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Abstract: In this paper, the dynamic response of a simply supported beam subjected to a moving
load is reinvestigated. Based on a new beam theory, slope inertia-based Timoshenko (SIBT), the
governing equations of motion of the beam are derived. An analytical solution is presented by using
a coupled Fourier and Laplace–Carson integral transformation method. The finite element solution is
also developed and compared with the analytical solution. Then, a comparative study of three beam
models based on the SIBT, Euler–Bernoulli and Timoshenko, subjected to a moving load, is presented.
The results show that for slender beams, the dynamic responses calculated by the three theories have
marginal differences. However, as the ratio of the cross-sectional size to beam length increases, the
dynamic magnification factors for the mid-span displacement obtained by the SIBT and Timoshenko
beams become larger than those obtained by the Euler–Bernoulli beams. Furthermore, until the ratio
is greater than 1/3, the difference between the calculated results of the SIBT and Timoshenko beams
becomes apparent.

Keywords: slope inertia-based Timoshenko beam; moving load; integral transformation; shear inertia;
dynamic response

1. Introduction

The analysis of moving loads on engineering structures has been a major research topic
since the mid-19th century [1]. To its credit is the excellent monograph by Fryba [2], which
describes many classical moving load problems and their analytical solution. Motivated by
the increasing high-speed rail lines, the vibration and control of beams, especially under
moving loads, naturally arouses the renewed interest of researchers and engineers [3–6].

So far, the Euler–Bernoulli beam theory is still the most commonly used in the dynamic
analysis of engineering structures, owing to its simplicity and reasonable engineering
approximations. Based on this theory, many analytical and numerical methods have been
developed to address the moving load problems [7–11]. Although the Euler–Bernoulli
model has been proven to be accurate enough for slender beams, it tends to overestimate
the natural frequencies of deep beams and their higher vibrational modes [4,12].

Another famous beam theory, the Timoshenko beam theory [13–15], which takes into
account both the shear deformation and rotary inertia of the cross section, is also widely
used. Many analytical and numerical methods have also been developed to address the
moving loads problems, for example [16–19]. Despite substantial research and applications
on the Timoshenko model having been carried out over 100 years, there are still open
questions deserving further discussion [12,20,21]. The most controversial point about this
model is the second frequency spectrum [4,22]. Nesterenko [23] and Stehen [24] indicated
that the second frequency spectrum is physically meaningless and should be disregarded.
In contrast, Cazzani et al. [25,26] and Diaz-de-Anda et al. [27] opined that the second
frequency spectrum is valuable and should be retained.

Several researchers suggested dropping off the fourth-order time derivative term in
the equation of motion of the Timoshenko model since the deformation caused by this term
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is negligible [28] and the physical meaning of the term itself is not clear [4]. For example,
Chen et al. [29] and Elishakoff et al. [15] respectively considered the rotary inertia caused by
shear deformation and proposed the truncated Timoshenko beam theory (TTBT). However,
further studies have shown that the TTBT is asymptotically consistent, for it cannot be
variationally derived [22].

Recently, Elishakoff et al. [22,30–32] proposed a slope inertia-based Timoshenko (SIBT)
beam theory by means of the variational approach. Using the deflection slope instead
of the bending rotation in the kinetic energy expression, the SIBT model eliminates the
fourth-order time derivative term associated with the Timoshenko model and appears to
be preferable to the TTBT [22]. Xia et al. [4] carried out analytical and numerical studies on
the SIBT model to clarify the physical meaning of its governing equation terms and reveal
its distinct features in the prediction of modes and frequencies. Although the SIBT seems
to be more comprehensive and preferable, a fundamental study of the SIBT beam under a
moving load problem is not available yet.

In this paper, based on the SIBT theory, the governing equations of motion of the beam
under a moving load are established. An analytical solution to this problem is presented.
Next, the finite element solution is proposed and validated. We present a comparative
study of the SIBT, Euler–Bernoulli and Timoshenko beam models subjected to a moving
load. Finally, concluding remarks are given.

2. Problem Definition

Consider a simply supported beam traversed by a moving concentrated load P as
shown in Figure 1. The Hamilton’s principle is employed to establish the equations of
forced vibration of the beam by extending the SIBT equations for free vibration [4,22]. The
kinetic energy T of the beam, the strain energy U, and the work done W due to the moving
load P can be written as

T =
1
2

L∫
0

ρA
(

∂y
∂t

)2
dx +

1
2

L∫
0

ρI
(

∂2y
∂t∂x

)2

dx (1)

U =
1
2

L∫
0

EI
(

∂ϕ

∂x

)2
dx +

1
2

L∫
0

kGA
(

∂y
∂x
− ϕ

)2
dx (2)

W =

L∫
0

δ(x− vt)Pydx (3)

where the vertical displacement of the beam is y (x, t) for 0 ≤ x ≤ L and 0 ≤ t ≤ τ, where
τ = L/v is the traversing time of the load P on the beam. ϕ is the bending rotation of
the beam, and δ is the Dirac delta function. Instead of pure bending rotary inertia in the
Timoshenko model, ρI(∂ϕ/∂t)2, the slope inertia, ρI(∂2y/∂x∂t)2, is used to incorporate the
shear inertia in the kinetic energy (see Equation (1)). By applying Hamilton’s principle, we
obtain the two coupled differential equations of motion of the beam subjected to a moving
load as

ρA
∂2y
∂t2 − kGA

(
∂2y
∂x2 −

∂ϕ

∂x

)
− ρI

∂4y
∂x2∂t2 = δ(x− vt)P (4)

EI
∂2 ϕ

∂x2 + kGA
(

∂y
∂x
− ϕ

)
= 0 (5)
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area A, moment of inertia I, elastic modulus E, shear modulus G, shear correction coefficient K and
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The boundary conditions are given by Equation (6)(
EI

∂ϕ

∂x

)
δϕ
∣∣∣L0 = 0,

[
kGA

(
∂y
∂x − ϕ

)
+ ρI

(
∂3y

∂t2∂x

)]
δy
∣∣∣L0 = 0 (6)

where δy and δϕ represent the variation of displacement and bending rotation of the beam,
respectively. To satisfy these conditions, for a simply supported beam, the boundary and
the initial conditions are given as

y(0, t) = 0, ∂ϕ
∂x (0, t) = 0, y(L, t) = 0, ∂ϕ

∂x (L, t) = 0 (7)

y(x, 0) = 0, ∂y
∂t (x, 0) = 0, ϕ(x, 0) = 0, ∂ϕ

∂t (x, 0) = 0 (8)

3. Results

To solve the problem analytically, we apply a coupled finite integral transformation
method. Firstly, for the transverse displacement y, one may employ the Fourier sine
transformation. For the bending rotation ϕ, the Fourier cosine transformation is used.

Y(j, t) =
L∫

0

y(x, t) sin
jπx
L

dx, j = 1, 2, 3, . . . (9)

y(x, t) =
2
L

∞

∑
j=1

Y(j, t) sin
jπx
L

(10)

ψ(j, t) =
L∫

0

ϕ(x, t) cos
jπx
L

dx, j = 1, 2, 3, . . . (11)

ϕ(x, t) =
2
L

∞

∑
j=1

ψ(j, t) cos
jπx
L

(12)

where Y(j, t) and ψ(j, t) are image functions of y(x, t) and ϕ(x, t), respectively. Multiply
Equations (4) and (5) with sin jπx

L and cos jπx
L , respectively, and integrate them with respect

to x over a finite interval [0, L]. The following is obtained considering the boundary
conditions stated in Equation (7):

ρA
..
Y(j, t)− kGA

(
− j2π2

L2 Y(j, t) +
jπ
L

ψ(j, t)
)
+ ρI

j2π2

L2

..
Y(j, t) = P sin

jπvt
L

(13)

− EI
j2π2

L2 ψ(j, t) + kGA
(

jπ
L

Y(j, t)− ψ(j, t)
)
= 0 (14)
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Substituting Equation (14) into Equation (13), one obtains

(
ρA + ρI j2π2/L2

) ..
Y(j, t) +

EIkGAj4π4/L4

kGA + EIj2π2/L2 Y(j, t) = P sin
jπvt

L
(15)

which can be rewritten as
..
Y(j, t) + ω2

j Y(j, t) = Pj sin ω jt (16)

where

ω2
j =

EIkGAj4π4/L4

(kGA + EIj2π2/L2)(ρA + ρI j2π2/L2)
(17)

Pj =
P

(ρA + ρI j2π2/L2)
(18)

ω j = jπv/L (19)

Equation (16) depicts a harmonic vibration without damping and can be solved
according to Chopra [32]. Herein, the Laplace–Carson transformation method [2] is applied,
which leads to

Y∗(j, s) = s
∞∫

0

Y(j, t)e−stdt (20)

Transforming Equation (16) in accordance with Equation (20), and in view of the initial
condition as Equation (8), one obtains

s2Y∗(j, s) + ω2
j Y∗(j, s) = Pjω j

s
s2 + ω2

j
(21)

By rearrangement, Equation (21) can be written as

Y∗(j, s) = Pjω j
s

s2 + ω2
j

1
s2 + ω2

j
(22)

According to the inverse Laplace–Carson transformation [2], the image function Y(j, t)
can be obtained as

Y(j, t) =
Pj

ω2
j (1− β2

j )

(
sin ω jt− β j sin ωjt

)
β j 6= 1 (23)

Y(j, t) =
Pj

2ω2
j

(
sin ωjt−ωjt cos ωjt

)
β j = 1 (24)

where β j is the frequency ratio, defined as

β j = ω j/ωj (25)

Substituting Equations (23) and (24) into Equation (14), ψ(j, t) can be expressed as

ψ(j, t) =
Pj

ω2
j (1− β2

j )

(
sin ω jt− β j sin ωjt

)
kGA

(
jπ
L

)
/
(

EI
j2π2

L2 + kGA
)

β j 6= 1 (26)

ψ(j, t) =
Pj

2ω2
j

(
sin ωjt−ωjt cos ωjt

)
kGA

(
jπ
L

)
/
(

EI
j2π2

L2 + kGA
)

β j = 1 (27)
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At last, substituting Equations (23), (24), (26) and (27) into Equations (10) and (12), one
obtains the series solutions of the original functions y(x, t) and ϕ(x, t)

y(x, t) = 2
L

∞

∑
j = 1
j 6= α

Pj j2

ω2
j (j2−α2)

(
sin ω jt− α

j sin ωjt
)

sin jπx
L

+ Pα

ω2
α L
(sin ωαt−ωαt cos ωαt) sin απx

L

(28)

ϕ(x, t) = 2
L

∞

∑
j = 1
j 6= α

Pj j2

ω2
j (j2−α2)

(
sin ω jt− α

j sin ωjt
)

cos jπx
L kGA

(
jπ
L

)
/
(

EI j2π2

L2 + kGA
)

+ Pα

ω2
α L
(sin ωαt−ωαt cos ωαt) cos απx

L kGA
(

απ
L
)
/
(

EI α2π2

L2 + kGA
) (29)

where the non-dimensional parameter α is defined by Equation (30) as

α = jβ j (30)

Equations (28) and (29) represent the transverse displacement and rotation solutions,
respectively, for a simply supported beam subjected to a moving concentrated load. The
bending moment M(x, t) and shear force Q(x, t) of the beam can be easily obtained as
Equations (31) and (32).

M(x, t) = −EI
∂ϕ(x, t)

∂x
(31)

Q(x, t) = kGA
(

∂y(x, t)
∂x

− ϕ(x, t)
)
+ ρI

(
∂3y(x, t)

∂t2∂x

)
(32)

The analytical method is employed to investigate a beam with a circular cross sec-
tion [17,33–35] subjected to a moving load (see Figure 1). The beam parameters and material
properties are given in Table 1. The radius of gyration r0 can be defined by a given non-
dimensional parameter b = r0π/L. The magnitude of the load is P = 0.2ρALg. The speed
of the moving load v, is defined as v = cvcr, where c is a non-dimensional parameter, and
vcr is the critical speed given by vcr = (π/L)

√
EI/ρA, which is equal to ω∗1 L/π, where ω∗1

is the fundamental frequency of a simply supported Euler–Bernoulli beam. The normal-
ized displacement and bending moment of the beam are defined as y(x, t)/yst(L/2) and
M(x, t)/Mst(L/2), respectively. Note that yst(L/2) = PL3/48EI and Mst(L/2) = PL/4 are
the static mid-span displacement and the bending moment when the P located at mid-span
for an Euler–Bernoulli beam, respectively.

Table 1. Parameters and properties of the beam.

Parameters Value

Beam length L 1 m
Young’s modulus E 2.07 × 1011 N/m2

Shear modulus G 7.76 × 1010 N/m2

Shear correction coefficient k 0.9
Density ρ 7700 kg/m3

Circular cross-sectional area A 4πr2
0

Area moment of inertia I 4πr4
0

The normalized mid-span displacement and bending moment of a beam with b = 0.03
and c = 0.11 for different truncated series solutions are given in Figure 2. The series
solution of displacement converges very fast and may be truncated after the first 4 modes,
but the convergence of the bending moment is slower, especially when the load moves
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close to the middle part of the beam. As can be seen from Figure 2b, at least 12 modes are
required to achieve a satisfactory degree of accuracy.
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4. Finite Element Solution

A finite element procedure is developed to analyze the same simply supported beam
subjected to a moving load. The governing equations of motion are also derived according
to Hamilton’s principle [36].

4.1. Shape Functions

The shape functions proposed by Reddy [37] are used to interpolate the nodal dis-
placements and bending rotations of the beam elements. Figure 3 shows a typical SIBT
beam element of length l traversed by a constant moving load. The displacement and
bending rotation of an arbitrary location in the element can be expressed as

y =
[

Ny1 Ny2 Ny3 Ny4

]


ye
i

ϕe
i

ye
j

ϕe
j

 =
[
Ny
]
{q}e (33)

ϕ =
[

Nϕ1 Nϕ2 Nϕ3 Nϕ4

]


ye
i

ϕe
i

ye
j

ϕe
j

 =
[
Nϕ

]
{q}e (34)
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Herein, {q}e is the element nodal displacement vector, and Nyi, Nϕi (i = 1~4) are the
shape functions.

4.2. Derivation of Element Matrices

The flexural strain or curvature χ and the shear strain γ within the element can be
expressed as

χ =
∂ϕ

∂x
= [Bb]{q}e (35)

γ =
∂y
∂x
− ϕ = [Bs]{q}e (36)

where{
[Bb] =

∂
∂x
[
Nϕ

]
[Bs] =

∂
∂x
[
Ny
]
−
[
Nϕ

]
=
[
By
]
−
[
Nϕ

] { [Bb] =
∂

∂x
[
Nϕ

]
[Bs] =

∂
∂x
[
Ny
]
−
[
Nϕ

]
=
[
By
]
−
[
Nϕ

] (37)

With the help of Equations (33)–(37), Equations (1)–(3) can be rewritten in terms of the
element displacement vector {q}e as

Te =
1
2
{ .

q
}e,T

[Mt]
e{ .

q
}e

+
1
2
{ .

q
}e,T

[Mr]
e{ .

q
}e (38)

Ue =
1
2
{q}e,T[Kb]

e{q}e +
1
2
{q}e,T[Ks]

e{q}e (39)

We = {F(t)}e{q}e (40)

where the translational mass matrix [Mt]
e, slope mass matrix [Mr]

e, bending stiffness matrix
[Kb]

e, shear stiffness matrix [Ks]
e, and equivalent nodal force vector {F(t)}e are written as

[Mt]
e =

l∫
0

[
Ny
]T

ρA
[
Ny
]
dξ

[Mr]
e =

l∫
0

[
By
]T

ρI
[
By
]
dξ

[Kb]
e =

l∫
0
[Bb]

T

EI[Bb]dξ

[Ks]
e =

l∫
0
[Bs]

T

kGA[Bs]dξ

{F(t)}e =
[
Ny
]T

ξ=s · P

(41)

4.3. Governing Matrix Equation

Neglecting the damping effect, one obtains the global equations of motion of the SIBT
beam subjected to a moving load, which can be written in a matrix form as

[M]
{ ..

q
}
+ [K]{q} = {F(t)} (42)

where the global stiffness matrix [K], global mass matrix [M], global displacement vector
{q}, and global external force vector {F(t)} are written as

[K] = ∑
e

(
[Kb]

e + [Ks]
e)

[M] = ∑
e

(
[Mt]

e + [Mr]
e)

{q} = ∑
e
{q}e

{F(t)} = ∑
e
{F(t)}e

(43)
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When the load is moving, the load may be more frequently located at an intermediate
point between two nodal points of the incident beam element. The treatment of {F(t)}
of the whole beam at different time t can be easily defined according to Wu et al. [8].
Then, Equation (42) is solved by the Newmark’s constant acceleration method with the
parameters γ = 1/2 and β = 1/4 [33].

4.4. Numerical Results

The case of a simply supported beam reported in [17,34,35] is considered. The beam
is discretized into an even number of elements with equal length and using 100 equal
incremental time steps [38].

The numerical results of the normalized mid-span displacement and moment of the
beam with b = 0.03 and c = 0.11 discretized into different numbers of elements are plotted
in Figure 4. It can be seen that when the number of elements is 20, the numerical results
of displacement and bending moment are in good agreement with the analytical results.
Therefore, in the following finite element analysis, the beam is discretized into an even
number of elements and at least 20.
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Figure 4. Numerical solutions with different element numbers of the beam with b = 0.03 and c = 0.11.

Figure 5 shows the numerical results of the normalized mid-span deflections and bend-
ing moments for various moving speeds of the load. As stated earlier, the critical speed
is used as a reference [7,17,34,35,39–41]. Note that for the SIBT model, the fundamental
frequency ω1 is defined by Equation (17), which is different from ω∗1 = (π/L)2√EI/ρA.
With b = 0.03, one can easily obtain the critical speed parameter c∗ = 0.998. This means
that the velocity of the moving load is just equal to ω1L/π and that the ratio between
the moving time of the load on the beam and the fundamental period τ/T1 is 0.5. Five
moving speeds are considered here, namely, c = 0.125c∗, 0.25c∗, 0.5c∗, c∗ and 1.5c∗. For
c < c∗, as the c increases, the beam displacement response deviates further from the
static one. The maximum normalized mid-span displacements are 1.139, 1.269 and 1.710
for c = 0.125c∗, 0.25c∗ and 0.5c∗ respectively. For c = c∗, the beam displacement response
reaches the maximum when the moving load leaves the beam (t/τ = 1), and the corre-
sponding maximum displacement amplification factor is 1.554. For c = 1.5c∗, the mid-span
displacement increases monotonously with the marching time, and the maximum displace-
ment amplification factor is 1.008. In this case, the maximum response occurs after the
moving load has passed the beam, similar to an impact problem [7]. This phenomenon
is related to the speed of the waves in the beam. As for the bending moment, the max-
imum normalized mid-span moment is less than the maximum normalized mid-span
displacement. However, the bending moment histories are more irregular.
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Figure 5. Mid-span displacement and moment of the beam with b = 0.03 and c = 0.125c∗, 0.25c∗, 0.5c∗,
c∗ and 1.5c∗.

To further visualize the dynamic character of the beam under the moving load with
different speeds, the dynamic magnification factors are carefully presented for the whole
range 0.01 ≤ c ≤ 1.0 and different cross-sections b = 0.03, 0.15 and 0.30, in Figure 6. The dy-
namic magnification factors of mid-span displacement and mid-span moment are defined
as D1 = max[y(L/2, t)/yst(L/2)] and D2 = max[M(L/2, t)/Mst(L/2)], respectively. We
can clearly see that with the increase in the moving speed of the load, the displacement
amplification factor changes nonlinearly, which is associated with the oscillations discussed
in Figure 5. In addition, with the increase in the cross-section size of the beam, the displace-
ment amplification factor has a tendency of constant amplification. This phenomenon can
be attributed to the increasing influence of the shear effect of the SIBT beam. Compared
to the displacement magnification factors D1, we can note that the moment factors D2 are
more irregular; D2 is smaller than D1 for all c; and D2 is even less than unity for certain
c values. Taking b = 0.03 for an example, the main increases in the factors D1 and D2
occur only in the intervals 0.2 ≤ c ≤ 0.62 and 0.2 ≤ c ≤ 0.38, respectively. The max
(D1) = 1.738 for c = 0.62 and max (D2) = 1.437 for c = 0.38. For lower values of the ratio
c, that is c ≤ 0.20, the magnification factors in Figure 6 both increase and decrease with
increasing c. For higher c values, c > 0.62 and c > 0.38 respectively, D1 and D2 decrease in
the present problem.
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Figures 7 and 8, respectively, plot the nodal time history of the normalized displace-
ments and bending moments of a beam. For example, the beam with b = 0.03 is subjected
to a moving load with c = 0.50. The maximum displacement of the beam is found to be
1.71yst(L/2), occurring at node 11, which locates at the mid-span, and when t = 0.66τ.
However, the maximum bending moment of the beam of 1.57Mst(L/2) occurs at node 13,
which corresponds to x = 0.6 L, and when time t = 0.61τ. This interesting phenomenon
shows the discrepancy between the occurrences of the maximum displacement and bend-
ing moment. The reason may be related to the assumption of the SIBT, which deserves
further study.
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5. Comparative Study

Firstly, the dynamic response of a Euler–Bernoulli beam with a square cross section
studied in reference [7,39–41] is revisited. The magnitude of the moving load P is set to
4.448 N, and the physical properties of the beam are listed in Table 2. Similarly, for the SIBT
model, the critical speed parameter c∗ = 0.993.

Figure 9 shows the comparison in terms of dynamic responses of the beam modeled
according to the SIBT and Euler–Bernoulli with c = 0.25. It can be seen that time histories of
the normalized mid-span displacement and bending moment obtained according to the
SIBT model are virtually the same as those calculated by the Euler–Bernoulli model [7].
This is expected in view of the fact that the height–span ratio of the beam is 1:16, which is
very small. Consequently, for a slender beam, the effect of shear deformation and shear
inertia captured by the SIBT model is negligible.
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Table 2. Parameters and properties of the beam.

Parameters Value

Beam length L 0.1016 m
Young’s modulus E 2.07 × 1011 N/m2

Shear modulus G 7.76 × 1010 N/m2

Shear correction coefficient k 5/6
Density ρ 10,663 kg/m3

Square cross-sectional area A 4.03 × 10−5 m2

Area moment of inertia I 1.35 × 10−10 m4
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Table 3 further compares the dynamic amplification factors of the SIBT beam and
Euler-Bernoulli beam. As can be seen from Table 3, and referring to Figure 6, with the
increase of the moving speed of the load, the displacement and moment amplification
factors both change nonlinearly. In addition, although the calculation results of the SIBT
beam are generally larger than the calculation results of the Euler–Bernoulli beam, the
differences are very small, due to the slenderness of the beam.

Table 3. D1 and D2 for different moving speeds.

c

D1 D2

SIBT Euler-Bernoulli SIBT Euler-Bernoulli

Exact FEM [7] [39] [40] [41] Exact FEM [7] [41]

0.125 1.137 1.151 1.121 1.112 - 1.122 1.038 1.048 1.027 1.031

0.250 1.275 1.284 1.258 1.251 1.258 1.259 1.091 1.097 1.089 1.082

0.500 1.722 1.728 1.705 1.700 1.707 1.706 1.400 1.403 1.389 1.390

0.993 1.570 1.567 - - - - 1.319 1.296 - -

1.000 1.569 1.560 1.548 1.540 1.547 1.550 1.317 1.287 1.273 1.286

To further compare the dynamic responses of the SIBT, Euler–Bernoulli and Timo-
shenko beams with different slenderness ratios, based on Table 2, the ratio of the cross-
sectional dimension to beam length is reset from 1/16 to 1/2. One can find from Figure 10
that, as the ratio of the cross-sectional height h to beam length L increases, the dynamic
magnification factors for mid-span displacement obtained by the Euler–Bernoulli always
remain 1.266 and 1.706 when c = 0.25 and 0.5, respectively. In contrast, the dynamic magni-
fication factors for mid-span displacement obtained by the SIBT and Timoshenko beams
become larger and larger than that obtained by the Euler–Bernoulli beams. Furthermore,
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until the h/L is greater than 1/3, the difference between the calculated results of the SIBT
and Timoshenko beams is apparent. Taking h/L = 1/2 as an example, when c = 0.25, the
dynamic magnification factors for the mid-span displacement obtained by the Timoshenko
model is 2.652, and that by the SIBT is 2.766. When c = 0.5, the dynamic magnification
factors for mid-span displacement obtained by the Timoshenko model is 2.772, and that by
the SIBT is 2.638.
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Figure 10. Dynamic magnification factors of the beam with different slenderness ratios.

Figure 11 shows the dynamic response of the same beam modeled based on the SIBT
and Timoshenko models. The mechanical parameters of the beam are listed in Table 1. For
comparison purposes, the dynamic magnification factors of displacement and moment
here are defined as: D3 = max[y(vt, t)/yst(L/2)], which means the displacement of the
beam is evaluated at the location of the load P during the full moving time. For a Rayleigh
parameter b = 0.15, the critical speed parameter c∗ = 0.958. As can be seen from Figure 11,
the normalized displacement calculated by the SIBT theory is in good agreement with that
calculated by the Timoshenko beam theory (TBT). The reason is that although the SIBT
takes the effect of shear inertia into account compared with the Timoshenko, the effect of
shear inertia is negligible because the beam (with a small value of b) is very slender.
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Table 4 compares the results of the beam modelled according to the SIBT and Tim-
oshenko theory. Two beam sections are considered, namely b = 0.03 and 0.15. As the
moving speed of the load increases, the displacement amplification factor D3 also changes
nonlinearly. When b = 0.03, the calculation results of the SIBT beam are very similar to the
results of the Timoshenko beam in the literature. When b = 0.15, the beam is still a slender
beam. Although the difference between the results from the SIBT and Timoshenko becomes
obvious, the overall difference in the results is not obvious.

Table 4. D3 for different cross-section and moving speeds.

c

D3

SIBT Timoshenko

b = 0.03 b = 0.15 b = 0.03 b = 0.15

Exact FEM Exact FEM [35] [35]

0.11 1.044 1.039 1.144 1.149 1.039 1.115
0.3 1.410 1.412 1.557 1.557 1.411 1.555

0.45 1.610 1.611 1.744 1.747 1.610 1.731
0.5 1.602 1.603 1.712 1.715 1.602 1.717
0.7 1.334 1.332 1.368 1.371 1.334 1.366
0.9 1.034 1.034 1.142 1.143 1.034 1.134

0.958 0.979 0.980 1.081 1.085 - -
0.998 0.946 0.947 1.043 1.045 - -

1.1 0.873 0.873 0.946 0.949 0.873 0.943
1.3 0.740 0.739 0.776 0.776 0.740 0.777
1.5 0.603 0.602 0.645 0.646 0.603 0.637

Figure 12 further presents the dynamic magnification factors of mid-span displacement
of the SIBT, Euler–Bernoulli and Timoshenko beams with different slenderness ratios. Based
on Table 1, Rayleigh’s coefficient b is reset from π/32 to π/4, while keeping the beam
length constant. As the ratio of the cross-sectional diameter to beam length increases, we
can draw conclusions similar to Figure 10. For the Euler–Bernoulli beam, the dynamic
magnification factors for mid-span displacement remains 1.075 and 1.706 for c = 0.11 and
0.5, respectively. The dynamic magnification factors for mid-span displacement obtained
by the SIBT and Timoshenko beams are constantly increasing. Furthermore, until the ratio
2r0/L is greater than 1/3, the difference between the calculated results of the SIBT and
Timoshenko beams becomes apparent. This phenomenon is attributed to the significant
influence of the shear inertia in the SIBT model.
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6. Conclusions

A relatively newly developed beam theory, namely the slope inertia-based Timoshenko
(SIBT) beam theory is applied to analyze the dynamic response of a simply supported beam
subjected to a moving load. An analytical solution to this problem is presented by using
the coupled Fourier and Laplace–Carson integral transformation method.

The finite element solution is also presented and compared with the analytical ap-
proach. An excellent agreement is found, thereby implying that the proposed solutions are
effective and accurate.

A parametric study is carried out to investigate the difference between the SIBT,
Euler-Bernoulli and Timoshenko beam theories for the moving load problem. With the
increase of the moving speed of the load, the dynamic magnification factors of the beam
displacement and bending moment obtained by the SIBT change nonlinearly, which are
related to the dynamic characteristics of the beams. For slender beams, the influence of
shear deformation and shear inertia is very small. Therefore, little difference between the
dynamic response of the SIBT and that of the Euler–Bernoulli and Timoshenko beams is
observed. However, with the increase in the ratio of the cross-sectional size (height or
diameter) to beam length, the shear deformation and shear inertia effects are significant,
which leads to the dynamic magnification factors for mid-span displacement obtained by
the SIBT and Timoshenko beams becoming larger and larger than that obtained by the
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Euler–Bernoulli beams. Furthermore, until the ratio is greater than 1/3, the difference
between the calculated results of the SIBT and Timoshenko beams is apparent.
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