization
resistance.

The relation between vfc and ifc can be described as [4]:

v f c = g
(

i f c, PH2 , PO2 , T
)

(3)

where T is the working temperature of PEMFC. λ is the average water content in the
membrane, which is based on the membrane humidity [3]. PH2 and PO2 are the pressure of
hydrogen and oxygen, respectively.

2.2. Model of PEMFC Power Supply System

The circuit diagram of the power supply is shown in Figure 1. It is composed of an
inductor L, a capacitor C, an output load R, a MOSFET switch S, and a diode D. In addition,
vfc, io, and vo represent stack voltage, load current, and load voltage, respectively.

Figure 1. Circuit diagram of PEMFC power supply.

The average model of PEMFC-fed DC/DC buck converter is described as:{
diL
dt = 1

L

(
uv f c − vo

)
dvo
dt = 1

C
(
iL − vo

R
) (4)

where iL is inductive current and vo is the output load voltage. u represents the switch
status, ranging from 0 (switch is OFF) to 1 (switch is ON).

The following assumptions are introduced to simplify the plant for the control-
orientation.

Assumption 1. The inductance is large enough to provide continuous inductive current to ensure
the system is operating under a continuous conduction mode (CCM).
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Assumption 2. When the MOSFET S is on, the resistance of it is zero while the diode D has no
drop voltage.

Assumption 3. All the passive elements are ideal.

Assumption 4. The working pressure of PEMFC is presented at PH2 = 20,265 Pa, PAir = 101,325 Pa.
In addition, T = 333.15 K, a high efficiency operation temperature is used.

In practice, there may be parametric uncertainties and disturbance injections existing
in the average model. A practical model is considered as [39]:{ diL

dt = 1
L0+∆L (ug(uiL)− vo)

dvo
dt = 1

C0+∆C

(
iL − vo

R0+∆R

) (5)

where L0, C0, and R0 are the nominal values of L, C, and R, respectively. ∆L, ∆C, and ∆R
are variations of L, C, and R, respectively.

Assumption 5. The variations of L, C, and R are not measurable and unknown. ∆L, ∆C, and ∆R
are bounded by positive constants Lm, Cm, and Rm, respectively. That is:

|∆L| ≤ Lm, |∆C| ≤ Cm, |∆R| ≤ Rm (6)

The parameters of DC/DC buck converter and PEMFC system are listed in Table 1.

Table 1. The parameters of DC/DC buck converter and PEMFC system.

Parameters Value Unit

PEMFC power (Pfc) 100 W
Number of cells (N) 20 -

Thickness of the membrane (lfc) 0.0178 cm
Area of the membrane (Afc) 22.5 cm2

Inductor (L0) 470 mH
Capacitor (C0) 1000 µF

Constant resistance (R0) 2.05 × 10−2 Ω

3. Adaptive Control of PEMFC Power Supply

To handle the nonlinearity and uncertainties of PEMFC power supply, an adaptive
control based on backstepping SMC and RBFNN estimation is proposed. A SMC controller
is firstly designed in this section. An adaptive backstepping SMC is then introduced.
Finally, the RBFNN estimator for parametric uncertainties and external disturbance is
developed. The proposed controllers meet the demands of the Lyapunov stability theory.

3.1. Model of PEMFC

The control law of SMC is selected in the form of:

u =
1
2
[1− sign(s)] (7)

where s = iL − iL,re f .
Then, the derivation of s can be obtained by:

.
s = − 1

L
vo +

1
2
[1− sign(s)]

v f c

L
(8)

where, in the case of s > 0, sign(s) = 1,
.
s = − 1

L vo ≤ 0; when s < 0, sign(s) = −1,
.
s = − vo−v f c

L ≥ 0, since the output load voltage of the buck converters is smaller than the
input voltage. Therefore, the inductor current control is manipulated by the control law
represented by Equation (7) satisfying the Lyapunov stability condition (

.
V ≤ 0). Moreover,
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the output voltage regulation can be calculated by the indirect current controller according
to the equations in [43].

3.2. Adaptive SMC Design

In order to address the nonlinearity of PEMFC, the control plant backs up to subsys-
tems z1 and z2, which is combing with SMC to formulate backstepping SMC.

Assumption 6. The desired value iL,ref and vo,ref are bounded and have n-order derivative. Mean-

while, IL,re f =
[

iL,re f
.
iL,re f · · · i(n)L,re f

]T
and Vo,re f =

[
vo,re f

.
vo,re f · · · v(n)o,re f

]T
are

bounded.

Remark 1. If there is an i under a certain parameter, it represents the parameter used in current
regulating, and the same as v, i.e., ci is the parameter c used in current regulating and p is the
parameter pv used in voltage regulating.

Lemma 1. If f(x) is a uniformly continuous function and limt→∞
∫ t

o f (x)dx exists, then f(x)
converges to zero asymptotically.

The tracking errors z1 are defined as below, where z1,i and z1,v denote current error
and voltage error, respectively:

z1,i = iL − iL,re f (9)

z1,v = vo − vo,re f (10)

To ensure the stability, define the first Lyapunov function V1:

V1,i =
1
2

z2
1,i (11)

V1,v =
1
2

z2
1,v (12)

The virtual control values p is represented by:

pi = αiz1,i (13)

pv = αvz1,v (14)

where αi and αv are positive constants. Via the virtual control values, the second backstep-
ping variables z2 can be obtained by:

z2,i =
.
iL −

.
iL,re f + pi (15)

z2,v =
.
vo −

.
vo,re f + pv (16)

The derivative of V1 is expressed as:

.
V1,i = −αiz1,i

2 + z1,iz2,i (17)

.
V1,v = −αvz1,v

2 + z1,vz2,v (18)

Then, the sliding manifolds s are selected as:

si = βiz1,i + z2,i (19)

sv = βvz1,v + z2,v (20)

where βi, βv are positive constants.
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To guarantee the stability and to maintain iL and vo on the sliding manifolds, the
second Lyapunov function V2 are defined as:

V2,i = V1,i +
1
2

s2
i (21)

V2,v = V1,v +
1
2

s2
v (22)

The control law u is formulated by:

.
ui = − L0

v f c
{βi(−αiz1,i + z2,i) − 1

L0C0
+ 1

L0C0R0

+
uiv f cαi−αi

L0
− αi

.
iL,re f −

..
iL,re f + mi[si + nisign(si)]

} (23)

uv = − L0C0
gv f c

{
βv(−αvz1,v + z2,v)− 1

L0C0
− 1

R0C2
0
+ 1

R2
0C2

0

+ αviL
C0
− 1

R0C0
− αv

.
vo,re f −

..
vo,re f + mv[sv + nisign(sv)]

} (24)

where m and n are positive constants.
The derivative of V2 can be obtained by:

.
V2,i = −αiz2

1,i + z1,iz2,i −mis2
i −mini|si|+ Mi

= −ZT
i

[
αi + miβ

2
i − 1

2 + miβi
− 1

2 + miβi mi

]
Zi −mini|si|+ Mi

= −ZT
i ΛZi −mini|si|+ Mi

(25)

Similarly,
.

V2,v = −ZT
v PZV −mvnv|sv|+ Mv,

where P =

[
αv + mvβ2

v − 1
2 + mvβv

− 1
2 + mvβv mv

]
, Zi =

[
z1,i z2,i

]T , Zv =
[

z1,v z2,v
]T ,

αi + miβ
2
i > 0, αv + mvβ2

v > 0, Mi and Mv can be regarded as disturbance caused by ∆L,
∆C, and ∆R.

To make Λ and P positive define matrix, α, m and β, are satisfying:

αm− 1
4
+ mβ > 0 (26)

According to Assumption 5, ∆L, ∆C, and ∆R are limited by Lm, Cm, and Rm, respec-
tively. Thus, the maximum values of Mi and Mv are bounded by Mi and Mv.

Then: .
V2,i = −ZT

i ΛZi −mini|si|+ Mi ≤ −mini|si|+ Mi (27)
.

V2,v = −ZT
v PZV −mvnv|sv|+ Mv ≤ −mvnv|sv|+ Mv (28)

m and n are limited by:
.

V2 ≤ −mn|s|+ M ≤ 0 (29)

By integrating Equation (29), yields:

∞∫
0

(mn|s| − M
)
dx ≤

∞∫
0

−
.

V2dx = V2(0)−V2(∞) < ∞ (30)

where lim
x→∞

t∫
0

(
mn|s| −M

)
dx is bounded, according to Lemma 1, mn|s| −M converges to

zero when t→∞. In other words, it converges to zero asymptotically. Therefore, the system
is asymptotically stable.
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Furthermore, the adaptive laws are proposed to estimate parametric variations. L̂, Ĉ,
and R̂ are defined as the estimations of L, C, and R, respectively.

Then, the model denoted by Equation (5) can be estimated by:{ .
iL = ξT

1 ϑ̂
.
vo = ξT

2 ϑ̂
(31)

where ξ1 =
[

v f cu− vo 0 0
]
, ξ2 =

[
0 iL −vo

]T , ϑ̂ =
[

1
L̂

1
Ĉ

1
R̂Ĉ

]
.

The second backstepping variables e2 is defined as:

e2,i = z2,i − ξT
1 ϑ̃ (32)

e2,v = z2,v − ξT
2 ϑ̃ (33)

where ϑ̃ = ϑ− ϑ̂.
The sliding manifold w is selected as:

wi = γiz1,i + e2,i (34)

wv = γvz1,v + e2,v (35)

where γi and γv are positive constants.
Define the second Lyapunov function A2:

A2i = V1i +
1
2

e2
i (36)

A2v = V1v +
1
2

e2
v (37)

To estimate ϑ̂, define the third Lyapunov function A3:

A3,i = A2,i +
1
2

ϑ̃TΨi
−1ϑ̃ (38)

A3,v = A2,v +
1
2

ϑ̃TΨv
−1ϑ̃ (39)

where Ψi and Ψv are positive definite matrix.
To eliminate the estimation error ϑ̃ existing in Equations (38) and (39), the adaptive

laws
.
ϑ are formulated by:

.
ϑ̂i = Ψi

[
ς1,i + wi

(
γiξ1 + αiξ1 − ϑ̂1ξ2

)]
(40)

.
ϑ̂v = Ψv

[
ς1,v + wv

(
γvξ2 + αvξ2 − ϑ̂3ξ2 + ϑ̂2ξ1

)]
(41)

Then, the control law is calculated by:

.
ui = − 1

v f c ϑ̂1
{γi(−αiz1,i + e2,i) + ui

.
g(uiiL)ϑ̂1 −

.
ϑ1ξT

2 ϑ̂1

+αiξ
T
1 ϑ̂ + ξT

1

.
ϑ̂− αi

.
iL,re f −

..
iL,re f + ai[wi + bisign(wi)]

} (42)

uv = − 1
v f c ϑ̂1ϑ̂2

{
γv(−αvz1,v + e2,v)− voϑ̂2ϑ̂1 − ϑ̂3ξT

2 ϑ̂

+αvξT
2 ϑ̂ + ξT

2

.
ϑ̂− αv

.
vo,re f −

..
vo,re f + av[wv + bvsign(wv)]

} (43)

where a and b are positive constants.
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Substitute Equations (40)–(43) into derivative of Equations (38) and (39),
.
A3 can be

obtained by:

.
A3,i = −αiz2

1,i + z1,ie2,i − aiw2
i − aibi|wi|

= −ZT
i

[
αi + aiγ

2
i − 1

2 + aiγi
− 1

2 + aiγi ai

]
Zi − aibi|wi| − z1,iξ

T
1 ϑ̃

= −ZT
i TZi − aibi|wi| − z1,iξ

T
1 ϑ̃

(44)

Similarly,
.
A3,v = −ZT

v YZv − avbv|wv| − z1,vξT
2 ϑ̃ (45)

where Y =

[
αi + avγ2

v − 1
2 + avγv

− 1
2 + avγv av

]
.

If α, a, and γ are satisfying αa− 1
4 + aγ > 0, the matrix T and Y are positive define

matrix. Then, .
A3,i ≤ −aibi|wi| − z1,iξ

T
1 ϑ̃ (46)

.
A3,v ≤ −avbv|wv| − z1,vξT

2 ϑ̃ (47)

Moreover,

z1,iξ
T
1 ϑ̃ =

(
iL − iL,re f

)(
v f c − vo

)( 1
L0 + ∆L

− 1
L̂

)
(48)

z1,vξT
2 ϑ̃ =

(
vo − vo,re f

)[
iL

(
1

C0 + ∆C
− 1

Ĉ

)
− vo

(
1

(R0 + ∆R)(C0 + ∆C)
− 1

R̂Ĉ

)]
(49)

According to Assumption 5,−z1,iξ
T
1 ϑ̃ and−z1,vξT

2 ϑ̃ are bounded, and the upper bound
are defined as:

− z1,iξ
T
1 ϑ̃ ≤ Ni (50)

− z1,vξT
2 ϑ̃ ≤ Nv (51)

If a and b are satisfied as:
Ni − aibi|wi| ≤ 0 (52)

Nv − avbv|wv| ≤ 0 (53)

Then: .
A3,i ≤ Ni − aibi|wi| ≤ 0 (54)
.
A3,v ≤ Nv − avbv|wv| ≤ 0 (55)

Yielding,
∞∫

0

(av|w| − N
)
dx ≤

∞∫
0

−
.
A3dx < ∞ (56)

According to Lemma 1, ab|w| −N converges to zero. The system is stable asymptotically.

3.3. RBFNN Estimation

The nonlinear estimator based on the RBFNN is developed to deal with the compli-
cated perturbations. The control schematic diagram is shown in Figure 2, and x represents
iL or vo when inductor current or load voltage is regulated.
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Figure 2. RBFNN estimation control schematic diagram.

Lemma 2. RBFNN can model the unknown and continuous function f(X): Rl → R with an ideal
weight vector ω* ε Rn, the basic function vector Φ(X) =

[
ϕ1(X) . . . ϕn(X)

]T . f(X) is
described by RBFNN as:

f (X) = W ∗T Φ(X) + d (57)

where d is an approximation error bounded by |d| ≤ d. W∗ =
[

ω∗1 . . . ω∗n
]T , ω* is denoted

as the weigh to minimize the norm of approximation error for all X ∈ Ω ⊂ Rl , expressed by:

ωj∗ = argmin
ω̂∈Ω

{
sup
X∈Ω

∣∣∣ f (X)−ω̂T ϕ(X)
∣∣∣}, j = 1, 2, . . . n (58)

where Ŵ ∈ Rn is the estimation of RBF optimal weight vector W∗. The Gaussian function is chosen
as the basic function,

ϕj(X) = exp

(
−
||X− κj||

θ2
j

)
, j = 1, 2, .., n (59)

where κj is the position of the j-th neuron, θj is the center width of the j-th neuron.

The approximation of f (X) is given by:

f̂ (X) = ŴTΦ(X) (60)

and for the system f̂ (X) = ϑ̂(X, ω̂) =
[

1
L̂

1
Ĉ

1
R̂Ĉ

]T
.

Determine the inputs of RBFNN by:

Xi =
[

iL
.
iL

]T
(61)

Xv =
[

vo
.
vo
]T (62)

The estimations are formulated by:

ϑ̂q = Ŵq
TΦq(X) (63)
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where Ŵq =
[

ω1,q · · · ωn,q
]T and Φq(X) =

[
ϕ1,q(X) · · · ϕn,q(X)

]T , q = 1, 2, 3.
Define Lyapunov function B3:

B3 = A2 +
1

2χ1
W̃a

TWa +
1

2χ2
W̃b

TWb +
1

2χ3
W̃c

TWc (64)

where χr (r = 1, 2, 3) are positive constants, W̃ = W∗ − Ŵ.

The weight vector adaptive laws
.

Ŵ and control laws u are selected as:

.
Ŵa,i = wiχ1,iΦa,i

[
ui

.
v f c +

.
uiv f c − ϑ̂1iL + voϑ̂3 + αi(ui

.
v f c)− αivo

]
(65)

.
Ŵb,i = −wiχ2,iΦb,iϑ̂1iL (66)

.
Ŵc,i = wiχ3,iΦc,ivoϑ̂1 (67)

.
ui = − 1

v f c ϑ̂1
{γi(−αiz1,i +e2,i) + ui

.
v f cϑ̂1 − ϑ̂1ϑ̂2iL + ϑ̂1ϑ̂3vo

+ϑ̂1αi

( .
v f cui − vo

)
−αi

.
iL,re f −

..
iL,re f + ai[wi + bisign(wi)]

} (68)

.
Ŵa,v = wvχ1,vΦa,v

(
v f cuv − vo

)
ϑ̂2 (69)

.
Ŵb,v = wvχ2,vΦb,v

(
v f cuv − vo

)
ϑ̂1 − iLϑ̂3 + αviL (70)

.
Ŵc,v = wvχ3,vΦc,v

(
−iLϑ̂2 − αvvo

)
(71)

uv = − 1
v f c ϑ̂2ϑ̂1

{γv(−αvz1,v + e2,v) − voϑ̂2ϑ̂1 + voϑ̂3
2 − iLϑ̂2ϑ̂3

+αviLϑ̂2 − αvvoϑ̂3 − αv
.
vo,re f −

..
vo,re f +av[wv + bvsign(wv)]}

(72)

Similar to Equations (44)–(56), the stable solutions can be found. Compared to
Equations (40) and (41), the uncertainties and disturbances are estimated via nonlinear
Gaussian function Φ(X). The approach can improve the accuracy of the estimation even
complicated perturbations occurring.

4. Simulation and Discussion

Numerical simulation and experimental tests are carried out on PEMFC power supply
for the proposed controllers and observers under the given test conditions listed in Table 2.

Table 2. Parameters of the test conditions.

Test Conditions
Parameters with Time

Setpoints Load Resistor

Condition 1: current transient response iL,ref = 4 A R = 3 Ω

Condition 2: step response for different current iL,ref = 2 A @ [4,6] s; iL,ref = 4 A at
other time R = 3 Ω

Condition 3: step response for different voltage vo,ref = 8 V @ [4,6] s; vo,ref = 12 V at
other time R = 3 Ω

Condition 4: disturbance injection in current control iL,ref = 4 A R = 0.5 Ω @ [0.88, 2.2] s; R = 2 Ω at
other time

Condition 5: disturbance injection in voltage control vo,ref = 12 V R = 3 Ω @ [1.6, 2.8] s; R = 5 Ω at
other time

H-100 PEMFC with 100 W rate power is selected to feed DC/DC buck converter to
configure the power supply, and L0 = 470 µH and C0 = 1000 µF are the nominal values of
the converter. The test conditions are mainly used for checking the transient response and
the tracking performance as well as the robustness against uncertainties and disturbances.
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The results of different control techniques in Condition 1 are shown in Figure 3. The
simulation analysis results show that the response time of the output current controlled
by backstepping SMC (BSMC) is the fastest, but the overshoot of the output current is
obvious. The response time of the output current controlled by SMC is 0.014 s, which is
similar to the control result of adaptive backstepping SMC (ABSMC). Compared with RBF
control performance, it is 0.011 s slower. In addition, from the response stage, the current
controlled by the SMC has an obvious oscillation phenomenon. Regardless of whether it is
considered from the protection of the life of the fuel cell or the utilization of electric energy
on the output side, this phenomenon will have an adverse effect. In contrast, the output
current response stage of ABSMC and RBF control is relatively smooth. At the same time,
the RBF adaptive controller has the advantages of faster response speed, no overshoot, no
overshoot phenomenon in the output voltage, and the fuel cell current/voltage overshoot
range is within an acceptable range.

Figure 3. Simulation results in Condition 1: (a) by different control methods; (b) PEMFC current and
voltage response when regulated by RBFNN.

Moreover, by exploring the sliding manifolds and the associate trajectories in the phase
plane displayed in Figure 4a,b, the typical reaching behaviors of the designed controllers
were manifested, and the RBFNN presented a high convergence precision.

Figure 4. Current control transient response: (a) sliding manifold S; (b) S vs. dS/dt.

In Condition 2, the tracking setpoints were abruptly changed at the constant load
condition. The load was rapidly changing from 4 A to 2 A at 4 s and 2 A to 4 A at 6 s. The
current controlled by the SMC and ABSMC has an obvious oscillation phenomenon. The
controller with RBFNN indicates the best performance (see Figure 5), where the settling
time in current tracking control is 0.002 s and 0.005 s in output voltage tracking control. In
Condition 3 and 4, the tracking setpoints were abruptly changed at the constant load condi-
tion, the controller with RBFNN indicates the best performance (see Figures 6 and 7), where
the settling time in current tracking control is 0.002 s and 0.006 s in output voltage tracking
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control, without overshoot and undershoot. Additionally, small chattering problems on
PEMFC voltage and current were observed when SMC acted, and small undershoots on
PEMFC current were caused by tracking step-down reference voltage governed by adaptive
controllers. Due to the load demand changing, the PEMFC operation point may vary to
adapt for the converter desired output voltage or current.

Figure 5. Simulation results in Condition 2: (a) by SMC; (b) by adaptive backstepping SMC; (c) by
RBFNN; (d) inductor current controlled by different control methods, enlarged view at 4 s.

Figure 7a,b exhibited the simulation results regulated by the adaptive backstepping
SMC and RBFNN, respectively. In the adaptive backstepping SMC, the settling time in
current tracking control is 0.0015 s. The maximum overshoot is about 3% (0.12 A), and the
maximum undershoot is about 2% (0.08 A). In addition, depending on RBFNN estimation,
the overshoots and undershoots are almost eliminated.

The external disturbance estimation was presented in Figure 8a where the load was
rapidly changing from 5 Ω to 3 Ω at 1.6 s and 3 Ω to 5 Ω at 2.8 s as the Condition 5 depicted.
The traditional adaptive law and RBFNN achieved resistance estimation; however, the
traditional scheme led in large overshoot or undershoot of resistance that might postpone
output reach to setpoint as illustrated in Figure 8b. In the adaptive backstepping SMC, the
maximum overshoot is about 14.2% (1.7 V), and the maximum undershoot is about 12.5%
(1.5 V). In the RBFNN, the maximum overshoot is about 5.8% (0.7 V), and the maximum
undershoot is about 1.7% (0.2 V). Furthermore, to investigate the structural parameters
variation caused by perturbations on the inductor and capacitor of the power supply, the
traditional adaptive law and RBFNN are also compared. The simulation profiles of L and
C were shown in Figure 8c–e, the estimations based on RBFNN matched the real profiles
of both L and C well. Additionally, the output voltage tracking control in the cases of L or
C variations via the proposed methods demonstrated good performance. The results of
comparison tests under Conditions 1–5 are presented in Table 3.
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Figure 6. Simulation results in Condition 3: (a) by SMC; (b) by adaptive backstepping SMC; (c) by
RBFNN; (d) output voltage controlled by different control methods, enlarged view at 6 s.

Figure 7. Simulation results in Condition 4: (a) by adaptive backstepping SMC; (b) by RBFNN.

Table 3. Control comparison results under Conditions 1–5.

Conditions Methods
Settling Time (s) RSME

Current Voltage Current Voltage

Condition 1
ABSMC 0.014 / 0.6317 /
RBFNN 0.003 / 0.2836 /

Condition 2
ABSMC 0.003 / 0.0782 /
RBFNN 0.002 / 0.0232 /

Condition 3
ABSMC / 0.012 / 0.1279
RBFNN / 0.006 / 0.1216

Condition 4
ABSMC 0.015 / / 0.0284
RBFNN 0.001 / / 0.0284

Condition 5
ABSMC / 0.010 0.2018 /
RBFNN / 0.004 0.1794 /
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Figure 8. Simulation results under parametric variations: (a) Condition 5 R estimation (b) Condition
5 voltage response; (c) L estimation; (d) voltage response depending on L profile; (e) C estimation;
(f) voltage response depending on C profile.

5. Experimental Validation

An experimental PEMFC power supply prototype is set up to validate the efficiency of
the proposed control approaches. Besides the H-100 PEMFC and DC/DC buck converter, a
dSPACE DS1104 controller board, M9710 DC electronic load, KXN-3020D DC power source,
and Tektronix MDO3054 digital phosphor oscilloscope comprise the test platform, as shown
in Figure 9. The currents were measured by HCS-LSP hall sensor by the conversion relation
between sensor output voltage Uo and real measured current Ir, i.e., Ir = (Uo−2.5) × 5.
Figures 10 and 11 illustrated the experimental results where Channel 1 to Channel 4
represented inductor current, load current, load voltage, and PEMFC voltage, respectively.
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Figure 9. Experimental test for the power supply prototype.

Figure 10. Transient response: (a) current control by SMC; (b) current control by adaptive backstep-
ping SMC; (c) current control by RBFNN; (d) voltage control by RBFNN.

In Figure 10a,b, the transient responses (tested in Condition 1) of inductor current
tracking control were given, where the traditional SMC presented a chattering phenomenon
and the maximum amplitude was about 4.5 A, and the results of traditional adaptive
backstepping SMC exhibited local chattering. RBFNN-based current and voltage control
results were shown in Figure 10c,d, and their transient performances exhibiting fast settling
time and no overshoot were better than the traditional methods.
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Figure 11. Disturbance change when applying load step: (a) voltage control by adaptive backstepping
SMC; (b) voltage control by RBFNN.

Finally, the load resistance variation experiments (tested in Condition 5) were con-
ducted to examine the disturbance rejection ability. Figure 11 indicated that the adaptive
output voltage controls tracked setpoint, and RBFNN reduced up to 7.5% overshoot and
smoothed PEMFC voltage and inductor current while disturbance was changing.

6. Conclusions

This paper introduces the RBFNN estimation-based adaptive SMC technique for
PEMFC integrated with DC/DC buck converter power supply system. The model of the
presented PEMFC power supply has been introduced, where the state and input disturbance
of the plant are highly coupled. A Gaussian-based RBF neural network adaptive law with
a backstepping SMC scheme is developed according to the defined Lyapunov functions
to handle the parametric uncertainties and disturbance injections, such as buck converter
parameter-varying and PEMFC operation point changing. The comparative study is
carried out to regulate PEMFC power supply current/voltage on H-100 PEMFC supplied
DC/DC buck converter with rapid control prototyping among traditional SMC, adaptive
backstepping SMC, and RBF neural network. The simulation analysis and experimental
results indicate that the proposed method can track the desired current/voltage with
enhanced robustness; for instance, compared with the traditional adaptive law, even with
the abrupt change of load occurring, about 3% overshoot was reduced in the case of
inductor current control simulation, and up to 7.5% overshoot was reduced in output
voltage regulation experimental test. The proposed control system can be applied in
many industrial applications, such as automotive air conditioning and charging energy
storage devices, such as batteries and super-capacitors, with the desired charging current
or terminal voltage.
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Nomenclature

v Voltage (V)
i Current (A)
λ Average water content
P Pressure (Pa)
T Temperature (K)
C Capacity (F)
R Resistance (Ω)
L Inductance (H)
u Control law
p Virtual control values
A Lyapunov function
B Lyapunov function
W Weight
Subscripts
0 Nominal value
act Activation
Air Air
C Capacitor
con Concentration
ohm Ohmic
fc Fuel cell
H2 Hydrogen
i Used in current regulating
O2 Oxygen
ref Reference
v Used in voltage regulating
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