
����������
�������

Citation: Sur, G.; Ryu, S.Y.; Kim, J.;

Lim, H. A Deep Reinforcement

Learning-Based Scheme for Solving

Multiple Knapsack Problems. Appl.

Sci. 2022, 12, 3068. https://doi.org/

10.3390/app12063068

Academic Editor: Byung-Gyu Kim

Received: 15 February 2022

Accepted: 14 March 2022

Published: 17 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Deep Reinforcement Learning-Based Scheme for Solving
Multiple Knapsack Problems
Giwon Sur 1 , Shun Yuel Ryu 2, JongWon Kim 3 and Hyuk Lim 1,*

1 Korea Institute of Energy Technology (KENTECH), Naju-si 58217, Korea; gwsur@kentech.ac.kr
2 Defense AI Technology Center, Agency for Defense Development (ADD), Daejeon 34186, Korea;

rsy10@add.re.kr
3 AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;

jongwon@gist.ac.kr
* Correspondence: hlim@kentech.ac.kr

Abstract: A knapsack problem is to select a set of items that maximizes the total profit of selected
items while keeping the total weight of the selected items no less than the capacity of the knapsack.
As a generalized form with multiple knapsacks, the multi-knapsack problem (MKP) is to select a
disjointed set of items for each knapsack. To solve MKP, we propose a deep reinforcement learning
(DRL) based approach, which takes as input the available capacities of knapsacks, total profits and
weights of selected items, and normalized profits and weights of unselected items and determines
the next item to be mapped to the knapsack with the largest available capacity. To expedite the
learning process, we adopt the Asynchronous Advantage Actor-Critic (A3C) for the policy model.
The experimental results indicate that the proposed method outperforms the random and greedy
methods and achieves comparable performance to an optimal policy in terms of the profit ratio of
the selected items to the total profit sum, particularly when the profits and weights of items have a
non-linear relationship such as quadratic forms.

Keywords: knapsack problem; deep reinforcement learning; profit maximization

1. Introduction

A knapsack problem is one of combinatorial optimization problems. Extending the
single knapsack problem, the multiple knapsack problem (MKP) is a problem that finds
disjoint subsets to maximize the total profit in knapsacks. In a nutshell, each subset can be
distributed to different knapsacks, as long as the total weight of each subset is equal to or
less than the capacity of the corresponding knapsack. MKP is formulated as follows:

max
x ∑

j
∑

i
pixij

subject to ∑
i

wixij ≤ cj, ∑
j

xij ≤ 1

for ∀i ∈ I, ∀j ∈ J, xij ∈ {0, 1}

(1)

where J is the pool of knapsacks, I is the pool of items, pi is the profit of the i-th item, wi is
the weight of the i-th item, and xij is a decision variable to indicate whether the i-th item is
selected to be put in the j-th knapsack. The exact method has the computational complexity
of O((J + 1)|I|).

MKP arises in substantial real-world cases like vehicle/container loading, production
scheduling, and resource allocation in the computer network systems [1,2]. Lahyani et al. [2]
formulated production scheduling as MKP. It deals with assigning items to a period of
the production schedule to maximize the profit of production and minimize the cost
keeping the constraint of capacities. Kumaraguruparan et al. [3] formulated scheduling

Appl. Sci. 2022, 12, 3068. https://doi.org/10.3390/app12063068 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12063068
https://doi.org/10.3390/app12063068
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8085-3174
https://orcid.org/0000-0002-9926-3913
https://doi.org/10.3390/app12063068
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12063068?type=check_update&version=2

Appl. Sci. 2022, 12, 3068 2 of 18

appliances as MKP in smart grid infrastructure. To minimize electricity bills in a household,
it considers an appliance as an item, its energy consumption as weight, and the time
period as a knapsack. Ketyko et al. [4] formulated a multi-user computation offloading
problem as MKP. To maximize the profit of user equipment, it considers user equipment as
items, requested CPU as weights, and CPU capacities of mobile edge computing server as
capacities of knapsacks. Cappanera et al. [5] formulated Virtual Network Functions (VNF)
placement problems as MKPs. It considers a data center as a knapsack, a service request as
an item, and the quantity of the service requests as weight. Then, it solves the problem to
maximize the total priority level of the requests. In various application fields, solving MKP
with high performance in practical time to maximize revenue is unavoidable.

In MKP, there is a trade-off between empirical performance and reduced computa-
tional complexity. Note that MKP is an NP-hard problem [6]. Traditional approaches, such
as heuristic or genetic algorithms, focus on reducing their computational complexity. These
days, the development of deep neural network (DNN) accelerates the application of Ma-
chine Learning (ML) to various engineering problems. Reinforcement Learning (RL), one
type of ML, is an experience-driven method that makes autonomous agents solve decision-
making problems [7]. Deep reinforcement learning (DRL) has been applied not only to
robot movement [8] and games such as AlphaGo [9] but also to discrete combinatorial opti-
mization problems [10–15]. DRL agents trained with DNN can solve the high dimensional
problems in a reasonable amount of time [2,16,17]. Recently, traveling salesman problem
(TSP) and knapsack problem have been solved not only with supervised learning [10,18],
but also with RL [11,19]. DRL with experience replay can be applied to the MKP problem
because it can deal with various combinations of items and knapsacks in real-time without
predefined massive data for training. In the literature, there are some approaches that solve
a single knapsack problem, but there are lack of approaches for MKPs [10,11,19].

In this paper, we propose a DRL-based method to solve MKP. The proposed DRL
method solves MKP by exploiting an existing Markov Decision Process (MDP) model for
single knapsack problem in [11] and devising a novel capacity-aware knapsack selection
method for MKP. Each state represents a separate problem state, and the agent’s action
decides which item to be mapped to a knapsack with the greatest capacity. As a result, the
proposed method makes a solution for an MKP by combining sequential actions made by
an agent in each state. Our main contributions are as follows:

• We propose a DRL-based method to solve MKP, in which the DNN model is exten-
sively trained with various combinations of random items and knapsacks. The trained
single DNN model has the capability of solving diversified MKPs with untrained
instance sets of items and knapsacks.

• We simplify the action space for MKP to make it possible to train the model in a
scalable manner. The proposed method combines greedy sorting algorithms with the
DRL training process, and the size of the action space is fixed to the number of items
regardless of the number of knapsacks. It simplifies state transition pattern so that the
agent can identify a change in the environment quickly during the training process.

• We adopt the Asynchronous Advantage Actor-Critic (A3C) [20] to expedite the learn-
ing process for DNN model. The training is performed asynchronously with multiple
learners. A global model is shared with each learner, which contributes to the global
model updating at the end of each episode.

• The experiments show that the DNN model can be successfully trained in a variety
of configurations in terms of the number and capacity of knapsacks, and the number,
weight, and profit of items. It is demonstrated that even when the weight and profits
of items have a nonlinear relationship, the proposed method achieves comparable
performance to an optimal policy.

The remainder of this article is organized as follows. In Section 2, we will summarize
existing work on knapsack problems. In Section 3, we introduce a DRL method with a
sorting algorithm for solving MKP. Section 4 compares our method with other baseline

Appl. Sci. 2022, 12, 3068 3 of 18

methods by evaluating computational results on random, linear, and quadratic instances.
Finally, we conclude this paper in Section 5.

2. Related Work
2.1. Conventional Algorithms for Knapsack Problems

To reduce the complexity of an exact algorithm, heuristic algorithm and evolutionary
algorithm solve single or multiple knapsack problems in a relaxed and greedy manner.

2.1.1. Exact Algorithms and Heuristic Algorithms

Martello and Toth proposed MTM, which is a branch and bound-based exact algorithm.
The process of MTM includes surrogate relaxation and lower bounds which find an optimal
solution heuristically for the current single knapsack one by one [6]. Mulknap is a branch
and bound-based exact method proposed by Pisinger, which employs surrogate relaxation
for upper bounds and the subset-sum problem for lower bounds. [21]. Martello and Toth
proposed MTHM, which is introduced as a polynomial-time approximate solution. The
summed process is composed of greedy mapping, rearrangement using reordering, swap-
ping items between two knapsacks, replacing one item with a subset of unassigned items. It
derives the computational complexity O(|I|2) [6]. For solving setup MKP, Lahyani et al. [2]
proposed a matheuristic method. It generates heuristic-based solutions and tabu lists using
period and class exchange. Dell’Amico et al. [22] developed a hybrid exact algorithm which
combines Mulknap with decomposition method. It calls Mulknap algorithm (branch and
bound-based algorithm) for τ seconds and iterates decomposition ν times.

2.1.2. Genetic Algorithm and Evolutionary Algorithm

Genetic algorithm (GA) is a representative approach to get a local optima using ran-
dom search. The basic process of GA is as follows: (1) initially generate random solutions
(2) evaluate solutions by their fitness value (3) select two parent solutions (4) regenerate so-
lutions using genetic operator (crossover, mutation) [23]. Khuri et al. [24] used GA to solve
0/1 MKP. It generates initial random solutions and employs genetic operators (selection,
crossover, and mutation) proportionally. The algorithm comes up with a solution toward
maximizing fitness value which is total profit minus overfilled weights. Falkenauer [25]
proposed the Grouping Genetic Algorithm (GGA) to solve bin packing problems. In GGA
process, it initially generates population using copy and crossover. Fukunaga [26] proposed
UGGA, which iteratively calls Fillundominated in the initialization stage of GGA. Fillun-
dominated is an algorithm that finds an item to replace a subset of a knapsack with the
same or greater weight than the subset’s total weight and the same or greater profit than the
subset’s total profit. Kim and Han proposed Quantum-inspired Evolutionary Algorithm
(QEA) to solve a single knapsack problem. QEA can generate a diversified population
because Q-bit has a linear superposition of binary states [27]. In the process, the algorithm
observes the state of quantum bits and iteratively compares the current solution with
the previous.

2.2. Combinatorial Optimization with ML

Machine learning’s approximation reduces large amounts of calculations in decision-
making problems. Various types of DNN based approaches such as Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN) have been applied to solving a
variety of optimization problems.

2.2.1. Combinatorial Optimization Problem (COP) with Pointer Network

Vinyal et al. [18] introduced pointer networks with RNNs to solve geometric problems.
Two separated Long Short-Term Memory models (LSTM) RNNs are used; one is an encoder
that encodes input sequence and the other is a decoder that derives output’s probability
sequentially. Therefore, it can be applied to a problem in which output length depends on
the length of the input sequence, such as selecting a point to visit at each time from a set

Appl. Sci. 2022, 12, 3068 4 of 18

number of points to visit. Bello et al. [19] applied pointer networks to A3C method to solve
not only TSP but also single knapsack problems. The output of the decoder selects an item
in each iteration time. The experiments for single knapsack problems use instances with
fixed capacity in both training and test. Gu et al. [10] used pointer networks to solve single
knapsack problems. Each Pointer is considered as an item and 0 indexed pointer means
the end of the selected item. It employed a supervised loss function with a cross-entropy
objective. Hu et al. employed pointer networks and DRL to solve 3D bin packing problems.
The experiment result showed that the solution of the proposed method has the smallest
surface area when compared to heuristics [28].

2.2.2. COP with Supervised/Unsupervised Learning

Rezoug et al. [29] proposed a supervised learning-based model to solve multidimen-
sional knapsack problems. The proposed model is updated close to the optimal. It uses
multiple regression including K-Nearest Neighbor (KNN) and Bayesian Automatic Rel-
evance Determination (ARD). The model trained with small instances could solve the
problem with large instances. Garcia et al. [30] designed unsupervised learning KNN to
solve multidimensional knapsack problems. The designed method is a hybrid solution
of KNN and metaheuristics, which are Particle Swarm Optimization (PSO) and Cuckoo
Search (CS).

2.2.3. COP with DRL in MDP

Dai et al. [13] used structure2vec to solve COP in a weighted graph environment with
tagged node state and partial tour length reward to reinforce the policy. Laterre et al. [31]
formulated the process of solving bin packing problems as MDP process with DRL. The
objective function is to minimize the cost. When items are all placed, then it gets 1 over cost
as a reward and a reward buffer measures it by comparing the current reward with the best
reward. The ranked reward is determined based on the evaluation, and it causes finding
out a solution that outperforms the previous one. Olyvia et al. [14] used the Double Deep Q
Network (DDQN) algorithm to solve a 2D bin packing problem. To get maximized empty
space, it reinforces agent according to reward, which is either cluster size × compactness
or a negative constant. The evaluation shows an increase in efficiency and decrease of loss
according to the increase of learning iteration. Afshar et al. [11] proposed a state aggregation
method to solve a single knapsack problem in MDP with Advantage Actor-Critic (A2C)
algorithm. The result shows the proposed method outperforms other methods without
aggregation. Zhang et al. [15] use the attention model to solve Dynamic Traveling Salesman
Problem (DTSP). In DTSP the salesman decides the cities to visit on the travel while new
customers can appear dynamically. Zhang proposed a DRL framework in an MDP where
an agent model is composed of an encoder and a decoder and states are combined with
static state and dynamic state.

3. Proposed Method
3.1. Actor Critic Background

In RL, an agent in a given state selects an action, and the environment returns reward
and next states to the agent. State, action, reward, and next state sets from time t are used
in MDP and can be denoted as the following form: (st, at, rt, st+1). The continuous set
(st, at, rt, st+1) of an episode is called a trajectory. The return value of a trajectory can be
denoted as R = ∑T−1

t=0 γtrt+1. γ is a discount factor less than 1, and rt+1 is a reward caused
by action in time t. The action in a state is determined by a policy which can be deterministic
or stochastic. The goal of RL is to find a policy which maximizes the return value. A value
function is a key role estimating how good the transition from a given state to the target
state is. The value function at st+1 gets the expected accumulated reward from st+1 to the
end of the episode, and it can be denoted by V(st+1) = E[Rt+1].

There are two representative RL methods for a policy of an agent; value-based and
policy-based. In a value-based learning, the policy is determined by the value functions.

Appl. Sci. 2022, 12, 3068 5 of 18

The estimation of the value function in a certain state is derived by updating it using
the expected return values of the candidate states from the very next step. As a result,
many iterations are required to get a converged expected accumulated reward at the first
time step. Compared to the previous method, policy-based learning allows the policy to
converge quickly without many iterations using a converged expected accumulated reward.
One of policy-based learning, the policy gradient (PG) method directly updates the policy
which has differential parameters toward maximizing the expected return value as follows:

J(θ) = Eπθ
[R0] (2)

∇θ(J) = Eπθ
[∇θ |Rt log πθ(at, st)] (3)

In (2), πθ denotes the policy of the action following parameterized vector θ. The
objective function J(θ) is equal to the expected return value got by πθ at time 0. To find
πθ maximizing J(θ) is the fundamental goal. In (3), ∇θ(J) is the partial derivative of J(θ)
in (2) with respect to θ. Rt is the return value in time t. By utilizing log-derivative trick,
the sampled return value from an episode is directly used to update the policy, and it
can cause the increase of the variance. An actor-critic algorithm can reduce the variance
by substituting the estimated value per step. The estimated value can approximate a
baseline and it can be denoted as VθV (st) ≈ b(st). The actor indicates a policy updated
by PG method, and the critic is an approximated value, which estimates the return value
by the actor.

3.2. System Model

Our work proposes state, action, and reward in MDP for solving an MKP by referring
to and modifying parts of the existing work [11]. The state transition is deterministic here
and the next state is decided by the current state and action.

State: The proposed state has profit and weight information on at most N items to be
selected, and the capacity information of all knapsacks. Figure 1 shows the proposed states
of MKP. Let |I| denote the number of items to be selected. Then, it indicates the number
of problems for the agent to solve by selecting a single item at each time. Let cj denote
the j-th largest capacity in the state. Each of the knapsack problems has a different target
number, which is the number of not-fully-occupied knapsacks that can take more items.
Because the target number of the knapsack is single, Afshar et al. [11] use one capacity
field, whereas our method can use one or more capacity fields because we target not only a
single knapsack but also multiple knapsacks. In Figure 1, it is assumed M is equal to the
number of the knapsack. There are M capacity fields, which correspond to c1, c2, c3, · · · ,
cM and are sorted in descending order of the capacity size. At the first, c1 with the largest
size of the capacity is located, at the second, c2 with the second largest size of the capacity
is located, and at the last, cM with the smallest size of capacity is located. In Figure 1, ∑i pi
and ∑i wi are the summed profit of items and the summed weight of items, respectively.
In the following, profits and weights information on the items are listed. Here, pni is a
normalized pi as shown in (4).

pni =
pi

pmax
, (4)

where pi is divided by pmax, which is the maximum size of the given profits. The pairs
of pni and wi/c1 are listed in descending order of pi

wi
value (i ∈ I). In the fields of each

item, pni is located at the first, and wi
c1

is located at the second. As a result, pn1 is located
at the first, and w1

c1
is located at the second. On the third, pn2 is located, and on the fourth

w2
c1

is located. The left items are listed in the same way. If an item is selected for a certain
knapsack or discarded, the state does not have the item’s information anymore. The left
(N − |I|)× 2 fields have zero values.

Action: In action space, there are N actions A = {1, ..., N}. An action a ∈ A implies
that the a-th item in item set I is selected and is put into the knapsack that has a maximum

Appl. Sci. 2022, 12, 3068 6 of 18

capacity c1. Note that the size of action space is fixed to N regardless of the number
of knapsacks.

Figure 1. State of multiple knapsack problem.

Reward functions: If the agent’s action successfully allocates the item to the knapsack,
the environment returns a positive reward. When the item’s weight exceeds the capacity of
the target knapsack, a negative reward is given. When the chosen action is greater than the
number of remaining items and an already chosen item is chosen, a fatal negative reward
is given compared to the previous negative case. The proposed reward value is given by

rt =

pni, wi ≤ cj

−η, wi > cj

−ξ, a ≥ |I|.
(5)

Our reward value is different from that in [11], which is given by

r̂t =

pi

wi ·c , wi ≤ c

−wi
c , wi > c

−c, a ≥ |I|.
(6)

In the first case, the reward is set to pni without considering the effect of weight and
capacity so that the objective is closer to the MKP’s objective function in (1). In the second
reward case of -η, we remove the effect of the weight of the violated item on the reward
because the only thing the agent needs to know is whether the weight exceeds the capacity
or not. Similarly, in the last reward case of -ξ, the only important thing is whether the item
has already been chosen or not. Hence, we remove the effect of the capacity size compared
with that in [11].

3.3. DRL Approaches

Our purpose is to obtain the maximum summed profits within reasonable computa-
tional steps according to the reward functions. To accomplish our purpose, A3C [20,32] is
used for our policy model. The proposed policy model is parameterized by θ for the policy
and θv for the critic’s value function as done in [33]. Using Eπθ

[∇θ | log πθ(s, a)Vθv(st)] = 0,
the expected return value in (2) and its derivative in (3) can be replaced with the expected
advantage value and its derivative, respectively, as follows:

J(θ) = Eπθ
[Aπθ (s, a)] (7)

∇θ(J) = Eπθ
[∇θ | log πθ(s, a)Aπθ (s, a)], (8)

where Aπθ (s, a) denotes advantage got by πθ . The advantage value is obtained by subtract-
ing baseline value from the return value and is given by

Aπθ
t = rt+1 + γVθv(st+1)−Vθv(st). (9)

Note that the above equation in (9) gives one step advantage function.
According to the update interval, we use critic’s estimated value functions for getting

each advantage value. Because Aπθ
t in (9) is same to one step temporal difference (TD) error,

Appl. Sci. 2022, 12, 3068 7 of 18

it can be represented as δ(θt
v). As a result, the expected value of Aπθ (s, a) and expected

value of δ(θt
v) are the same.

Eπθ
[δ(θt

v)] = Eπθ
[Aπθ

t]. (10)

Loss functions are composed of value loss and policy loss. Value loss is a mean squared
error of TDs, and policy loss is negative log πθ(at|st) times constant TD error.

Loss =
1
T

T−1

∑
t=0

(δ(θt
v))

2 + (− log πθ(at|st)[δ(θ
t
v)]). (11)

Under the assumption that the update interval is T, θ is updated according to the loss
function as shown in (11).

3.4. Proposed Algorithm

We use multiple actor-learners to exploit different explorations in parallel to maximize
diversity rather than one actor-learner model. It reduces correlation in accordance with a
time in a single learner’s update method. Furthermore, it can shorten the training time and
make the on-policy method more stable [32].

Algorithm 1 shows the asynchronous training process. Multiple subprocesses with
their local model copy the global model’s parameters to the local model before starting the
following episode. After the end of each episode and learning process of Algorithm 2, the
global model’s parameters are updated to the trained local model’s.

Algorithm 1 Asynchronous process
Input: N (the number of items), M (the number of knapsacks), AL (the number of actor-
learners)
Output: Trained global model

1: Initialize a policy network πθ(at|st) with parameters θ for global model and value
function Vθv(st) with parameters θv

2: Processmax = AL, i = 0
3: while i < Processmax do
4: Process i starts training process
5: end while

Algorithm 2 runs on the process with the actor-critic model. Input is K problem
instances with N items. The total iteration of training episodes is K × R in line 1. In every
iteration, episode i uses the e-th instance in the range between 0 and (K− 1) in line 3. The
number of initial items at each episode is a random integer number between 1 and N. The
initial capacity of each knapsack is a random integer value between the minimum weight
of the item sets and maximum capacity C. While there is at least one candidate item, each
step of an episode iterates. The episode is over when capacities are not sufficient, or overall
items are chosen (selected or discarded), i.e., |I| = 0. An action is always chosen from the
range between 1 and N. In line 12, the agent does an action according to the policy πθ(at|st).
If the chosen item is not selected or discarded yet, and its weight is less than or equal to
c1, then the item is selected for the knapsack. As a result, capacity c1 changes to current
capacity minus the weight of the selected item according to action a (line 15). The item is
classified as selected one and is excluded from the item set I (line 16 and 18). ai denotes an
index of the initial item set. Subsequently, Algorithm 3 is called and constitutes the capacity
features of the next state. The output of Algorithm 2 is decision variables of items for each
instance in K.

Algorithm 3 is a greedy sort algorithm for the very next state following action in
Algorithm 2. This sorts the capacities in the descending order, and it only deals with
capacities that are larger than zero. Therefore, the process creates new sorted capacities
c1, · · · , cV for V ≤ M. Figure 2 shows an example of the sorting process. In state st,
knapsacks are sorted as a, b, c, d according to the initial capacities. The capacities are

Appl. Sci. 2022, 12, 3068 8 of 18

denoted by capaa, capab, capac, and capad. When an item corresponding to the actiont is
selected and the weight constraint condition is satisfied, capaa changes from the existing
capacity to a value reduced by the weight of the item. Assume that the currently changed
capacity of knapsack a is smaller than capab and larger than capac and capad. At this point,
the order of the knapsacks are sorted so that the subsequent state st+1 would contain the
knapsacks’ current capacities that are c1 = capab, c2 = capa

′
a, c3 = capac, and c4 = capad.

For the following action in state st+1, the capacity of b changes, and knapsacks for cj are
sorted again. When capa

′′
a becomes zero in st+2, knapsack a becomes invalid. Then, the

sorting process excludes the knapsack and sorts valid knapsacks whose capacities are larger
than zero.

Algorithm 2 Training process
Input: K problem instances with N items and R repeat number, N (the number of items),
M (the number of knapsacks), C (max capacity)
Output: Trained model, solutions of the K instances

1: Trainingmax = K× R, i = 0
2: while i < Trainingmax do
3: e = i mod K, t = 0
4: d = random integer number 1 ∼ N
5: I = {1, · · · , d}
6: cj = random integer number min(wn, n ∈ I) ∼ C
7: Sort items indicating I according to the profit over weight
8: Call Algorithm 3 for greedy sorting capacities
9: while min(wn, n ∈ I) ≤ c1 do

10: u = 0
11: while u < update interval do
12: Do action a according to the policy πθ(at|st)
13: if a < |I| then
14: if wa ≤ c1 then
15: c1 ← c1 − wa
16: xai ← 1
17: end if
18: I ← (I\{a})
19: end if
20: Call Algorithm 3
21: u← u + 1
22: t← t + 1
23: end while
24: Update global model’s θ and θv using (11)
25: Copy global model to local model
26: end while
27: i← i + 1
28: end while

Algorithm 3 Greedy sort
Input: Capacities and indices of knapsacks indicating c1, · · · , cV
Output: Sorted information of knapsacks indicating c1, · · · , cV

1: Sort capacities of knapsacks indicating c1, · · · , cV
2: j = 1
3: while j ≤ V do
4: cj ← capacity of a knapsack which has the j-th largest capacity
5: j← j + 1
6: end while

Appl. Sci. 2022, 12, 3068 9 of 18

Figure 2. Capacities of knapsacks in each state.

3.5. Constructed Neural Networks

Our parameterized policy model is DNN based model. The DNN model is made
up of one convolution layer with two kernels and two strides, one fully connected layer
with 512 nodes, and one output layer for each actor and critic. The fully connected layer’s
activation function is Rectified Linear Unit (ReLU), and the actor’s output layer’s activation
function is a sigmoid function.

4. Performance Evaluation

The proposed algorithm is programmed using Pytorch. For training the A3C-based
DNN model, we use the discount factor γ near to 1 and a learning rate of 0.0001. The
parameters of the model are initialized as random uniform values within [−0.08, 0.08].
There are three types of problem instances for training the proposed model: random
instances (RI), linear instances (LI), and quadratic instances (QI). Random instances have
uniformly random integer values in the range of [1, 10] for both profit and weight. Linear
instances have the same weight as RI, and profit of them has weight plus random float
value in (0, 1). Quadratic instances have the same weight as RI, and profit of them has
weight× (10− weight) + 1. In the problem instances, knapsack has the same capacity in
10, 20, 40, 80, 100. The number of items is 50, and the number of knapsacks is 1, 3, 5. To deal
with diversified problems, we prepare various models, and each model solves problems
of its type. Each model has one type of item set (one of RI, LI, QI), a fixed number of
knapsacks, (one of 1, 3, 5), and a fixed maximum capacity C (one of 10, 20, 40, 80, 100). In
the case of 5 knapsacks, there are three types of capacity (10, 20, 40) because more than 40
is sufficient to select all items. 1000 data sets are used for each problem instance, and the
model’s parameters are updated each five steps, with the process repeated at least 40 times.
Every test result is executed on a workstation equipped with an AMD Ryzen 9 5900 X
12-Core Processor 3.70 GHz and 32 GB RAM.

The comparable methods for the test are as follows.

• Greedy algorithm: We use a simple greedy algorithm that finds an item that has
maximized profit divided by weight ratio and tries assigning the item to a knapsack
with maximized capacity.

• Random solution: We repeat randomly generating solution of each data 1000 times
and then select a solution that has a maximum profit ratio.

• Gurobi optimizer: We use a mathematical optimization tool Gurobi for optimized solutions.

4.1. Training Process

During training the DNN model, we summed a reward at each step in each episode
and counted the number of steps to end each episode. Figures 3 and 4 show the reward

Appl. Sci. 2022, 12, 3068 10 of 18

and the number of steps, respectively, according to the episode in the first 40,000 episodes.
The x-axis in both figures represents a unit composed of consecutive 1000 episodes.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Episodes (1000)

5000

5500

6000

6500

7000

7500

8000

8500

9000

To
ta
l R

ew
ar
d
of
 E
ac

h
Ep

iso
de

Random Instances

1 Knapsack
3 Knapsacks
5 Knapsacks

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Episodes (1000)

2500

3000

3500

4000

4500

5000

5500

6000

To
ta
l R
ew
ar
d
of
 E
ac
h
Ep
iso
de

Linear Instances

1 Knapsack
3 Knapsacks
5 Knapsacks

(b)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Episodes (1000)

4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

To
ta
l R

ew
ar
d
of
 E
ac

h
Ep

iso
de

Quadratic Instances

1 Knapsack
3 Knapsacks
5 Knapsacks

(c)

Figure 3. DRL training information of reward in episodes. (a) Reward of RI; (b) Reward of LI;
(c) Reward of QI.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Episodes (1000)

7500

10000

12500

15000

17500

20000

22500

25000

27500

30000

Th
e

Nu
m

be
r o

f S
te

ps

Random Instances
1 Knapsack
3 Knapsacks
5 Knapsacks

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Episodes (1000)

10000

12500

15000

17500

20000

22500

25000

27500

30000
Th

e
Nu

m
be

r o
f S

te
ps

Linear Instances
1 Knapsack
3 Knapsacks
5 Knapsacks

(b)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Episodes (1000)

7500

10000

12500

15000

17500

20000

22500

25000

27500

Th
e

Nu
m

be
r o

f S
te

ps

Quadratic Instances
1 Knapsack
3 Knapsacks
5 Knapsacks

(c)

Figure 4. DRL training information of step in episodes. (a) Step of RI; (b) Step of LI; (c) Step of QI.

Figure 3 represents accumulated rewards after each unit of 1000 episodes proceeded.
All three instances show that the accumulated reward during the second unit has a greater
value than the reward accumulated during the first unit. Subsequently, oscillation occurs
mainly caused by randomly given number of items and size of capacities in each episode.
When the emergence of oscillation is considered, it is observed that the accumulated
rewards converge to certain values. In such a way, for RI, LI, and QI, respectively, rewards
converge to 8000, 5000, and 8500 in three knapsacks, and converge to 8500, 6000, and 9000
in 5 knapsacks, respectively.

Figure 4 represents accumulated number of steps during proceeding each unit of
episodes. In Figure 4, it is observed that all three instances get through an enormous
number of steps in the initial 1000 episodes. However, in the second 1000 episodes, they get
through much less number of steps. In one knapsack, the number of steps for all instances
converges to near 10,000. In three knapsacks, each number of steps converges to 17,500
for RI, 20,000 for LI, and values between 15,000 and 17,500 for QI. In five knapsacks, it
converges to values between 17,500 and 20,000 for RI, 20,000 for LI, and values between
15,000 and 17,500 for QI.

4.2. Result of Solutions

In Section 4.1, we observed the trained models get better performance in terms of
reward and number of steps. In this section, we will verify the performance of the trained
models applied to unseen problems. The trained models and baseline methods solved
1000 problems per problem type. The types of problems are discussed in the first paragraph
of Section 4. We calculated the average value based on the profits of the selected items in
the solutions. Tables 1–3 show the profit of selected items divided by the profit of total
items. The optimal result of each instance represents the maximum feasible profit ratio in
each knapsack and capacity. Tables 4–6 show the percentage of profit derived from each
algorithm over the profit of the optimal solution. The percentage of each field represents
how close the derived solution is to the optimal solution. Tables 7–9 show the total profit
of the selected items. Tables 10–12 represent the average profits of the selected items per

Appl. Sci. 2022, 12, 3068 11 of 18

capacity. Each field of them is an average value of the aggregate profit of the selected items
in all knapsacks for a given capacity.

Table 1. Profit ratio of selected items for RI set.

M N Capacity Random Greedy Proposed Optimal

1 50

10 0.1507 0.1727 0.1727 0.1743
20 0.2064 0.2652 0.2652 0.2672
40 0.3002 0.3960 0.3958 0.3979
80 0.4638 0.5853 0.5853 0.5873

100 0.5354 0.6553 0.6551 0.6573

3 50

10 0.2786 0.3230 0.3256 0.3376
20 0.4016 0.4855 0.4876 0.4995
40 0.6138 0.7165 0.7166 0.7293
80 0.9285 0.9678 0.9678 0.9738

100 0.9952 0.9985 0.9985 0.9993

5 50
10 0.3665 0.4235 0.4268 0.4530
20 0.5449 0.6323 0.6323 0.6609
40 0.8239 0.9029 0.9030 0.9218

Table 2. Profit ratio of selected items for LI set.

M N Capacity Random Greedy Proposed Optimal

1 50

10 0.0467 0.0483 0.0483 0.0488
20 0.0848 0.0893 0.0893 0.0901
40 0.1587 0.1664 0.1664 0.1675
80 0.3060 0.3153 0.3156 0.3170

100 0.3798 0.3893 0.3894 0.3911

3 50

10 0.1238 0.1244 0.1263 0.1299
20 0.2347 0.2377 0.2398 0.2442
40 0.4522 0.4555 0.4581 0.4638
80 0.8720 0.8642 0.8665 0.8830

100 0.9914 0.9917 0.9929 0.9964

5 50
10 0.1956 0.1920 0.1920 0.2061
20 0.3776 0.3751 0.3784 0.3920
40 0.7240 0.7191 0.7208 0.7438

Table 3. Profit ratio of selected items for QI set.

M N Capacity Random Greedy Proposed Optimal

1 50

10 0.1010 0.1009 0.1046 0.1049
20 0.1733 0.1888 0.1934 0.1951
40 0.2847 0.3393 0.3436 0.3467
80 0.4679 0.5826 0.5856 0.5879

100 0.5450 0.6724 0.6749 0.6767

Appl. Sci. 2022, 12, 3068 12 of 18

Table 3. Cont.

M N Capacity Random Greedy Proposed Optimal

3 50

10 0.2496 0.2502 0.2634 0.2755
20 0.3977 0.4463 0.4635 0.4760
40 0.6314 0.7353 0.7351 0.7606
80 0.9426 0.9869 0.9866 0.9911

100 0.9970 0.9995 0.9995 0.9998

5 50
10 0.3574 0.3693 0.3693 0.4142
20 0.5630 0.6284 0.6507 0.6819
40 0.8478 0.9308 0.9355 0.9550

Table 4. The closeness to the optimal solution in RI set.

M N Capacity Random Greedy Proposed Optimal

1 50

10 86.46 99.10 99.10 -
20 77.24 99.28 99.28 -
40 75.46 99.52 99.51 -
80 79.01 99.66 99.66 -
100 81.49 99.69 99.70 -

Average 79.93 99.45 99.45 -

3 50

10 82.56 95.70 96.44 -
20 80.44 97.21 97.62 -
40 84.21 98.25 98.25 -
80 95.34 99.38 99.38 -
100 99.59 99.92 99.92 -

Average 88.43 98.09 98.32 -

5 50

10 80.93 93.49 94.21 -
20 82.49 95.68 95.68 -
40 89.39 97.94 97.95 -

Average 84.27 95.70 95.95 -
Average 84.32 98.06 98.21 -

Table 5. The closeness to the optimal solution in LI set.

M N Capacity Random Greedy Proposed Optimal

1 50

10 95.59 98.76 98.74 -
20 94.08 99.11 99.11 -
40 94.75 99.32 99.34 -
80 96.54 99.46 99.56 -
100 97.12 99.52 99.54 -

Average 95.62 99.23 99.26 -

3 50

10 95.34 95.74 97.26 -
20 96.12 97.30 98.18 -
40 97.50 98.21 98.78 -
80 98.76 97.88 98.13 -
100 99.46 99.48 99.61 -

Average 97.44 97.72 98.39 -

5 50

10 94.92 93.10 93.10 -
20 96.33 95.68 96.52 -
40 97.35 96.69 96.91 -

Average 96.20 95.16 95.51 -

Average 96.45 97.71 98.06 -

Appl. Sci. 2022, 12, 3068 13 of 18

Table 6. The closeness to the optimal solution in QI set.

M N Capacity Random Greedy Proposed Optimal

1 50

10 96.22 96.12 99.67 -
20 88.83 96.71 99.11 -
40 82.24 97.90 99.13 -
80 79.71 99.10 99.61 -
100 80.67 99.35 99.73 -

Average 85.53 97.84 99.45 -

3 50

10 90.57 90.82 95.61 -
20 83.62 93.75 97.38 -
40 83.08 96.67 96.64 -
80 95.13 99.57 99.54 -
100 99.73 99.98 99.98 -

Average 90.43 96.16 97.83 -

5 50

10 86.32 89.20 89.20 -
20 82.63 92.16 95.46 -
40 88.80 97.45 97.95 -

Average 85.92 92.93 94.20 -

Average 87.51 96.06 97.61 -

Table 7. Profit of selected items in RI set.

M N Capacity Random Greedy Proposed Optimal

1 50

10 41.292 47.326 47.326 47.758
20 56.822 73.034 73.034 73.566
40 82.118 108.303 108.293 108.825
80 127.443 160.748 160.748 161.3
100 147.755 180.763 180.765 181.318

Average 91.086 114.0348 114.0332 114.5534

3 50

10 76.192 88.319 89.002 92.287
20 110.333 133.321 133.89 137.154
40 168.359 196.425 196.437 199.933
80 255.865 266.714 266.714 268.37
100 272.998 273.911 273.914 274.129

Average 176.7494 191.738 191.9914 194.3746

50

10 100.253 115.813 116.701 123.873
5 20 150.122 174.13 174.13 181.996

40 226.462 248.135 248.157 253.353
Average 158.9457 179.3593 179.6627 186.4073

Average 139.693 158.996 159.162 161.836

Table 8. Profit of selected items in LI set.

M N Capacity Random Greedy Proposed Optimal

1 50

10 13.893 14.353 14.350 14.533
20 25.248 26.600 26.600 26.838
40 47.588 49.880 49.891 50.223
80 91.610 94.383 94.482 94.896
100 113.521 116.333 116.355 116.891

Average 58.372 60.310 60.336 60.676

3 50

10 36.809 36.963 37.552 38.609
20 69.819 70.676 71.314 72.634
40 134.866 135.845 136.632 138.321
80 260.752 258.425 259.095 264.028
100 297.773 297.832 298.217 299.392

Average 160.004 159.948 160.562 162.597

Appl. Sci. 2022, 12, 3068 14 of 18

Table 8. Cont.

M N Capacity Random Greedy Proposed Optimal

5 50

10 58.286 57.168 57.168 61.405
20 112.250 111.501 112.476 116.531
40 216.931 215.463 215.970 222.845

Average 129.156 128.044 128.538 133.594

Average 113.796 114.263 114.623 116.704

Table 9. Profit of selected items in QI set.

M N Capacity Random Greedy Proposed Optimal

1 50

10 87.785 87.701 90.937 91.238
20 150.314 163.655 167.717 169.217
40 248.873 296.239 299.961 302.608
80 409.533 509.123 511.738 513.757
100 476.957 587.385 589.609 591.216

Average 274.692 328.821 331.992 333.607

3 50

10 216.993 217.575 229.067 239.574
20 347.519 389.616 404.681 415.581
40 549.914 639.802 639.619 661.874
80 825.29 863.778 863.491 867.508
100 873.759 875.893 875.901 876.105

Average 562.695 597.333 602.552 612.128

5 50

10 311.933 322.349 322.349 361.385
20 489.821 546.285 565.848 592.788
40 741.96 814.227 818.424 835.539

Average 514.571 560.954 568.874 596.571

Average 440.819 485.664 490.719 501.415

Table 10. Average profit of selected items per capacity in RI.

N Capacity Random Greedy Proposed Optimal

50

10 72.579 83.819 84.343 87.973
20 105.759 126.828 127.018 130.905
40 158.980 184.288 184.296 187.370
80 191.654 213.731 213.731 214.835

100 210.377 227.337 227.340 227.724

Table 11. Average profit of selected items per capacity in LI.

N Capacity Random Greedy Proposed Optimal

50

10 36.329 36.161 36.357 38.182
20 69.106 69.592 70.130 72.001
40 133.128 133.729 134.164 137.130
80 176.181 176.404 176.788 179.462

100 205.647 207.083 207.286 208.142

Appl. Sci. 2022, 12, 3068 15 of 18

Table 12. Average profit of selected items per capacity in QI.

N Capacity Random Greedy Proposed Optimal

50

10 205.570 209.208 214.118 230.732
20 329.218 366.519 379.415 392.529
40 513.582 583.423 586.001 600.007
80 617.412 686.451 687.615 690.633

100 675.358 731.639 732.755 733.661

4.2.1. Random Instances

The optimal result in Table 1 shows 0.1743∼0.6573 profit ratio of selected items in a
single knapsack. It means the maximized solution in a single knapsack can have a profit
ratio up to 0.1743∼0.6573. Furthermore, as shown in Table 4, 99% of the closeness appears
in both the proposed algorithm and the greedy algorithm in all sizes of capacity in single
knapsacks. In Table 7, it is observed that the proposed algorithm’s average profit of a single
knapsack differs by only 0.001 from the greedy algorithm’s. In the 3-knapsack case, in
10 and 20 capacity, the proposed algorithm is superior to the random solution and the
greedy algorithm. In the 5-knapsack case, in 10 capacity, the proposed algorithm showed
an outstanding result than the greedy algorithm. The proposed algorithm earns a profit of
166 more than the greedy algorithm when solving 1000 problems. In terms of capacity, as
shown in Table 10, the average profit of the proposed algorithm has equally highest value
or the highest value in the overall capacity.

4.2.2. Linear Instances

In a single knapsack, the profit of the selected item can be up to 0.0488∼0.3911 as shown
in Table 2. In terms of closeness to the optimal solution, as the size of capacity becomes
larger, the closeness also becomes larger. The proposed algorithm has 98.7% in 10 capacity
and 99.5% in 100 capacity. The proposed algorithm outperforms other algorithms in 40, 80,
100 capacity. In the three-knapsack case, except for capacity 80, the proposed algorithm
shows outstanding results. Except for capacity 20, the proposed algorithm and the greedy
method fall short of the random solution in the five-knapsack case. In capacity 20, the
proposed algorithm outperforms the other two algorithms. The average profit of the
proposed algorithm has the highest value in the overall capacity as shown in Table 11.

4.2.3. Quadratic Instances

In a single knapsack, the profit ratio of selected items can be up to 0.1049∼0.6767 as
shown in Table 3. In terms of closeness to the optimal solution, the proposed algorithm’s
result shows 99% in overall capacity, and it outperforms other algorithms. The average profit
of the proposed algorithm gets 3.171, 5.219, 7.92 more profit than the greedy algorithms in
a single knapsack case, three-knapsack case, and in the five-knapsack case, respectively.
When solving 1000 problems, the proposed algorithm earns a profit of 5055 more than
the greedy algorithm. In terms of capacity as shown in Table 12, the average profit of the
proposed algorithm has the highest value in the overall capacity.

4.3. Computational Time

Tables 13–15 shows computation time solving 1000 test problems in RI, LI, and QI,
respectively. The proposed method’s results are the second-fastest in the overall tables,
trailing only the greedy method. Both the optimal and random solutions fall short of the
previous two methods. The proposed algorithm and optimal solution are heavily influenced
by the capacity of each knapsack.

Appl. Sci. 2022, 12, 3068 16 of 18

Table 13. Computation time (seconds) in RI.

M N Capacity Random Greedy Proposed Optimal

10 42.548 0.094 3.121 10.875
20 43.171 0.109 4.438 12.043

1 50 40 44.491 0.109 6.256 14.060
80 47.343 0.125 8.337 16.530

100 48.260 0.125 8.936 17.406

10 43.115 0.172 6.846 20.756
20 45.137 0.172 10.267 21.039

3 50 40 48.254 0.172 11.508 25.326
80 51.607 0.169 14.087 29.009

100 52.505 0.172 15.318 27.187

10 44.645 0.203 13.324 24.618
5 50 20 47.890 0.188 11.789 29.347

40 50.471 0.188 13.796 32.295

Average 46.880 0.154 9.848 21.576

Table 14. Computation time (seconds) in LI.

M N Capacity Random Greedy Proposed Optimal

50

10 52.549 0.109 3.396 8.696
20 53.002 0.141 4.910 9.176

1 40 44.479 0.125 6.915 10.281
80 47.641 0.125 9.117 14.083

100 48.550 0.109 10.374 14.842

50

10 51.214 0.188 9.360 19.139
20 45.742 0.172 12.804 27.927

3 40 47.496 0.172 13.280 32.529
80 51.170 0.172 14.493 42.591

100 51.073 0.175 15.415 28.046

5
10 44.677 0.203 11.613 33.515

50 20 47.423 0.187 14.379 40.987
40 51.020 0.172 19.191 52.013

Average 48.926 0.158 11.173 25.679

Table 15. Computation time (seconds) in QI.

M N Capacity Random Greedy Proposed Optimal

10 42.438 0.109 3.222 8.800
20 43.232 0.109 3.719 9.566

1 50 40 44.211 0.125 9.369 10.872
80 46.144 0.125 8.274 12.444

100 47.784 0.125 12.986 12.904

50

10 43.792 0.172 6.445 16.455
20 45.239 0.171 9.554 20.504

3 40 48.214 0.172 9.661 24.433
80 51.516 0.172 14.420 22.745

100 50.897 0.172 15.891 21.201

Appl. Sci. 2022, 12, 3068 17 of 18

Table 15. Cont.

M N Capacity Random Greedy Proposed Optimal

5
10 45.092 0.199 5.801 24.654

50 20 47.295 0.203 9.754 46.842
40 49.980 0.183 13.736 33.331

Average 46.603 0.157 9.449 20.366

4.4. Overall Evaluation

The greedy algorithm is very fast, but its performance was not the best in many cases
of the experiments. The greedy algorithm, in particular, would be vulnerable when it
encountered instances where profit and weight are correlated, such as LI. The proposed
method can provide a more robust solution because it produced excellent results in a
variety of situations, including the correlation between profit and weight.

5. Conclusions

In this paper, to solve MKP efficiently, we proposed a DRL-based solution. The pro-
posed method trains the neural model by using A3C algorithm. The experiments show
the proposed method achieves higher performance compared to the greedy algorithm and
random solution. The results in random, linear, and quadratic instances demonstrated that
the proposed algorithm is robust. Consequently, we verified that the proposed method is
appropriate for solving real-world MKPs with varying profit, weight, and capacity.

Author Contributions: Conceptualization, J.K. and H.L.; methodology, G.S. and H.L.; investigation,
G.S.; formal analysis, G.S. and H.L.; validation, G.S. and H.L.; writing—original draft preparation, G.S.
and H.L; writing—review and editing, G.S. and H.L.; and supervision, H.L.; project administration,
J.K. and S.Y.R.; funding acquisition, S.Y.R. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Agency for Defense Development, Republic of Korea,
under Grant UD190020FD.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Assi, M.; Haraty, R.A. A Survey of the Knapsack Problem. In Proceedings of the International Arab Conference on Information

Technology (ACIT), Werdanye, Lebanon, 28–30 November 2018; pp. 1–6. [CrossRef]
2. Lahyani, R.; Chebil, K.; Khemakhem, M.; Coelho, L.C. Matheuristics for solving the multiple knapsack problem with setup.

Comput. Ind. Eng. 2019, 129, 76–89. [CrossRef]
3. Kumaraguruparan, N.; Sivaramakrishnan, H.; Sapatnekar, S.S. Residential task scheduling under dynamic pricing using the

multiple knapsack method. In Proceedings of the IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA,
16–20 January 2012; pp. 1–6.

4. Ketykó, I.; Kecskés, L.; Nemes, C.; Farkas, L. Multi-user computation offloading as multiple knapsack problem for 5G mobile
edge computing. In Proceedings of the European Conference on Networks and Communications (EuCNC), Athens, Greece,
27–30 June 2016; pp. 225–229.

5. Cappanera, P.; Paganelli, F.; Paradiso, F. VNF placement for service chaining in a distributed cloud environment with multiple
stakeholders. Comput. Commun. 2019, 133, 24–40. [CrossRef]

6. Martello, S.; Toth, P. Knapsack Problems: Algorithms and Computer Implementations; John Wiley & Sons, Inc.: Hoboken, NJ, USA,
1990.

7. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal Process.
Mag. 2017, 34, 26–38. [CrossRef]

8. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement
learning. arXiv 2015, arXiv:1509.02971.

http://doi.org/10.1109/ACIT.2018.8672677
http://dx.doi.org/10.1016/j.cie.2019.01.010
http://dx.doi.org/10.1016/j.comcom.2018.10.008
http://dx.doi.org/10.1109/MSP.2017.2743240

Appl. Sci. 2022, 12, 3068 18 of 18

9. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
[PubMed]

10. Gu, S.; Hao, T. A pointer network based deep learning algorithm for 0–1 knapsack problem. In Proceedings of the International
Conference on Advanced Computational Intelligence (ICACI), Xiamen, China, 29–31 March 2018; pp. 473–477.

11. Afshar, R.R.; Zhang, Y.; Firat, M.; Kaymak, U. A State Aggregation Approach for Solving Knapsack Problem with Deep
Reinforcement Learning. In Proceedings of the Asian Conference on Machine Learning (PMLR), Bangkok, Thailand, 18–20
November 2020; pp. 81–96.

12. Dai, H.; Dai, B.; Song, L. Discriminative embeddings of latent variable models for structured data. In Proceedings of the 33rd
International Conference on Machine Learning (PMLR), New York, NY, USA, 19–24 June 2016; pp. 2702–2711.

13. Dai, H.; Khalil, E.B.; Zhang, Y.; Dilkina, B.; Song, L. Learning combinatorial optimization algorithms over graphs. arXiv 2017,
arXiv:1704.01665.

14. Kundu, O.; Dutta, S.; Kumar, S. Deep-pack: A vision-based 2d online bin packing algorithm with deep reinforcement learning.
In Proceedings of the International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India,
14–18 October 2019; pp. 1–7.

15. Zhang, Z.; Liu, H.; Zhou, M.; Wang, J. Solving Dynamic Traveling Salesman Problems With Deep Reinforcement Learning. IEEE
Trans. Neural Netw. Learn. Syst. 2021. [CrossRef] [PubMed]

16. Nazari, M.; Oroojlooy, A.; Snyder, L.; Takác, M. Reinforcement learning for solving the vehicle routing problem. In Proceedings of
the 32nd International Conference on Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December
2018.

17. Chen, X.; Tian, Y. Learning to perform local rewriting for combinatorial optimization. In Proceedings of the 33nd International
Conference on Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019.

18. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. arXiv 2015, arXiv:1506.03134.
19. Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural combinatorial optimization with reinforcement learning. arXiv 2016,

arXiv:1611.09940.
20. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep

reinforcement learning. In Proceedings of the International Conference on Machine Learning (PMLR), New York, NY, USA, 19–24
June 2016; pp. 1928–1937.

21. Pisinger, D. An exact algorithm for large multiple knapsack problems. Eur. J. Oper. Res. 1999, 114, 528–541. [CrossRef]
22. Dell’Amico, M.; Delorme, M.; Iori, M.; Martello, S. Mathematical models and decomposition methods for the multiple knapsack

problem. Eur. J. Oper. Res. 2019, 274, 886–899. [CrossRef]
23. Srinivas, M.; Patnaik, L.M. Genetic algorithms: A survey. Computer 1994, 27, 17–26. [CrossRef]
24. Khuri, S.; Bäck, T.; Heitkötter, J. The zero/one multiple knapsack problem and genetic algorithms. In Proceedings of the 1994

ACM Symposium on Applied Computing, Phoenix, AZ, USA, 6–8 March 1994; pp. 188–193.
25. Falkenauer, E. A new representation and operators for genetic algorithms applied to grouping problems. Evol. Comput. 1994,

2, 123–144. [CrossRef]
26. Fukunaga, A.S. A new grouping genetic algorithm for the multiple knapsack problem. In Proceedings of the 2008 IEEE Congress

on Evolutionary Computation, Hong Kong, China, 1–6 June 2008; pp. 2225–2232.
27. Han, K.H.; Kim, J.H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol.

Comput. 2002, 6, 580–593. [CrossRef]
28. Hu, H.; Zhang, X.; Yan, X.; Wang, L.; Xu, Y. Solving a new 3d bin packing problem with deep reinforcement learning method.

arXiv 2017, arXiv:1708.05930.
29. Rezoug, A.; Bader-El-Den, M.; Boughaci, D. Application of Supervised Machine Learning Methods on the Multidimensional

Knapsack Problem. Neural Process. Lett. 2021, 1–20. [CrossRef]
30. García, J.; Lalla Ruiz, E.; Voß, S.; Lopez Droguett, E. Enhancing a machine learning binarization framework by perturbation

operators: Analysis on the multidimensional knapsack problem. Int. J. Mach. Learn. Cybern. 2020, 11, 1951–1970. [CrossRef]
31. Laterre, A.; Fu, Y.; Jabri, M.K.; Cohen, A.S.; Kas, D.; Hajjar, K.; Dahl, T.S.; Kerkeni, A.; Beguir, K. Ranked reward: Enabling

self-play reinforcement learning for combinatorial optimization. arXiv 2018, arXiv:1807.01672.
32. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of

the International Conference on Machine Learning (PMLR), Beijing, China, 21–26 June 2014; pp. 387–395.
33. Silver, D. Lectures on Reinforcement Learning. 2015. Available online: https://www.davidsilver.uk/teaching/ (accessed on 11

March 2022).

http://dx.doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://dx.doi.org/10.1109/TNNLS.2021.3105905
http://www.ncbi.nlm.nih.gov/pubmed/34520362
http://dx.doi.org/10.1016/S0377-2217(98)00120-9
http://dx.doi.org/10.1016/j.ejor.2018.10.043
http://dx.doi.org/10.1109/2.294849
http://dx.doi.org/10.1162/evco.1994.2.2.123
http://dx.doi.org/10.1109/TEVC.2002.804320
http://dx.doi.org/10.1007/s11063-021-10662-z
http://dx.doi.org/10.1007/s13042-020-01085-8
https://www.davidsilver.uk/teaching/

	Introduction
	Related Work
	Conventional Algorithms for Knapsack Problems
	Exact Algorithms and Heuristic Algorithms
	 Genetic Algorithm and Evolutionary Algorithm

	Combinatorial Optimization with ML
	Combinatorial Optimization Problem (COP) with Pointer Network
	COP with Supervised/Unsupervised Learning
	COP with DRL in MDP

	Proposed Method
	Actor Critic Background
	System Model
	DRL Approaches
	Proposed Algorithm
	Constructed Neural Networks

	Performance Evaluation
	Training Process
	Result of Solutions
	Random Instances
	Linear Instances
	Quadratic Instances

	Computational Time
	Overall Evaluation

	Conclusions
	References

