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Abstract: In this paper, we investigate the characterization of MRCPSP/max under uncertainty
conditions and emphasize managerial ability to recognize and handle positively disruptive events.
This proposition is then demonstrated using the entropy approach to find disruptive events and
response time intervals. The problem is solved using a resilient characteristic of the three-stage
procedure gauged by schedule robustness and adaptivity; the resulting schedule absorbs the impact
of an unexpected event without rescheduling during execution. The use of the differential evolution
algorithm, known as DDE, in a discrete manner is proposed and evaluated against the best known
optima (BKO). Our findings indicate the DDE is effective overall; moreover, compared against the
BKO for every stage, the most significant difference is that the stability of the solutions provided
by DDE under the three-stage framework proves to be sufficiently robust when practitioners add
response times at certain range levels, in this case from 8% to 15%.

Keywords: resilience; uncertainty; MRCPSP/max; entropy; discrete differential evolution (DDE)

1. Introduction

The prevalence of uncertainty has exposed significant weakness and fragility in every
business sector. The ubiquity and potential of uncertainty to impact the allocation and
utilization of resources have motivated research into operation issues from various per-
spective, such as by stipulating scheduling policies [1], modeling uncertainty and causality
in a project [2], improving decision-making [3], scheduling activities with stochastic dura-
tions [4–6] and during resource breakdowns [7], and evaluating resources shared under
coalition conditions [8]. The aspects of resilience [9,10] and sustainability [11] have elevated
the conventional concept of robustness, which often implies scheduling, with disrupted
resource availability and dynamic resource demands [12]. However, common approaches
generate initial project schedules that are static and deterministic and often involve the use
of the critical path method (CPM) to build a baseline schedule. To ensure safety during the
activity, a project manager implements a safety allowance, a project buffer augmented by
a percentage of the initially estimated duration, which varies almost exclusively with the
manager’s experience and proficiency [13].

Recognizing the uncertainty inherent in project planning has induced many research
efforts in project scheduling under conditions of uncertainty; see [14–17] for review articles.
At the same time, countless efforts have been made to provide solution stability and quality
to maintain a safety allowance, revealing a potential trade-off [13]. For example, in [7,18],
the authors intentionally controlled the resource-interdependence and durations of the
activities to mitigate the effect of time uncertainties. In [19–21], the authors maintained
robustness by dealing with the activity starting times and duration tolerance levels. In
addition, other effective objectives that represent robustness, such as weighted slack func-
tions, path-based measures, slack variability measures, and combined cost (time) functions,
were introduced and applied [22–25].
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Nevertheless, as pointed out in [16], there has been relatively less research on robust
optimization for the RCPSP in deterministic settings [17]. In our past work [26,27], we
found very little research applying the entropy approach to the RCPSP. Only five studies
regarding the project scheduling domain could be found; thus, we applied the entropy
concept to handle uncertainties in the standard MRCPSP and successfully generated robust
schedules with fewer elements required to be considered in the estimation. Furthermore,
none of those five studies applied to MRCPSP/max. This realization motivated us to inves-
tigate the characterization of MRCPSP/max under uncertainty conditions and emphasized
the managerial ability to recognize and handle positively disruptive events. Therefore,
we attempted to construct resilient entropy schedules through our three-stage DDE ap-
proach. We hope to offer a means for the adaptive capacity of an organization to improve
preparedness for dynamic environments and help managers to positively adjust projects to
turbulence through the availability of resilient schedules.

The remainder of this paper is arranged as follows. Section 2 reviews uncertainty and
resilience in relation to MRCPSP/max and introduces the models and solution concepts
used in this paper. Section 3 presents the decision rules for mode assignment and activity
lists and the discrete version of differential evolution (DDE) with enhancements in its
implementation. Section 4 provides the experimental setup, computation, and analysis of
robust makespans on benchmark sets. Lastly, conclusions are drawn in Section 5.

2. Coping with Uncertainty in Project Management

The dynamic behavior of real-world environments results in unanticipated conditions
that may limit the implementation of ideal and non-restrictive schedules. Some view this
inability to accurately predict (or control) project outcomes as being due to an aggregation
of several risk factors, such as project magnitude and scope, the number of employees
and suppliers, the amount of hardware and software, the set of work standards and skills,
variations in design and engineering estimates, additional time required for rework and
unreliable deliveries, and difficulties in assigning tasks or communicating. To enhance
the managerial ability to cope with project uncertainties, we begin with a more specific
discussion of RCPSP/max, followed by a resilient framework with entropy measures
designed to handle uncertainty.

2.1. Problem Models

The classical RCPSP remains a generic model with simple constraints that guide
the allocation of limited resources within a project, in which an activity executed in one
specific way cannot start before its predecessor is completed. Later, the concept of modes
representing various resource sets to be potentially utilized was introduced in [28], and this
multimode characteristic extended the model to real industrial cases, which encompass the
amount of man/machine resources available to complete a job in smart manufacturing, the
skill levels, and the different labor contracts in the workforce required to provide services.
Among many other extended models [17], the deterministic single-mode RCPSP/max [29]
was modified, allowing minimal and maximal time lags between any two precedence-
related activities. The objective of this problem is to assign each activity a start time, while
satisfying all temporal and resource constraints within a minimum project makespan.

The multi-mode RCPSP/max (MRCPSP/max) problem consists of n + 2 activities
with the set V = {0, 1, . . . n, n + 1}, where activity i is to be executed in only one mode
µi ∈ M. Depending on the mode µi, each activity has a fixed duration or processing time
di,µi , which is a non-negative real or integer number. In addition, dummy activities 0
and n + 1 with d0,µ0 = dn+1,µn+1 = 0 represent the beginning and the completion of the
project, respectively. A start schedule S is an assignment of start times to all activities, i.e., a
schedule vector S = (Si), where Si represents the start time of activity i and S0 is assumed
to be 0. The end-time of activity i is denoted as Ci. As durations are deterministic and
preemption is not allowed, we thus have Ci defined as in Equation (1):
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Si + di,µi = Ci µi ∈ M, i ∈ V (1)

In MRCPSP/max, schedules are subject to two constraints: temporal and resource
constraints. Here, temporal constraints restrict the time lag between activities in an activity-
on-node (AON) network N = 〈V, E, δ〉, consisting of the node set V, the arc set E, and
the arc weight function δ. Without considering the arc weight, the time lag depends on
the mode µi of activity i and the mode µj of activity j (j 6= i), and is either a minimum

(maximum) time lag lmin
i,µi ,j,µj

(
lmax
i,µi ,j,µj

)
between the start times of two different activities i

and j such that

Si + lmin
i,µi ,j,µj

≤ Sj ≤ Si + lmax
i,µi ,j,µj

〈i, j〉 ∈ E, µi ∈ M, i ∈ V (2)

When both lmin
i,µi ,j,µj

= 0 and lmax
i,µi ,j,µj

= 0, activity j cannot be started before activity i
begins. In this definition, time lags connect the start times of two related activities, known
as start-to-start time lags. A scheduleS is time- feasible if all the time lag constraints are
satisfied at the start times Si (i = 0, 1, . . . , n + 1). However, in this study, the arc weight
denotes a user preference matrix, assigning the minimum and maximum time lags of
δmin

i,µi ,j,µj
= lmin

i,µi ,j,µj
and δmax

i,µi ,j,µj
= lmax

i,µi ,j,µj
to each arc <i, j>. The inclusion of such time lags will

lead to cycles in N; in a more realistic case, a project manager will consult with the customer
about his/her specific requirements and hold a group discussion with team members for
implementation. However, these interdependent activities may follow immediately or a
few days later.

In terms of resource constraints, let A(M, S, t) be the set of activities being pro-
cessed at time instant t for schedule S, and M = (µi) be a mode vector used by activity
i. The amount of non-renewable resources k used by activity i denotes rν

i,µi ,k
(i ∈ V,

µi ∈ M, k ∈ Rν) and renewable resources are denoted as rρ
i,µi ,k

(i ∈ V, µi ∈ M, k ∈ Rρ).

Both are subject to non-renewable and renewable capacities, expressed as Rν
k , and Rρ

k ,
respectively. Since all non-dummy activities are executed in only one mode for a spe-
cific duration, depending on the resources consumed, a schedule S is resource-feasible if
Equations (3) and (4) hold.

∑i∈A(M,S,t) rρ
i,µi ,k
≤ Rρ

k µi ∈ M, k ∈ Rρ, t ≥ 0 (3)

∑i∈A(M,S,t) rν
i,µi ,k ≤ Rν

k µi ∈ M, k ∈ Rν, t ≥ 0 (4)

Furthermore, a schedule is called feasible if both time and resources are feasible. Thus,
the objective of the deterministic MRCPSP/max scheduling problem is to find a feasible
schedule so that the project makespan is defined as the start time of the final dummy
activity Sn+1, and is minimized as in Equation (5).

Min Sn+1 = max
i=1,...,n

Ci (5)

2.2. Understanding Uncertainty

Project characterization can directly influence a manager’s potential response. As
such, understanding project vulnerabilities is essential in the detection of uncertainty.
Several researchers have proposed the information theory and entropy approach for this
area [2,26,27,30–37]. For example, some authors in [26,27,34–36] applied the entropy model
as a measure of duration uncertainty or a priority rule for scheduling all activities; oth-
ers [37] focused on calibrating entropy measures to better estimate uncertainty in activity
durations. In this study, we consider the implications of entropy presented in [30], where
an appropriate measure of project uncertainty, Schedule Entropy U, borrowed from the
theory of information in [38], is mathematically defined as in Equation (6):
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U = −∑
i

pi ln pi (6)

where pi indicates a discrete set of unfavorable activity probabilities, and the sum is
extended over all the unfavorable sets of such a schedule. Since all activities durations have
an estimated range between dil < d < diu, in which “l” denotes the “lower bound” and “u”
denotes the “upper bound”, and these are uniformly distributed in the interval (dil , diu),
the determination of probabilities pi can be expressed as in Equation (7):

pi =
∆t

diu − dil
(7)

Furthermore, the amount of time in which potentially disruptive events are within the
estimated duration range, and hence still within the control of the project manager—and
thus, the set of unfavorable events Ei for every activity—can be obtained from Equation (8),

Ei = EFTdi
+ (diu − di)− LFTdi

= (diu − di)− li (8)

where diu and di denote the longest and the most probable duration, respectively, and li
refers to the float or slack of activity i, implying that it can be delayed without delaying
subsequent activities and project completion dates. Additionally, the terms EFTdiu

and
LFTdi

refer to the earliest finish time with the longest duration and the latest finish time
with the most probable duration, respectively.

The entropy U of the project schedule can be thought of as all the individual entropies
Ui of activity i. Activity i can be potentially unfavorable or disruptive, if and only if it is
critical to the CPM and its actual finish time is beyond the latest finish time. An entropy
value for a single activity, i.e., Ui, can be determined as in Equation (9):

Ui = −
Ei

(diu − dil) ln
(

∆t
diu−dil

) (9)

As such, Equation (10) shows the value for the total entropy in the project.

U = −∑
i

Ui (10)

Based on these equations, it is understandable that an individual entropy value is
subject to the estimation of the range for its duration, i.e., the more significant the difference
in the interval (dil , diu), the greater the manager’s perception of the activity’s uncertainty
and therefore the higher its entropy value. In addition, as shown below, the schedule
entropy is directly affected by the order in which activities are scheduled.

Figure 1 depicts the concept of unfavorable events Ei and the relevant time interval
∆t. The solid gray bar symbolizes a scheduled activity with the most probable duration
di, whereas the solid yellow bar shows its most prolonged duration diu. The slack li is the
time interval between EFTdi

and LFTdi
. The time difference between LFTdi

and EFTdiu
is

denoted by Ei. The parameter ∆t is determined by the decision-maker and is dependent
on the nature of the project. Riskier projects require lower values for ∆t, which acts as
a checkpoint for the project manager to update the project’s status and take control of
its progress.

In this study, entropy is used in scheduling to handle disruptive activities, as intro-
duced in [30]. The main purpose of this method is to determine disruptive events and
response time intervals; this can be done through the use of available information such
as activity durations and dependencies. In practice, the relevant time interval ∆t refers to
the period of detection and activation, recognized as event awareness from the managerial
perspective. It is essential for managers to adjust positively to the impact of possible
adverse events. A project manager sets up checkpoints to detect potential threats and keep
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the project scope and expected outcome as intact as possible. The higher the project stakes,
or the more unstable the development environment, the greater the need for more frequent
checkpoints. Since uncertain durations, resource requests, and capacities may likewise not
be constant during a project’s lifespan, ∆t reflects how a manager perceives a disruptive
event and takes the initiative if an incident affects the progress of the schedule. Once a
decision is reached at each checkpoint, the options available for reaching the subsequent
checkpoint decrease, thus reducing uncertainty.
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2.3. A Resilient Approach to Uncertainty

As discussed in the previous sections, project managers or decision-makers must assess
different controls and operating conditions. A final project schedule embodying trade-offs
among various aspects reflects a stable state, characterized by its makespan, cost, risk, and
net present value. However, in the presence of disruptive events, the control of activity
progress may be broken, resulting in cost overruns, makespan tardiness, performance
degradation, or even project failure. Therefore, this section focuses on establishing a
desirable algorithm characteristic called resilience. The authors in [39] defined resilience as
a process of aligning a set of adaptive capacities to provide a positive course of functioning
and adaptation after a disturbance. Given changing project constraints, variables, and
structures, decision-makers must adapt their preferences or objectives to arrive at another
stable state. In this sense, more than one stable condition exists for project scheduling
problems. In [40,41], the term robustness is defined as “the ability (of a schedule) to cope
with small-time increments in some activities resulting from uncontrollable factors.” Thus,
resilience is the magnitude of the disruptive event absorbed before a schedule degrades to
the threshold, i.e., the minimum acceptable level of individual activity performance [9].

Researchers have worked on developing an algorithm that measures how the schedule
robustness of scheduled activities deviates from the actual occurrences through a resilient
scheduling algorithm. Lambrechts et al. [7] determined the expected increase in activity
duration due to resource breakdown, proposing a buffer time to prevent schedule dis-
ruptions. In [42], the scenario-based proactive robustness optimization (SBPRO) method
was developed using the critical-chain project management (CCPM) method. Moradi and
Shadrokh [8] applied the CCPM and considered only renewable resources at the cost of
recruiting additional resources. Balouka and Cohen [43] sought to minimize the worst-case
project duration by deciding on activity modes, resource allocations, and a schedule base-
line. In [44], the authors included multiple alternative execution modes and allowed the
switching of possibilities between different modes for the same activity during scheduled
construction projects. These studies focused on procedures designed to build a robust
schedule through the use of time or resource buffers. Their procedures reflect the con-
trollable flexibility needed to produce an incremental solution based on the subsequent
revelation of contingent events.

Other researchers have developed optimization models for robustness measures (RMs).
For instance, Chtourou and Haouari [45] proposed different slack-based models to predict
a schedule’s robustness in relation to the single-mode RCPSP. The authors in [9] addressed
resilience in mean-variance models having two types of ratios, i.e., the average interval to
activity duration and the free slack-to-activity duration. Finally, Milat et al. [10] improved
resilience by maximizing free floats as the degree of perturbations absorbed rises. Their
study depicted resilience through the alternative measure expressed in the objective func-
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tion, which maximizes the highest proportion of resource-technology free floats for the
activities early in the schedule.

In this study, after handling the issue of schedule uncertainty via entropy, we have
aimed to achieve project resilience by extending the robustness model in [45] from the
single-mode RCPSP to the multimode RCPSP/max, subjecting it to the constraints pre-
sented in [46]. This objective function indicates the relationships between each activity’s
precedence, resource usage, and slack in each available mode to maximize the robustness
measures. The mathematical model designed to maximize the schedule’s robustness is
shown in Equation (11):

Max Z = ∑
µi

∑
i

(
min

(
li,µi ,

(
f rac ∗ diµi

))
∗ Nsucci ∗∑

k
rρ

i,µi ,k

)
(11)

where frac represents a threshold (%) of activity duration (0 < frac < 1), diµi refers to
the duration of activity i executed in mode µi, Nsucci denotes the number of immediate
successors of activity i, and li,µi expresses the slack of activity i if executed in mode µi. As
previously mentioned, the free slack is determined by LFTdi

− EFTdi
, or LSTdi

− ESTdi
.

3. Methods

In this study, we aimed to minimize the project makespan while maximizing its
robustness for an optimal sequence of activities. The schedule-generating procedure begins
by evaluating the benchmark instances’ feasibility. An infeasibility is observed when a
schedule with a mode combination consumes more non-renewable resources than the
total amount available or its total completion time exceeds the required target. Otherwise,
an instance is considered feasible, and, once selected, the process moves forward to the
following three stages for baseline schedules.

First, Stage I produces a minimized makespan schedule using an optimization algo-
rithm. Stage II uses Stage I’s schedule as an input to generate an entropy-based upper-
bound makespan schedule. Finally, Stage III generates maximized-robustness schedules
with a makespan between Stage I and Stage II. The pseudo-code (Algorithm 1) for the
execution of the method is as follows:

The idea is to enhance resilience in the schedule generation scheme. In this case,
although the initial schedule (baseline) in Stage I seeks solely to minimize the makespan,
this will leave no room for unexpected events that will almost certainly happen. On the
other hand, in Stage II, the entropy-based schedule may render the project infeasible even
before it begins. Thus, the resulting makespans from Stages I and II serve as lower- and
upper-bound values. With this range of values, this schedule generation scheme absorbs
the impact of unexpected events without rescheduling during execution. The progress of
the makespan and robustness at each stage is conceptualized in Figure 2.
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Algorithm 1: Repeat until all feasible instances are solved

Stage 1: Minimize Makespan (Target Makespan/makespan_I)
Initialization Phase
While i < population size (Np)
Evaluate Mode Selection Rules (MSR)
Evaluate Activity Priority Rules (APR)
End

Discrete Differential Evolution Algorithm
End
Stage 2: Determine Schedule’s Entropy (Upper Bound Makespan/makespan_II)

Initialization Phase
While i < population size (Np)

Evaluate activity risk and set checkpoint frequency
Determine Unfavorable events
Determine Event Entropies
End

Compute Schedule Entropy
End
Stage 3: Maximize Robustness (Robustness Measure/makespan_III)

Initialization Phase
If makespan > makespan_II, then
Reject initial solution
End if
While i < population size (Np)
Evaluate Mode Selection Rules (MSR)
Evaluate Activity Priority Rules (APR)
End

Discrete Differential Evolution Algorithm
End
End

Part of the complexity involved when solving the MRCPSP/max relies upon selecting
the execution modes and determining the order in which to execute activities. In this study,
we consider the mode selection rules and activity priority rules used by Chen et al. [47] to
determine the best execution mode for every activity and the order in which the activities
are executed. The schedules are produced by means of a serial generation scheme (SGS)
and improved by means of a discrete differential evolution algorithm.

3.1. Discrete Differential Evolution Algorithm

Differential evolution is an evolutionary-type, population-based algorithm to optimize
functions over continuous solution spaces [48]. Characterized by simplicity, straightfor-
wardness, and robustness, numerous applications have been developed to solve com-
binatorial optimization problems [49,50], such as the machine scheduling problem in
production (MSPP) [51–60], the traveling salesman problem (TSP) [61–63], the linear order-
ing problem (LOP) [61,64], the multidimensional two-way number partitioning problem
(MDTWNPP) [65], and the multidimensional knapsack problem (MKP) [66]. In [64,65], the
authors addressed permutation-based optimization problems and proposed an algebraic
structure and a binary operator that allowed the solutions to be directly expressed as
permutations. The duality of geometric search operators was introduced in [61] for both
continuous and combinatorial problems. Furthermore, in [67], angle modulation, a trigono-
metric base (i.e., a sin/cos function) technique, was developed to generate a bit string
from continuous to binary problem spaces. A set-based encoding scheme that redefined all
algorithmic operators for the discrete space was applied to TSP in [63]. In [66], the authors
emphasized a selection operator based on the multiple probability estimation models and
verified its usage in continuous and combinatorial problems.
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Moreover, due to the interdependency between variables, the model’s performance
may be compromised in binary- or permutation-based problems. Nonetheless, the prece-
dence relationship is fundamental to project scheduling, making the concept of decoding
(i.e., converting continuous encoding vectors into permutations of activity lists) more com-
plex than other approaches currently in use. Furthermore, when dealing with possible
execution modes for activities in RCPSP, one needs to consider the task sequence and its
appropriate mode almost in parallel. Only a few studies have examined either single- or
multimode RCPSP [14,68–74], and even fewer have addressed the MRCPSP/max format,
in which the encoding scheme is only visible from one viewpoint. Thus, in this paper,
we propose the application of DDE to solve the MRCPSP/max. In our DDE method, the
encoding of the DDE algorithm consists of two vectors, one representing the task sequence
and another with the execution mode for each activity. Several potential resource conflicts
and precedence constraints are taken into account in our design.

Conventional DE works in two phases: initialization and evolution. In the initialization
phase, the population Sg =

{
Xg

i : i = 0, 1, . . . Np − 1
}

at each generation g for the size of
Np contains candidate solutions (i.e., schedules). As shown in Equation (12), each solution

consists of D-dimensional parameter vectors Xg
i =

{
xg

i,j : j = 0, 1, . . . D− 1
}

, generated as
follows by a uniformly distributed random number rand [0, 1].

Xg
i = Xg−1

min + rand [0, 1]·
(

Xg−1
max − Xg−1

min

)
(12)

The search space Sg is constrained by the maximum and minimum bounds(
Xg−1

max , Xg−1
min

)
. Xg

i is instantiated independently and further adjusted throughout the
execution of the algorithm. The key is to generate a suitable number of trial parameter
vectors to avoid stagnation and provide sufficient solution space for the next phase.

Mutation and crossover operators and population maintenance mechanisms begin
their computing schemes in the evolution phase. The classical mutation and crossover op-
erators generate new vectors, whereas the population maintenance mechanism determines
which vector will survive the next generation. In this respect, a target vector Xg

i refers to a
parent vector from the current generation g, whereas a mutant vector Mg

i obtained through
the differential mutation operation, is called the donor vector. The offspring formed by
recombining donor and target vectors are called trial vectors, denoted as Tg

i .
To show the discretization of the DE, i.e., the proposed DDE algorithm, consider a

multimode project composed of six activities, with their precedence relationships shown
in Table 1. The encoding of the DDE algorithm consists of two vectors, one representing
the task sequence and another with the execution mode for each activity. For example,
the first activity to be executed is activity 1, in mode 2, followed by activity 3 in mode 1,
and so on. The mutation and crossover operations will not change the selected mode for
each activity for this particular example, thus obviating the need to deal with infeasible
solutions later on.

Table 1. The precedence relationships of the example with six activities.

Activity Predecessor

0 -
1 0
2 0
3 1
4 2
5 3
6 4, 5
7 5, 6
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3.2. Mutation

Unlike the genetic algorithm (GA), DDE’s main search component to optimize so-
lutions is a mutation, not a crossover. To mutate a solution, the DDE constructs the first
population with Np members and randomly selects three different feasible solutions, named

Xg−1
0 , Xg−1

1 , Xg−1
2 , where g denotes the generation number. Next, the mutant vector Mg

i is
determined based on the scaled difference of any two of the three solution vectors, shown
in Equation (13).

Mg
i = Xg−1

0 + F·randg
i

(
Xg−1

1 − Xg−1
2

)
(13)

where F refers to a scaling factor, a positive number that controls the directional hop length
of two vectors. In this example, a value of 1.5 was selected arbitrarily, and the value of
randg

i falls between 0 and 1. Table 2 shows how mutation works in the proposed DDE.
First, three feasible solutions, X1

0 , X1
1 , X1

2 , are randomly selected, and a vector with random
numbers is provided, i.e., rand2

1. As a numerical example, consider the second value (3.30),
obtained by 3 + 1.5× 0.2(2− 1) = 3.30.

Table 2. An illustrative example of a mutant vector creation.

Sequence of Tasks 1 2 3 4 5 6

Solution X1
0 1 3 5 2 4 6

Solution X1
1 1 2 3 5 4 6

Solution X1
2 2 1 4 3 5 6

rand2
1 0.30 0.20 1.00 0.30 0.21 0.10

Mutated Vector M2
1 0.55 3.30 3.50 2.90 3.69 6.00

3.3. Crossover

After mutation, the crossover operation is executed to enhance the population diversity.
The mutant vector Mg

i exchanges its parameter with the target vector Xg−1
3 selected from

the current population. As a result, a trial vector, Tg
i , is determined using the following

scheme in Equation (14):

Tg
i =

{
Mg

i i f
(

randg
i ≤ Cr

)
Xg−1

3 Otherwise
(14)

The probability of crossover Cr acts as a control parameter of DDE, and its value
ranges between 0 and 1. If randg

i ≤ Cr, the trial vector gets its value from the corresponding
dimension of the newly generated mutant vector Mg

i . Otherwise, it is copied from the

current vector Xg−1
3 . Table 3 shows the target vector used for the crossover and the random

numbers rand2
1 generated to compare Cr; in our example, Cr = 0.2. The trial vector is then

created, as shown in Table 3. For the value of rand2
1 fewer than Cr = 0.2, elements of task 2

(i.e., activity 1) and task 6 (i.e., activity 6) from the mutant vector M2
1 are copied, whereas

tasks 1, 3, 4, and 5 from the target vector are used.

Table 3. An illustrative example of the target vector, the trial vector, and the decoded vector.

Sequence of Tasks 1 2 3 4 5 6

Target Vector X1
3 2 1 3 5 4 6

Mutated Vector M2
1 0.55 3.30 3.50 2.90 3.69 6.00

rand2
1 0.40 0.14 0.90 0.85 1.00 0.02

Trial Vector T2
1 2 3.30 3 5 4 6.00

Decoded Vector DT2
1 1 3 2 5 4 6
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Finally, to determine the task execution sequence, i.e., the permutation of activities, the
values obtained in the trial vector are sorted, always satisfying the precedence constraints.
For this example, the first task to be scheduled is selected between tasks 1 and 2. Since
task 1 has a lower value than task 2 (2 < 3.3), task 1 is scheduled first. Next, the tasks with
scheduling priority are tasks 2 and 3. Task 3 attains the second position because 3 < 3.3.
Then, task 2 competes with task 5, which has a value of 4, for the third position. Task 2
wins the place, since 3.30 < 4, and so on until all the tasks are scheduled. For this particular
decoded solution, the execution sequence of activities is 1-3-2-5-4-6, as illustrated in the last
row of Table 3.

3.4. Selection

In this operation, the new solution DTg
i is compared with the target vector Xg

i ac-
cording to their fitness values. The vector with better fitness will survive into the next
generation as in Equation (15).

Xg
i =

{
DTg

i i f f
(

DTg
i

)
≤ f

(
Xg−1

i

)
Xg−1

i Otherwise
(15)

Since the objective in this study is to minimize the makespan (at stage I) or maximize
robustness (at stage III), if the new solution yields an equal or better objective value, it
replaces the corresponding target vector in the next generation. Otherwise, the target vector
is retained in the population. Once the population is updated, the evolution procedure is
repeated until a predefined termination criterion is reached.

4. Results and Discussion

This section presents the results of the methodology introduced above in relation to
the more complex MRCPSP/max. Experiments were conducted to evaluate the practicality
and efficiency of solving the test instances generated in [75]. There are three benchmark
sets with different activities (30, 50, and 100 activities); each set contains 270 instances, and
every instance uses three renewable, three non-renewable, and three doubly constrained
resources. Furthermore, except for the dummy activities (initial and final) with only one
execution mode and with no duration and no resource consumption, every activity can
include three, four, or five different execution modes. In the current study, the best-known
optima (BKO) are not compared against the makespan, but against the artificial bee colony
(ABC) results obtained in a previous study [47].

4.1. Parameter Settings

The parameters used in this study were set based on [47,68]. Sensitivity analyses were
performed to select the best values for the relevant time interval, ∆t = 1, and frac = 0.25. For
the algorithmic settings in Table 4, the population size (Np) was 40, F (scaling factor) was
1.5, and Cr was 0.2 in the DDE. For the ABC in Table 5, the population size was 30, with an
abandonment limit of 5, and MNC was 20.

Table 4. Parameter settings for the DDE algorithms.

Parameter Setting

Population Size (Np) 40
Scaling Factor (F) 1.5

Probability of Crossover (Cr ) 0.2
∆t 1

frac 0.25
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Table 5. Parameter settings for the ABC algorithms.

Parameter Setting

Population Size (Np) 30
Abandonment Limit 5

Maximum Number of Cycles (MNC) 20
∆t 1

frac 0.25

4.2. Computational Results

All experiments were carried out using an Intel i7 personal computer with 8 GB of
RAM, and the problem was coded using MATLAB. The DDE iterates through the total
problem instances available for each set and randomly selects a predetermined number of
feasible instances. Table 6 shows the optimal solutions found and the average runtime for
each benchmark when running each algorithm. For all algorithms, increasing the number
of activities elevates the problem’s complexity. Hence, the average run times increase,
whereas the total numbers of optima decrease. Furthermore, the results indicate that the
average runtime of DDE was slightly higher than that of ABC running all MRCPSP/max
benchmarks. On average, the DDE algorithm takes 20.556 s to find a schedule with
optimized robustness, whereas the takes 20.329 s. However, DDE obtains slightly higher
numbers of optima than ABC. Thus, we can conclude that DDE is more effective than ABC
in this regard.

Table 6. The average runtime per MRCPSP/Max benchmark set for each algorithm.

Benchmark Set
Optima Found (No.) Average Run Time (s)

ABC DDE ABC DDE

MM30 260 263 11.888 12.189
MM50 123 124 17.063 17.223
MM100 84 87 32.037 32.257

Furthermore, Table 7 presents the results obtained from evaluating all 270 instances of
every benchmark set. The target, entropy-based, and resilient schedules in Stage I, II, and
III are referred to as S1, S2, and S3, respectively. They were assessed based on two measures:
the makespan (Avg. Dev.) and the robustness (Avg. RM.). Avg. Dev. refers to the average
of all the deviations computed by (Ms − BKO)/BKO. Ms denotes the schedule makespan
at the current stage, whereas the best-known makespan (BKO) represents the reference
makespan, i.e., the optimal solution when comparing the target schedule of Stage I and
the upper-bound schedule of Stage III. Furthermore, Avg. RM. is a measure of average
robustness. Finally, the algorithmic performance was evaluated for three benchmark sets
(i.e., MM30, MM50, and MM100) against the ABC.

The three-stage procedure proved to be robust enough to produce results comparable
to different optimization algorithms. These results are encouraging, given that practitioners
can add anywhere between 8% to 15% of their original estimates as response time intervals
(i.e., buffer times). Furthermore, both ABC and DDE algorithms performed better when
considering that response time intervals used by practitioners rely primarily on intuition
and experience. On the other hand, this three-stage procedure relies solely on information
available to every project, including activity durations and precedence.

Meanwhile, Figures 3–5 show the results of the average deviation of every bench-
mark instance when compared against the BKO for every stage, divided according to the
optimization algorithm applied. In addition, Figures 6–8 show the robustness measures
obtained at each stage using the DDE and ABC algorithms on different sizes of benchmark
instances, i.e., MM30, MM50, and MM100.
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Table 7. Summary results for the MRCPSP/Max benchmark evaluations for each algorithm.

Stage Measure
MM30 MM50 MM100

ABC DDE ABC DDE ABC DDE

S1
Avg. Dev. 0.00176 0.00580 0.04571 0.03104 0.04424 0.04031
Std. Dev. 0.00664 0.01952 0.03946 0.06002 0.03257 0.04090
Avg. RM. 102.75556 116.62593 116.62593 117.31481 117.39630 115.85185

S2
Avg. Dev. 0.09690 0.09524 0.10132 0.09640 0.08497 0.07570
Std. Dev. 0.05793 0.08394 0.05917 0.08180 0.04307 0.05348
Avg. RM. 132.72593 131.86296 133.81481 136.22593 137.12963 134.46670

S3
Avg. Dev. 0.05041 0.02491 0.05387 0.03711 0.04373 0.04259
Std. Dev. 0.04794 0.04856 0.05220 0.05615 0.04067 0.04371
Avg. RM. 100.62593 123.80370 124.45926 125.99259 127.43704 124.52593
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Compared to the previously obtained results (columns marked with ABC), the most
significant difference observed for the obtained solutions is their stability. Though the
standard deviation of both algorithms increases with complexity, this increase is lower
and slower when using DDE. Furthermore, the methodology remains stable and yields
schedules with robust makespans near the best-known optima. In summary, better im-
plementations of optimization algorithms can further improve the performance of the
proposed methodology.

5. Conclusions

Uncertainty greatly impacts the dynamic behavior of real-world environments. Adap-
tive capacity helps to improve preparedness in dynamic environments, and managers
must respond effectively to changes in environmental conditions. Researchers and prac-
titioners have sought to optimize schedules and quality in many studies, and improving
schedules remains a pressing concern. In this paper, we tried to resolve the multi-mode
resource-constrained project scheduling problem (MRCPSP/max), which is not a common
domain for the DDE algorithm, and we specifically considered entropy, which helped to
deal with uncertainty.

We focus on three main contributions in this paper. Initially, we explored the char-
acterization of MRCPSP/max under uncertainty conditions and confirmed the need for
managers to recognize and positively respond to disruptive events. Using entropy to
determine disruptive events and response intervals in scheduling, we demonstrated this
proposition. Then, we formulated the robustness attribute as a scheduling adaptability max-
imization problem and a three-stage schedule generation framework to enhance resilience
by absorbing the impact of unexpected events, while rescheduling during execution. Our
final contribution was a discrete framework for the differential evolution algorithm. In our
application of DDE, the encoding of the DDE algorithm consisted of two vectors represent-
ing the task sequence and the execution modes for each activity. Several potential resource
conflicts and priority constraints were considered in our design. The proposed DDE was
evaluated by solving test instances of benchmark sets by comparing its performance to the
best known optima (BKO) and the previous application based on the artificial bee colony
(ABC) approach.

The findings indicated that, for all algorithms, the problem’s complexity influences
the number of optima found and the average run time. Overall, a more effective algorithm
is the DDE algorithm, as it offers more optimal solutions and a higher number of them.
Additionally, we were able to determine when practitioners need to add response time
intervals at certain range levels, such as 8% to 15% in this case, to benefit from schedule
robustness. Finally, compared to the BKO for every stage, the stability of the solutions
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provided by the DDE demonstrated its algorithmic advantage in terms of resilience. Un-
fortunately, the more realistic the academic model is, the more difficult it is to solve the
problem; the MRCPSP/max is simply one of the very difficult problems.

Nonetheless, the encouraging computational results may lead to future implications
along other lines. First of all, it is interesting to study which features make instances of
MRCPSP/max difficult or easy to solve. In this sense, future studies may further enhance
scheduling efficiency by examining various criteria for activity prioritization and mode
selection. Another interesting line of research is investigating other potential encoding
scheme frameworks in order to capture problem-specific aspects. Furthermore, efforts
to examine other approaches to dealing with uncertainty in project scheduling and the
verification of their performance using real-world data are also necessary.
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