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Abstract: The sequence of the process of changing the velocity profiles and the laws of resistance
during the flow of a fluid in a pipe is considered. With the increasing of the Reynolds number, we
obtain the transition of the flow regime from laminar to turbulent. In the presence of small additives
of polymers, when the Toms effect is observed in the fluid flow, the turbulent regime changes with a
further increase in the Reynolds number to another regime, the rheology of which leads to laminar
velocity profiles and corresponding resistance laws. Then, with an increase in the Reynolds number
for polymer solutions, the limiting Virk flow regime with its own rheology is reached. All the
mentioned flow regimes and all types of rheology can be described using one rheological relation,
which is a power-law generalization of Newton’s formula, by changing the values of the power value
in this ratio upon reaching the corresponding critical Reynolds numbers. This generalization can be
extended to the spatial case of flow and the rheological relation can be represented in tensor form
with a further system of differential equations for a fluid flow with an arbitrary rheology. After that,
boundary value problems in fluid mechanics can be solved for any fluid flow regime.

Keywords: rheology; non-Newtonian fluids; power relation; resistance; Newton’s formula; Blasius
formula; Toms effect

1. Introduction

In hydrodynamics, the description of a fluid’s behavior depends on its flow regime [1,2].
At relatively low Reynolds numbers, a laminar flow regime occurs, described by the
Navier–Stokes equations, which are based on Newton’s rheological relation for a linearly
viscous fluid. Then, with an increase in the flow velocity and at high Reynolds numbers,
the rheology of the moving fluid changes: a turbulent flow regime is reached. There is
no conventional uniform rheological relation for this flow regime, although work in this
direction has been carried out since the times of Reynolds. Currently, modern turbulence
models are based on the concept of turbulent viscosity, which has developed since the
first theory of turbulence (L. Prandtl’s mixing length theory), up to the present time in
the form of modern differential models of turbulence such as the k− ε and k−ω models,
as well as other models [3]. In addition, with an increase in the Reynolds number, the
turbulent flow regime may change to another regime when small additives of polymers
are added to the fluid flow, leading to the demonstration of the Toms effect. In this case, a
“laminar-type” flow regime arises with its own rheological ratio [4,5]. Then, with an increase
in the Reynolds number, the Virk flow reaches the limit regime [6] with its rheology.

All the mentioned flow regimes and all types of rheology can be approximately
described using one rheological relation, which is a power-law generalization of Newton’s
formula for the flow of a viscous fluid, changing the power values in this ratio. Newton’s
formula for the shear stress in a longitudinal flow past a flat surface with the velocity u,
depending on the y transverse coordinate is as follows:
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τ = ρν
du
dy

(1)

where ρ is the density, ν is the kinematic viscosity, and the formula can be generalized [7]
to the following form

τ = ρχn

(
ν

du2n−1

dy

) 1
n

(2)

In this expression χn is the non-dimensional coefficient, depending on the nth power
value (n ≥ 1). For n = 1 and when χn = 1, Equation (2) leads to Newton’s rheological
relation and, as a result, to Poiseuille’s formulas for laminar flow in a pipe. For n = 4
and when χn = 0.019746, this formula leads to the rheological relation for turbulent fluid
flow in a pipe and then to the Blasius formula for the resistance coefficient. Equation (2)
can be generalized to the spatial case of flow and the corresponding rheological relation
can be presented in tensor form [8]. As a result, a system of differential equations can
be obtained, similar to the system of Navier–Stokes equations, which also allows for the
solution of boundary value problems in fluid mechanics [7], even in relation to the turbulent
flow regime.

2. Steady-State Flow in a Circular Cylindrical Pipe at an Arbitrary Value of the n Power

A circular pipe is the most common hydrodynamic object used for tests of theoretical
solutions, since a huge amount of experimental material has been accumulated for the
flow within this object, which makes it possible to evaluate the quality of the formulas
obtained for resistance coefficients and velocity profiles. For the steady-state flow in a
straight circular cylindrical pipe with radius R, y is the coordinate measured from the wall
(0 ≤ y ≤ R). Let us introduce non-dimensional variables η (non-dimensional coordinate)
and V (non-dimensional velocity) as follows:{

η = y
R , 0 ≤ η ≤ 1
V = u

V∗
(3)

where V∗ is the friction velocity, expressed in terms of shear stress τw on the wall:

|τw| =
d
4

∆p
l

, V∗ =
√
|τw|/ρ (4)

where d = 2R is the pipe diameter and ∆p is the longitudinal pressure drop along the pipe
of l length.

Then, considering notation (3), the formula (2) for the flow in a pipe in non-dimensional
form can be represented as follows:

τ = ρχn

[
ν

V∗2n−1

R
dV2n−1

dη

] 1
n

= ρχnV2
∗

[
ν

V∗R
dV2n−1

dη

] 1
n

(5)

This non-negative expression can also be associated with the non-negative value of
the shear stress τ = τw(1− y/R) from the motion equation of the continuous medium in
stresses, i.e., ρV2

∗ (1− η):

ρχnV2
∗

(
ν

V∗R
dV2n−1

dη

) 1
n

= ρV2
∗ (1− η) (6)

Hence follows the differential equation:

χn

(
1

Re∗
dV2n−1

dη

) 1
n

= (1− η)
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where Re∗ = V∗R/ν is the Reynolds number, calculated from the friction velocity. Then:

dV2n−1

dη
=

Re∗
χn

n
(1− η)n (7)

The boundary condition for this equation is the no-slip condition: η = 0, V = 0.
The integration of Equation (7) with this boundary condition leads to the following

expression:

V2n−1 =
Re∗

χn
n(n + 1)

[
1− (1− η)n+1

]
from which the non-dimensional velocity profile takes the form:

V =

(
Re∗

(n + 1)χn
n

) 1
2n−1 [

1− (1− η)n+1
] 1

2n−1 (8)

The non-dimensional velocity averaged over the pipe’s cross section is calculated
using the formula [9,10]:

Vav = 2
1∫

0

V(η)(1− η)dη

Substitution of expression (8) for the velocity profile into this formula leads to the
expression:

Vav = 2
(

Re∗
(n + 1)χn

n

) 1
2n−1

Y(n) (9)

where Y(n) has the following form for a flow in the pipe:

Y(n) =
1∫

0

[
1− (1− η)n+1

] 1
2n−1

(1− η)dη (10)

This parameter is expressed through hyper-geometric functions; its values for different
power values are shown in Table 1.

Table 1. Y(n) values.

n 1 2 3 4 5 20

Y(n) 0.25 0.403067 0.447761 0.467138 0.477358 0.498156

For other n values, Y(n) can be found in reference materials. It is useful to note
that when n → ∞, Y(n) → 0.5. The true Reynolds number Re = 2RVav/ν, according to
the average velocity Vav, can be calculated [2] in terms of the Re∗ number using friction
velocity:

Re = 2Re∗Vav

Then, considering Formula (9), the following can be written:

Re = 4Y(n)
(

1
(n + 1)χn

n

) 2n
2n−1

Re
2n

2n−1
∗ (11)

Hence, if expressing Re∗ inversely in terms of Re, one obtains

Re∗ =
((n + 1)χn

n)
1

2n

2n− 1
Re

2n−1
2n (12)
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The resistance coefficient λ = 8|τw|/
(
ρV2

av
)

can be represented in terms of the square of
the non-dimensional average velocity as λ = 8/V2

av, which, when considering Equation (9),
leads to a formula for this coefficient at an arbitrary n value:

λ = 2
n+2

n
(n + 1)

1
n

Y(n)
2n−1

n

χn

Re
1
n

(13)

Formulas (9)–(13) make it possible to describe the velocity field and resistance coeffi-
cient for a flow in the pipe for any values of the nth power.

3. Fluid Flow Development in the Pipe with Increasing Reynolds Number

As the Reynolds number increases on the resistance curve, there is a transition in the
values of resistance coefficient from one region to another due to a change in rheology.
Figure 1 shows three schemes for the change in the resistance coefficient λ for three different
cases of flow description implementations corresponding to different values of the nth
power and the χn non-dimensional coefficient, respectively. These diagrams indicate: 1—
Hagen–Poiseuille curve n = 1, χn = 1; 2—Blasius curve, n = 4, χn = 0.019746; 3—curve
for n = 6, χn = 0.00910904, 4—curve for n = 1000, χn = 0.02/m1/3, where m is the
roughness parameter, equal to the ratio of the pipe radius R to the reduced height of the
roughness bumps k (m = R/k). Figure 1a shows the transition from a laminar flow regime
to a turbulent one, Figure 1b shows this transition to the Prandl–Nikuradze curve, which is
approximated by curves 2 and 3 with different values of the nth power; and Figure 1c shows
the transition of curve 2 to curve 4 with a horizontal region with its own roughness value.

Figure 1. Resistance curves for different cases of flow of the nth power: (a) shows the transition from
a laminar flow regime to a turbulent one; (b) shows this transition to the Prandl–Nikuradze curve;
(c) shows the transition of curve 2 to curve 4 with a horizontal region.

The transition of the laminar flow regime with resistance λ = 64/Re to turbulent one,
when the Blasius formula takes place λ = 0.3164/Re0.25 is shown in Figure 1a. From curve
1 corresponding to the n = 1 and χn = 1, there is a transition to the Blasius curve 2, which
corresponds to n = 4 and χn = 0.019746. The velocity profile (9) takes the following form
for n = 1 :

V =
Re∗

2

[
1− (1− η)2

]
(14)
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and it becomes a turbulent profile for n = 4 :

V =

(
Re∗

5χn4

) 1
7 [

1− (1− η)5
] 1

7 (15)

In dimensional form, taking into account the notation (3) after the transition to cylin-
drical coordinates, when η = y/r = (R− r)/R = 1− r/R, Formula (14) takes the form:

u =
1

4µ

(
−dp

dz

)(
R2 − r2

)
(16)

and then (15) takes the form given below:

u = 0.93677
1

ν1/7

(
1
ρ

∆p
l

) 4
7 (

R5 − r5
) 1

7 (17)

The Reynolds number (Re1 value) of the transition originating from the laminar regime
to the turbulent one can be calculated as the result of the intersection of the Hagen–Poiseuille
and Blasius curves:

64
Re1

=
0.3164
Re1

0.25

from which Re1 = 1187.4. This value turns out to be less than 2300, indicated in the
references [1,2], which is due to the disregard of the transition region from the laminar
regime to the turbulent one. If we assume that this region exists, then it would be advisable
to accept that Re1 = 2300 and understand that there is a gap in the resistance curve at this
value of the Reynolds number. Thus, for the case of the flow shown in the diagram in
Figure 1a, one obtains:

Re < 2300, n = 1, χn = 1
Re > 2300, n = 4, χ = 0.019746

(18)

We shall not consider this case further.
Figure 1b shows a resistance curve, complying with the Prandl–Nikuradze formula:

λ = 0.0032 +
0.221

Re0.237 (19)

which is in good agreement with experimental data [9,11], and is approximated by two
curves corresponding to n = 4 and n = 6. For n = 4 and χn = 0.019746, the Blasius
formula λ = 0.3164/Re0.25 takes place, for n = 6 and χn = 0.00910904 the resistance curve,
according to the (13), corresponds to:

λ =
0.1156
Re1/6 (20)

The intersection point of these curves corresponds to the Reynolds number, which can
be found according to the relation:

0.3164
Re21/4 =

0.1156
Re21/6

from which we obtain Re2 = 176,743.6.
The velocity profile, corresponding to the n = 4, complies with expression (15); for

n = 6 it takes the following form, according to formula (8):

V = 10.868756 Re
1
11

[
1− (1− η)7

] 1
11 (21)
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Figure 1c shows resistance curves for the flow in rough pipes with different values of
the roughness parameter m = R/k. For a flow in rough pipes, one can take n = 1000, which
gives an almost horizontal line in coordinates as follows: (Logarithm of Reynolds number
− logarithm of resistance coefficient), i.e., as (log10(Re) − log10(100λ)).The rheological
power relation (2) can be presented as follows for n = 1000:

τ = ρχn

[
ν

du1999

dy

] 1
1000

, χn =
0.02
m1/3 (22)

Hence, the velocity profile in non-dimensional coordinates, according to (8), can be
presented in the form:

V =

(
Re∗

101χn1000

) 1
1999 [

1− (1− η)1005
] 1

1999 ≈ 1/
√

χn

[
1− (1− η)1001

] 1
1999 (23)

The average non-dimensional velocity value is

Vav ≈
2 Y(100)√

χn
=

2√
χn
∗ 0.5 = 1/

√
χn

taking into account the expression for χn, it takes the following form:

Vav =
m1/6
√

0.02
(24)

For m = 15; 60; 507 values of Vav equal to 11.6, 14.4, and 20.2 can be obtained, which
is in good agreement with experimental data [10]. The connection between Reynolds
numbers for average and dynamic velocities for flow in rough pipes is as follows:

Re = 2Re∗Vav =
2Re∗√

χn
(25)

The resistance coefficient, according to (13), is equal to λ = 8χn/Re0.001, and can be
rounded to the approximate value in this case:

λ ∼=
0.16
m1/3 (26)

which is in satisfactory agreement with the experimental data.
The region of a hydraulically smooth pipe in Figure 1c transitions to the area with

a constant value λ = Const, depending on the value of the roughness parameter m.
The corresponding Reynolds number Re3 is found as a result of the intersection of the
corresponding resistance curves:

0.3164

Re1/2
3

=
0.16
m1/3 ,

which leads to
Re3 = 15.292 m4/3 (27)

The Reynolds number Re3 values are presented in Table 2.

Table 2. Re3 values.

m 60 100 507

Re3 3592.0 7097.9 61,822.0
log10(Re3) 3.56 3.85 5.79
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Resistance curves λ = Const = 0.16/m1/3, when the quadratic law of resistance is
satisfied, may have different positions according to each other. As a result, as the flow
develops in rough pipes, and the nth power and χn coefficient change:

i f Re < Re1, then n = 1000 and χn = 0.02/m1/3

i f Re1 ≤ Re ≤ Re3, then n = 1000 and χn = 0.02/m1/3

i f Re > Re3, then n = 1000 and χn = 0.02/m1/3

Thus, with an increase in the values of the Reynolds number, the nth power changes,
which leads to changes in the velocity profiles and resistance coefficients according to
formulas (8) and (13), respectively.

4. The Flow of Weakly Concentrated Aqueous Solutions of Polymers

In the flow of weakly concentrated aqueous solutions of polymers, in which the Toms
effect is observed [4,5], the resistance curves have the typical form shown in Figure 2.

Figure 2. Change in resistance coefficients depending on the Reynolds number and pipe diameter at
a constant concentration of WSR-301 (from [4]) polymer solution: 1—laminar flow; 2—turbulent flow.

It can be seen in Figure 2 that the Toms effect is associated with the deviation of
the resistance curve from the Prandtl–Nikuradze law with access to an area, which is
equidistant to the resistance curve λ = 64/Re for the laminar flow regime.The case arising
with the resistance curve can be schematically represented in Figure 3, which shows the
“laminar-type” regions of the resistance curves during the flow of polymer solutions, where
the Toms effect is observed.

The resistance curve for the flow of polymer solutions, immediately after deviating
from the resistance law for a hydraulically smooth pipe, becomes similar to the resistance
curve λ = 64/Re (laminar regime). Therefore, this resistance law for flows of polymer
solutions in the region after deviation from the resistance law for a hydraulically smooth
pipe can be represented [12] in the form:

λ =
A
Re

(28)

where A takes its value depending on the kind of polymer, its concentration, and the radius
of the pipe. According to Figure 3, it is possible to estimate the values of this constant
for the flow in pipes of different diameters at a constant volumetric concentration of the
polymer solution C = 15× 10−6 (Table 3).
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Figure 3. Deviation of the resistance curve from curve 2 for the turbulent regime into regions
equidistant to curve 1 with the resistance law λ = 64/Re, corresponding to the laminar flow regime.

Table 3. The values of the “A” coefficient depending on the pipe diameter for a WSR-301 polymer
solution concentration C = 15× 10−6 according to Figure 3.

Experiment Number d, mm A

1 12.5 130
2 19 190
3 25 230
4 50 400
5 100 710

Then, with an increase in the Reynolds number, there is a deviation from the “laminar-
type” resistance curve with a tendency to reach the Virk limit curve [11]. However, before
beginning of the deviation from the resistance law for a hydraulically smooth pipe, the
turbulent flow behaves in accordance with the flow laws of ordinary viscous Newtonian
fluids (curve 2 in Figure 2).

With the development of the flow of weakly concentrated aqueous solutions of poly-
mers, the resistance curve consists of several regions, shown schematically in Figure 4:

• The laminar a–1 region (beginning of the flow), which complies with the formula
λ = 64/Re;

• The turbulent 1–2 region with an increase in the flow velocity, which complies with
the Blasius formula λ = 0.3164/Re0.25;

• The “laminar-type” 2–3 region with a further increase in speed, which complies with
the formula λ = A/Re ;

• The limit 3–b region, which is represented by the Virk curve [6] for the final stage of
the flow, which complies with the formula λ = 0.87/Re0.5.

The sequence of the process of the resistance change during the flow of a fluid with
additives of polymers in a pipe is considered in detail as follows:

1. In the Re < Re1 region, there is a laminar flow regime. Disregarding the transition
region from the laminar regime to the turbulent one, we can approximately set the
value as Re1 = 1187.2;

2. In the 1–2 region, where Re1 ≤ Re ≤ Re2, a turbulent flow regime develops in a
hydraulically smooth pipe. The Reynolds number Re2 of the end of this flow regime
is determined as the result of the intersection of the corresponding resistance curves
for the Blasius law and the “laminar-type” resistance law: 0.3164

Re0.25
2

= A
Re2

, and then
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Re2 =

(
A

0.1364

) 4
3
;

3. In the “laminar-type” 2–3 region, where Re2 ≤ Re ≤ Re3, there is a deviation from the
resistance curve of a hydraulically smooth pipe to the resistance curve for a polymer
solution flow with a resistance law A/Re. The value of the “A” constant determines
the type of polymer, its concentration in a solution and the pipe’s diameter [4,5]. The
Re3 value can be found according to the intersection conditions of the “laminar-type”
curve A/Re with the Virk limit curve 0.87/

√
Re, i.e., A

Re = 0.87√
Re3

, and then

Re3 =

(
A

0.87

)2
,

for different “A” parameter values; the values of Re2 and Re3 are given in Table 4;
4. With a further increase in the Reynolds number when Re > Re3, there is a transition

to the Virk resistance curve, complying with the law 0.87/
√

Re.

Figure 4. Resistance change scheme for fluid flow in a pipe.

Table 4. Values of Re2 and Re3 for different A parameters.

A 130 400 400

Re2 3054.5 13,669.9 29,378.5
Re3 22,311 211,230 665,508

Thus, with the development of the flow of weakly concentrated aqueous solutions of
polymers, each region has its own values of the nth power, non-dimensional parameters χn
and Y(n):

1. In region a–1, when Re < Re1, there are n = 1, χn = 1, Y(1) = 0.25
2. In region 1–2, when Re1 ≤ Re < Re2, there are n = 4, χn = 0.019746, Y(4) = 0.467138
3. In region 2–3, when Re2 ≤ Re ≤ Re3, there are n = 1, χn = A/64, Y(n) = 0.25
4. In region 3–b, when Re > Re3, there are n = 2, χn = 0.032146, Y(n) = 0.403067

In accordance with these values, for each region expressions for the resistance coeffi-
cients can be written according to (13), velocity profiles can be written in terms of universal
coordinates according to (3), and Reynolds numbers can be written in terms of friction
velocity. These expressions for each region are as follows:
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1. Region a–1:

V =
Re∗

2

[
1− (1− η)2

]
; Re∗ = 1.41Re1/2, λ = 64/Re (29)

2. Region 1–2:

V =
(

Re∗
5χn4

) 1
7
[
1− (1− η)5

] 1
7
= 7.484 Re

1
7∗
[
1− (1− η)5

] 1
7

Re∗ = 0.099436 Re7/8; λ = 0.3164/Re1/4
(30)

3. Region 2–3:

V = 32
Re∗
A

[
1− (1− η)2

]
; Re∗ = 3.535534 Re1/2; λ = A/Re (31)

4. Region 3–b:

V =
(

Re∗
3χn3

) 1
3
[
1− (1− η)3

] 1
3
= 6.858 Re

1
3∗
[
1− (1− η)3

] 1
3 ;

Re∗ = 0.164917 Re3/4; λ = 0.87/Re1/2
(32)

For the flow of polymer solutions in rough pipes with a roughness parameter m,
the Reynolds number Re4 = 15.292m4/3 determines the beginning of the transition from
the Blasius curve to the region with a constant resistance coefficient, according to (27).
If Re4 ≤ Re2, then there will be no transition to the flow regime of the “laminar-type”
region and polymer additives will have no effect on the flow (Figure 4). If it turns out that
Re2 < Re4, then the roughness does not have time to influence the flow, and the resistance
curve during the flow of polymer solutions will contain the same four regions (29)–(32) as
a hydraulically smooth pipe.

For the resistance coefficients at points 1, 2, and 3 in Figure 4, there is a transition from
one flow regime to another. Moreover, this transition, within the framework of this paper,
is shown to be an abrupt one. In fact, there is always a smooth change in the resistance
coefficients, and there are always transient flow regimes. The same goes for velocity profiles
that transition smoothly from one shape to another. However, these transient processes
occur in relatively narrow ranges of Reynolds numbers and in the first approximation they
can be disregarded.

Let us change the velocity profiles at points 1, 2 and 3 in Figure 4 in universal coordi-
nates, which can be considered as follows:

y∗ =
yv∗
ν

; v =
u
v∗

,

where y is the coordinate measured from the pipe wall, v∗ is friction velocity, ν is kinematic
viscosity, and u is the Reynolds-averaged longitudinal velocity. In this case, the non-
dimensional coordinate η, appearing in the expressions for the velocity profiles, will be
represented in terms of the Reynolds number for the friction velocity as η = y∗

Re∗ . At point 1
at the value of the Reynolds number Re1 = 1187 by the average velocity, the laminar flow
regime (n = 1) changes to a turbulent one (n = 4), and the velocity profile (14) becomes
a turbulent one (15). So, for n = 1 and n = 4, the Reynolds number in terms of friction
velocity according to formula (12) takes the same value, equal to Re∗1 = 48.7 (for this
transitional Reynolds number Re1 = 1187). These profiles are shown in Figure 5.

It can thus be seen how the laminar profile 1 changes dramatically to the turbulent
profile 2 when Re∗1 = 48.7. The corresponding value of the non-dimensional average
velocity according to (9) for both profiles will be the same: Vav = 11.98. Then, with an
increase in the Reynolds number, there are power-law profiles 3 and 4 of the turbulent flow
regime (n = 4) according to (15) for Re∗ = 100 and Re∗ = 413, respectively.
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When small additives of polymers, for which the Toms effect is observed, are intro-
duced into the flow, point 2 appears on the resistance curve shown in Figure 4, in which
the turbulent velocity profile (n = 4) changes to a “laminar-type” one (n = 1) with the
corresponding A value for this polymer. Figure 6 at this point shows the change in the
turbulent profile (15) to the profile (31) when Re2 = 13,669.9 for A = 400. In both cases for
this Reynolds number, the dynamic Reynolds number is the same and equal to Re∗2 = 413.

Figure 5. Velocity profiles: 1—laminar regime when Re∗ = 48.7; 2—turbulent regime when Re∗ = 48.7;
3, 4—turbulent ones when Re∗ equals 100 and 413, respectively.

Figure 6. Velocity profiles: 1—turbulent one when Re∗ = 413.2; 2—“laminar-type” one when
Re∗ = 413.2; 3, 4, 5—“laminar-type” ones when Re∗ = 650, 1000, and 1625, respectively.

It can be seen that profile 1 is abrupt at Re∗2 = 413 and transitions to profile 2. The
corresponding value of the dimensionless average velocity according to (9) for both profiles
will be the same, and equal to Vav = 16.55. Then, with an increase in the Reynolds number,
there are “laminar-type” profiles 3, 4 and 5, according to (31) for Re∗ = 650, 100, and 1625,
respectively.

At point 3, the “laminar-type” flow regime (n = 1, A = 400) for Re3 = 146,861 changes
to the Virk flow regime (n = 2), and the velocity profile (31) changes to profile (32). For
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both profiles at this Reynolds number, the Reynolds number in terms of the friction velocity
according to formula (12) takes the same value, Re∗3 = 1625. These profiles are shown in
Figure 7.

Figure 7. Velocity profiles: 1—“laminar-type” one for Re∗ = 1625; 2—Virk profile for Re∗ = 1625;
3, 4—Virk profiles for Re∗ = 5000 and 8000, respectively.

It can be seen that the “laminar-type” velocity profile 1 abruptly changes to the Virk
profile 2. The corresponding value of the non-dimensional average velocity according to (9)
for both profiles will be the same and equal to Vav = 45.19. Then, with an increase in the
Reynolds number, one obtains Virk profiles 3 and 4, according to (31) for Re∗ = 5000 and
Re∗ = 7500, respectively.

5. Conclusions

In the present research, a power-law generalization of Newton’s formula for the flow
of a viscous fluid is used, in which several variants of rheological relations arise when the
value of the exponent changes to be in accordance with the description of various fluid flow
regimes, including non-Newtonian ones. This generalization, followed by expressing the
corresponding rheological relation in tensor form and substituting it into the equation of
motion of a continuous medium under stresses, leads to a system of differential equations
of fluid motion, which can be used to describe flows with different rheologies and in
different flow regimes (in turbulent ones as well). It should be noted that there are no
exact analytical solutions to the problems of simple shear flows of an incompressible fluid
in modern papers on the turbulent regime. There are no differential equations for this
flow regime in the known papers that allow us to consider the problems of calculating
turbulent flows as problems of mathematical physics. By using a system of equations
(obtained on the basis of the considered power-law generalization of Newton’s formula), it
makes it possible to interpret the problems of calculating turbulent flows as problems of
mathematical physics and obtain accurate analytical solutions to problems of simple shear
flows. This system can be used in studies of both plane-parallel and three-dimensional
flows, which was demonstrated to a certain extent in [7], which contains a solution for the
problem of longitudinal flow around a flat plate and provides estimates of the boundary
layer type. In this paper, a system of equations for a 2D fluid flow in the boundary layer of
a flat plate is proposed and this system is reduced to one ordinary third-order equation,
similarly to the work of Blasius in relation to the laminar boundary layer. The method of the
direct reduction of the boundary value problem to the Cauchy problem was used to solve
this equation. The results of this solution made it possible to determine the expressions for
the resistance coefficients, as well as the thicknesses of the boundary layer, displacement,
and momentum loss. These values are comparable with the available experimental data.
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The present research shows that the fluid flow development in a pipe and all the
considered flow regimes within it, along with their rheology, can be described by means of
one rheological relation, which is a power-law two-parameter generalization of Newton’s
formula for a viscous fluid. In this case, the change in the flow movement characteristics
can be described by changing the values of the nth power and the χn coefficient in this
ratio when the corresponding critical Reynolds numbers are reached. This generalization
makes it possible to research the behavior of flows with small concentrations of polymers,
in which the Toms effect is observed. For such flows, the turbulent regime changes with an
increase in the Reynolds number to another one, leading to “laminar-type” velocity profiles
and the corresponding resistance laws. Then, the Virk flow reaches its limit regime with its
own rheology with an increase in the Reynolds number. The results of this research allow
us to carry out practical calculations of the velocity profiles and resistance coefficients of
flows with arbitrary rheology based on a unified approach.

Subsequently, we plan to compare the proposed model with modern approaches such
as DNS, and also perform calculations for more complex geometries on the basis of the
proposed approach.

Author Contributions: Conceptualization, V.P.; methodology, V.P.; validation, D.N.; formal analysis,
D.N.; investigation, V.P., E.N.; resources, D.N.; data curation, V.P. and D.N.; software E.N.; writing—
original draft preparation, V.P. and E.N.; writing—review and editing, D.N.; visualization, V.P. and
E.N.; supervision, V.P. and D.N.; project administration, D.N.; funding acquisition, D.N. All authors
have read and agreed to the published version of the manuscript.

Funding: The research is partially funded by the Ministry of Science and Higher Education of the
Russian Federation as part of World-class Research Center program: Advanced Digital Technologies
(contract No. 075-15-2020-903 dated 16 November 2020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Ekaterina Nikitina for significant help in the article preparation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Batchelor, G.K. An Introduction to Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2000; 615p, ISBN 978-0-5118-0095-5.
2. Oertel, H., Jr. Prandtl—Führer durch die Strömungslehre. Grundlagen und Phänomene; Springer: Wiesbaden, Germany, 2012; 764p,

ISBN 978-3-8348-1918-5.
3. Pavlovsky, V.A.; Nikushchenko, D.V. Computational Fluid Dynamics. Theoretical Fundamentals; Lan: Saint-Petersburg, Russia, 2018;

368p, ISBN 978-5-8114-2924-0. (In Russian)
4. Artyushkov, L.S. Dynamics of Non-Newtonian Fluids; Saint Petersburg State Marine University Publ.: Saint-Petersburg, Russia,

1997; 459p, ISBN 5-88303-017-X. (In Russian)
5. Toms, B.A. Some observations of the flow of linear polymer solution through straight tubes at large Reynolds numbers. Proc. Int.

Congr. Rheol. 1949, 2, 135–141.
6. Virk, P.S. Drag Reduction Fundamentals. Am. Inst. Chem. Eng. J. 1975, 21, 625–656. [CrossRef]
7. Pavlovsky, V.A.; Kabrits, S.A. Calculation of the turbulent boundary layer of a flat plate. Bull. St. Petersburg Univ. Appl. Math.

Inform. Comput. Sci. Control Process. 2021, 17, 370–380. [CrossRef]
8. Nikushchenko, D.V.; Pavlovsky, V.A. Fluid Motion Equations in Tensor Form. In Advances on Tensor Analysis and Their Applications;

Bulnes, F., Ed.; IntechOpen: London, UK, 2020; pp. 49–72.
9. Novozhilov, V.V.; Pavlovsky, V.A. Steady Turbulent Flows of Incompressible Fluid, 2nd ed.; Saint Petersburg State University Publ.:

Saint Petersburg, Russia, 2012; 484p. (In Russian)
10. Pavlovsky, V.A.; Nikushchenko, D.V. Turbulent flow in rough pipes. Mar. Intellect. Technol. 2020, 4 Pt 3, 195–200. [CrossRef]
11. Schlichting, H. Boundary-Layer Theory, 9th ed.; Springer: Berlin/Heidelberg, Germany, 2007; 809p, ISBN 978-3-662-52917-1.
12. Pavlovsky, V.A.; Orlov, O.P. Features of the coordinated change in friction resistance and flow velocity profile in pipes with the

manifestation of the Toms effect. Proc. Krylov State Sci. Cent. 2021, 3, 25–32.

http://doi.org/10.1002/aic.690210402
http://dx.doi.org/10.21638/11701/spbul0.2021.405
http://dx.doi.org/10.37220/MIT.2020.50.4.063

	Introduction
	Steady-State Flow in a Circular Cylindrical Pipe at an Arbitrary Value of the n Power
	Fluid Flow Development in the Pipe with Increasing Reynolds Number
	The Flow of Weakly Concentrated Aqueous Solutions of Polymers
	Conclusions
	References

