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Abstract: With the application of a homogenization theory, based on the Fourier formalism (which
provides efficient and exact formulas by which to determine all the components of the effective
stiffness and mass density tensors, valid in the regime of large wavelengths), a new approach to
calculate the effective quasi-static response in three-dimensional solid-solid phononic crystals is
reported. The formulas derived in this work for calculating the effective elastic parameters show a
dependence, in terms of summations over the vectors, of the reciprocal lattice by the discretization of
the volume of the inclusion in small parts (e.g., small cubes), to obtain a system of equations from
which we define the effective response. In particular, we present the numerical results calculated
for several cubic lattices with solid constituents and different shapes of inclusions in the unit cell
versus the filling fraction, as well as for fixed values of it. By this means, we analyzed the effect of
the type of Bravais lattice of the materials, and the geometry of the inclusions that constitute the
three-dimensional phononic array, on the resulting effective anisotropy. Finally, our theory confirms
other well-known results with previous homogenization theories as a particular case study. In this
regard, the examples and results shown here can be useful for the design of metamaterials with
predetermined elastic properties.

Keywords: phononic crystal; homogenization theory; effective parameters; metamaterial

1. Introduction

The calculation of the effective elastic parameters or effective propagation velocities of
elastic waves in composite materials is a classic problem of great interest for researchers in
this field over the past few decades. Most of the previous approaches establish the upper
and lower limits [1,2] based on the crystalline symmetry of the structure or by effective
medium theories [3,4]. Kushwaha et al. [5] used the term “phononic crystals” in their study
of the plane waves method in periodic composites. The plane wave expansion method
is an efficient approach that allows calculating the effective speed of sound through a
phononic crystal, where the dispersion relation is linear [6–10], i.e., within the quasi-static
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limit ( ω, k→ 0). Within the context of the quasi-static regime, it is established that when
the wavelength of the acoustic waves is much larger than the lattice constant of the re-
spective crystals, these artificial compounds can be modeled as homogeneous media with
effective physical parameters. Other approaches relate the effective density and the elastic
constants with Christoffel’s equation to calculate the propagation velocities of the elastic
waves, according to the different directions of the principal axes [6,11,12]. At the long-
wavelength limit, the effective density for solid-solid composites is isotropic-linear and
depends on the filling fraction of the inclusion [3]. This condition is different for composite
structures with a fluid matrix, which gives rise to acoustic metamaterials characterized
by an anisotropic effective mass density [12–16]. In this context of the study of elastic
(acoustic) waves, propagating in solid-solid (solid-liquid) phononic periodic structures,
we can cite the recent work by [17]. In that work, the authors propose a homogenization
theory on the long-wavelength limit to estimate the effective velocities as a function of
the direction of propagation of the elastic wave, within the phononic periodic structure
of the sonic or elastic type. Through a variational technique and implementation of the
finite element method, they determine the effective anisotropy of the phononic crystal and
generalize the Christoffel equation in this way for different designs of one-dimensional,
two-dimensional, and three-dimensional structures. They also study the anisotropy of the
acoustic/elastic waves propagation in these relevant cases. Among all types of phononic
structures, there are the so-called metamaterials. Extending this concept to the case of
acoustic metamaterials, from the point of view of a homogeneous medium, it is required
that both the effective density and bulk modulus be simultaneously negative; with these
characteristics, the waves can propagate through the medium with an index negative refrac-
tion, whose principal effect is refracting the waves negatively, hence, acting as a superlens
(see [18,19] and its references). More recently, a growing interest has developed in the
design, manufacture, and study of the mechanical properties of chiral elastic metamaterials.
Different two-dimensional and three-dimensional geometries for the crystal architecture
of a chiral mechanical metamaterial can be designed by using various modern additive
manufacturing techniques [20–22]. To describe the physical properties of these artificial
materials, various homogenization methods have been proposed that characterize their
behavior as a continuous medium by means of constitutive equations (micropolar elasticity
theory) [23–26]. The numerical solution of these approaches (e.g., the finite element method)
allows researchers to investigate the benefits and mechanical limitations of their unusual
behaviors, such as: negative Poisson’s ratio (auxetics materials) [27], negative coefficient
of thermal expansion [28], wave manipulation [29], bandgap features [30], impact energy
absorption [31,32] or vibration attenuation [33,34]. Other important studies refer to the
propagation of elastic waves along a particular direction through the design of elastic
wave metamaterials since one of their main characteristics is the defect state. If these
periodic structures present defects, the elastic wave will be located near a punctual defect,
whereas in the case of linear defects, it will propagate along it. For example, Kuan-Xin et al.
have shown numerical calculations in their recent works [35–37] to determine the crack
resistance behaviors for some special frequency regions in which the effective parameters
show dynamic negative values. Consequently, the elastic wave metamaterials with local
resonators can demonstrate their excellent arrest properties during crack propagation.

In the past few years, in [38] a homogenization theory was proposed based on Fourier
formalism, which provides efficient and exact formulas to determine all the components of
the effective stiffness and mass density tensors, valid in the regime of large wavelengths. In
that work, it was shown that in the quasi-static limit, two-dimensional arrangements with
a rectangular lattice of water-filled holes in a solid-elastic host matrix exhibit anisotropy
in the effective density and compliance tensor, denoting this metamaterial as a metasolid.
On the other hand, in the same homogenization regime, the effective elastic response for
one-dimensional and two-dimensional solid-solid phononic crystals is also calculated.

The problem of calculating the effective parameters of heterogeneous media lies in the
calculation of the inversion of large matrices, principally in the case of three-dimensional
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phononic structures. In developing our theory from the master equation presented in [38],
this is redefined in terms of summations over the vectors of the reciprocal lattice by the
discretization of the inclusion in small volumes, to establish a system of equations from
which we can obtain the effective elastic response of the phononic crystal.

The purpose of this work is to highlight a new method to calculate the effective
mass density and stiffness tensors for a three-dimensional solid-solid phononic crystal at
the quasi-static limit. In the following sections, we first summarize the deduction of the
secular equation to obtain the homogenization parameters by studying the quasi-static
limit. Secondly, numerical results calculated for several cubic lattices with solid constituents
and different shapes of inclusions in the unit cell, versus the filling fraction and for fixed
values of it, are presented. In addition, a comparison of our results with other theories is
carried out. Finally, the findings of this work are summarized.

2. General Approach to Homogenization

It was shown in the study by [38] that the elastic properties of a phonon crystal are
based on the basic physical ideas of Hooke’s law and Newton’s second law. Using Voigt’s
notation, the matrix-unified representation of these two laws is as follows:[

03 ∇3×6

(∇3×6)
T 06

]
v(r) = Ω A(r)v(r), (1)

where:

∇3×6 =

 ∇1 0 0
0 ∇2 0
0 0 ∇3

0 ∇3 ∇2
∇3 0 ∇1
∇2 ∇1 0

, (2)

[v(r)]T = (u1, u2, u3, σ1, σ2, σ3, σ4, σ5, σ6), (3)

Ω =

[
−ω2 I3 03×6
06×3 I6

]
. (4)

In the above expressions, ω is the frequency, Ii and 0i×j are the unity and zero matrices,
the order of which is indicated by the subscripts, and [v(r)]T corresponds to the 9 × 9
column vector with the components of the displacement and stress vectors. The matrix
A(r) of order 9 × 9 is a periodic function of the coordinate r and is expressed in terms of
the mass density ρ(r) and the 6 × 6 compliance tensor, S(r), so this can be cast as:

A(r) =
[

ρ(r)I3 03×6
06×3 S(r)

]
. (5)

Using the previous definitions and following the homogenization methodology, based
on the plane-wave expansion indicated in the study by [38], the effective tensors of the
homogenized phononic crystal ρe f f and Se f f , as a function of the wave vector k and the
frequency ω, are defined by the following effective non-local response matrix:

Ae f f (k) = iΩ−1{D−1(k; 0, 0)}−1 + iΩ−1
[

03 K3×6(k)
(K3×6(k))

T 06

]
=

[
ρe f f (k, ω) 03×6

06×3 Se f f (k, ω)

]
, (6)

where the matrix elements of K3×6 are:

K3×6(k) =

 k1 0 0
0 k2 0
0 0 k3

0 k3 k2
k3 0 k1
k2 k1 0

, (7)
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being D−1(k; 0, 0), a matrix block of size 9 × 9 obtained from the inverse of the matrix of
infinite size D−1(k; G, G

′
), such that:

D(k; G, G
′
) = −

[
03 K3×6(k + G)

(K3×6(k + G))T 06

]
δG,G

′ − iΩA
(
G−G′

)
, (8)

with G and A(G−G′) as the reciprocal lattice vector and the Fourier coefficient of the
matrix A(r), respectively.

The long-wavelength regime corresponds to the lower part of the band structure, that
is, when k→ 0, ω → 0 . Applying this criterion to Equation (6), the Ae f f (k→ 0, ω → 0)
matrix corresponding to the quasistatic limit takes the form:

Ae f f (k→ 0) = i lim
k→0

Ω−1
{

D−1(k; 0, 0)
}−1

=

[
ρe f f 03×6

06×3 Se f f

]
. (9)

Next, we will present a rigorous approach for efficient, accurate calculation of the
effective parameters of a homogenized three-dimensional phononic crystal, where the
inclusion and host materials in the unit cell have the densities ρa and ρb, and elastic
compliance constants Sa and Sb, respectively.

So, within this context of effective medium, to obtain Ae f f (k), we will determine the
matrix D−1(k; G, G′) from the following equation:

∑G
′ D(k; G, G

′
)D−1(k; G

′
, G

′′
) = IδG,G

′′ , (10)

where the unitary matrix I is sized 9 × 9. Applying the definition of D(k; G, G
′
) indicated

in (8), Equation (10) can be expressed by:

−
[

03 K3×6(k + G)

(K3×6(k + G))T 06

]
D−1(k; G, G

′′
) +

Ω
i ∑G

′ A(G−G
′
)D−1(k; G

′
, G

′′
) = IδG,G

′′ . (11)

It is important to remember that the Fourier coefficients of the matrix A(r) are given by:

A(G−G
′
) =

[
ρb I 03×6

06×3 Sb I

]
δG,G

′ +

[
∆ρI 03×6
06×3 ∆S6×6 I

]
·F(G−G

′
), (12)

where ∆ρ = ρa − ρb, ∆S = Sa − Sb and F(G−G
′
) is the form factor of the inclusion. An

alternative, more simplified, expression of Equation (12) can be used by redefining the
following terms:

Ab =

[
ρb I 03×6

06×3 Sb I

]
, (13)

∆A(G−G
′
) =

[
∆ρI 03×6
06×3 ∆S6×6 I

]
F(G−G

′
). (14)

By using the definition of Equation (12) in (11), and after a few manipulations,
we obtain:

=
T(G)·D−1(k; G, G

′′
) +

Ω
i ∑G

′ ∆A(G−G
′
)D−1(k; G

′
, G

′′
) = IδG,G

′′ , (15)

where:

=
T(G) = −

[
03 K3×6(k + G)

(K3×6(k + G))T 06

]
+

Ω
i

Ab =

[
−Ω

i ρb I −K3×6(k + G)

−(K3×6(k + G))T −Ω
i Sb I

]
(16)
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Realizing the product of Equation (15) using the matrix
=
T
−1

(G), we get:

D−1(k; G, G
′′
) +

=
T
−1

(G)
Ω
i ∑G

′ ∆A(G−G
′
)D−1(k; G′, G′′ ) =

=
T
−1

(G)IδG,G′′ , (17)

where the matrix
=
T
−1

(G), sized 9 × 9, is defined as:

=
T
−1

(G) =

[
T−1

uu T−1
uσ

T−1
σu T−1

σσ

]
. (18)

In general, Equation (18) is solved numerically. However, in the isotropic scenario, the
elements uu, uσ, σu and σσ of this matrix are defined as:

=
T
−1

uu (G) = −

 ↔
PT(k + G)

ω2

i ρb + i|k + G|2C44,b
+

↔
P L(k + G)

ω2

i ρb + i|k + G|2C11,b

, (19)

=
T
−1

σu (G) = iS−1
b KT

=
T
−1

uu (G), (20)

=
T
−1

uσ (G) =
=
T
−1

uu (G)K iS−1
b , (21)

=
T
−1

σσ (G) = iS−1
b [I6 + KT

=
T
−1

uu (G)K iS−1
b ], (22)

where
↔
PT(k + G) = I − (k+G)(k+G)

|(k+G)|2
and

↔
P L(k + G) = (k+G)(k+G)

|(k+G)|2
correspond to the

transverse and longitudinal projectors, respectively.
As can be seen in Equation (6), it is not necessary to know all the elements of

D−1(k; G, G
′′
) but only the D−1(k = 0; G

′
= 0, G

′′
= 0) block; therefore, when writing

Equation (17) for G
′′
= 0, we obtain a system of equations for the column block D−1(k; G, 0):

D−1(k; G, 0) +
=
T
−1

(G)
Ω
i ∑G

′ ∆A(G−G
′
)D−1(k; G

′
, 0) =

=
T
−1

(G)IδG,0, (23)

The form factor F(G) in Equation (14) varies very slowly when the filling fraction f
(ratio between the volume occupied by the inclusion within the unit cell with respect to the
total volume of the cell) is too small (small inclusions), being constant for large values of
|G| ( |G| ∼ 1/r � 1/a; r and a are the characteristic size of the inclusion and the lattice
constant, respectively). To determine the block of the matrix D−1(k; 0, 0), the matrix
∆A(G−G

′
) in Equation (17) can be replaced by ∆A(−G

′
) (with F(G−G

′
)→ F(−G

′
) )

because the contrast for G close to the origin is negligible. This consideration allows
us to analytically calculate the column block D−1(k; G, 0). In this way, we can see that
Equation (23) takes the following form:

D−1(k; G, 0) +
=
T
−1

(G)
Ω
i ∑G

′ ∆A(−G
′
)D−1(k; G

′
, 0) =

=
T
−1

(G)IδG,0, (24)

or what is the same:

D−1(k; G, 0) +
=
T
−1

(G)
Ω
i
·
=
C =

=
T
−1

(G)IδG,0, (25)

where:
=
C = ∑G

′ ∆A(−G
′
)D−1(k; G

′
, 0). (26)
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Multiplying Equation (25) by ∆A(−G
′
) and adding the overall reciprocal vectors, G,

the equation needed to determine
=
C is found:

=
C + ∑G ∆A(−G)

=
T
−1

(G)
Ω
i
·
=
C = ∑G ∆A(−G)

=
T
−1

(G)δG,0, (27)

from which, we have:

=
C + ∑G ∆A(−G)

=
T
−1

(G)
Ω
i
·
=
C = ∆A(0)

=
T
−1

(0), (28)

from here:
=
C =

[
I + ∑G ∆A(−G)

=
T
−1

(G)
Ω
i

]−1

·∆A(0)
=
T
−1

(0), (29)

Substituting this expression for
=
C in Equation (25), we finally obtain the values for the

D−1(k; 0, 0) matrix block:

D−1(k; 0, 0) =
=
T
−1

(0)−
=
T
−1

(0)
Ω
i
·
[

I + ∑G ∆A(−G)
=
T
−1

(G)
Ω
i

]−1

·∆A(0)
=
T
−1

(0). (30)

Thus, substituting Equation (30) in Equation (6), the value of Ae f f (k) is obtained:

Ae f f (k) = iΩ−1

{=
T
−1

(0)−
=
T
−1

(0)Ω
i ·
[

I + ∑G ∆A(−G)
=
T
−1

(G)Ω
i

]−1

·∆A(0)
=
T
−1

(0)

}−1

+

[
03 K3×6(0, 0)

(K3×6(0, 0))T 06

]]
.

(31)

By factoring, we reach the following expression:

Ae f f (k) = iΩ−1

{[
I + ∑′G ∆A(−G)

=
T
−1

(G)Ω
i

]−1

·
[

I + ∑G ∆A(−G)
=
T
−1

(G)Ω
i

]−1=
T(0)+[

03 K3×6(0, 0)
(K3×6(0, 0))T 06

]}
.

(32)

The apostrophe in the sum indicates that the term G = 0 is excluded. This expression
is valid for small-filling fractions; the inversion of the matrix is not too large.

Finally, let us apply Equation (32) to calculate the effective tensors for a phononic
crystal in the quasi-static limit (k→ 0, ω → 0). In this case, from Equation (9), we have:

Ae f f (k→ 0) = iΩ−1
[

I + ∑′
G ∆A(−G)

=
T
−1

(G)
Ω
i

]−1

·
[

I + ∑G ∆A(−G)
=
T
−1

(G)
Ω
i

]−1=
T(0). (33)

3. Numerical Results and Discussion

In this section, to check the validity of the formulas above, we will calculate the effec-
tive parameters in the quasi-static limit for three-dimensional elastic solid-solid phononic
crystals with cubic lattice structures. Utilizing the fact that at the long-wavelength limit, the
elastic wave that travels through the artificial material does not experience the structure of
the materials that constitute it, and the phononic crystal behaves as if it were homogeneous.
Hence, the numerical simulations were implemented using Equation (33). The initial pro-
cedure for calculating the effective parameters indicated in (33) begins with fixing a low
frequency ω and an initial wave vector k0 (defined in the long-wavelength regime of the
propagation of elastic waves, k0 → 0). In this first iteration, the effective tensors ρe f f (k0, ω)

and Se f f (k0, ω) are calculated for the established quasi-static wave vector. It is important
to note that our numerical results are calculated by discretizing the inclusion into a small
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number of parts, n, and according to its geometry, the value of its form factor F(G) can be
introduced in the formulas as a function of the position of its center of gravity and filling
fraction in the unit cell of the phononic crystal. This leads to the system defined in (33)
for the solution of a system of linear algebraic equations of 9n unknowns. Otherwise, the
numerical method of the theory developed here gives the effective response of density and
stiffness in terms of summations over G. Our results converged for N = (41)3 summands
in the computation (N denotes the number of plane waves) over G, which allows us to
consider a finite number of components for the displacement and stiffness fields in the
expansion of plane waves in the phononic crystal. It can be seen that the term G = 0
provides the main contribution to the Fourier expansion, to study the properties of the
average field at the long-wavelength limit.

It is important to mention that, in these analytical expressions, when we increase the
number of plane waves, a new iteration (i) is realized; then, the effective parameters are
recalculated. In this work, this iterative calculation process converged with the following

condition of magnitudes for the components of the effective tensor:
∣∣∣ Ae f f ,i−Ae f f ,i−1

Ae f f ,i

∣∣∣ ≤ 10−5;
within this limit of convergence, 3–5 iterations were sufficient. With the expressions
derived above, our formalism allows us to reduce the size of the system of equations for
the calculation of the effective elastic parameters.

In the following scenarios, the unit cell has a lattice parameter of a = 0.01 m and for
the sake of convenience, we discretize the inclusion in small elements of cubic geometry
with an edge ratio of (1/11)a; the form factor of the inclusion is calculated by using the
following definition:

F(G) =
1
Vc

∫
Vinc

e−iGrdr, (34)

with Vc (Vinc) being the volume of the unit cell (inclusion). Consequently, we find that
F(G)cube = f sen(X)·sen(Y)·sen(Z)

X·Y·Z , where: f =
dxdydz

VC
, X = Gxdx

2 , Y =
Gydy

2 and Z = Gzdz
2 .

As a first check, we have obtained the effective parameters of a three-dimensional
(3D) phononic crystal formed by an inclusion of cubic geometry with an edge of (7/11)a,
centered in a cubic lattice (see Figure 1).
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Figure 1. A 3D phononic crystal of a unit-cell cubic form, with a cube inclusion.

Unlike the previously published works, it is interesting in our results that the approach
shown here allows us to model periodic structures with materials where the anisotropy in
its crystalline symmetry can be different from that in the cubic form. In this case, we will
consider an Indium (In) inclusion in an Iron (Fe) matrix corresponding to the tetragonal and
cubic symmetries, respectively. The material parameters of Fe are [39]: ρFe = 7870 kg/m3; the
stiffness constants (GPa) are CFe,11 = 231.4, CFe,12 = 134.7 and CFe,44 = 116.4. Meanwhile,
those of In are [40]: ρIn = 7290 kg/m3; the stiffness constants (GPa) are CIn,11 = 45.2,
CIn,33 = 44.9, CIn,12 = 40.0, CIn,13 = 41.2, CIn,44 = 6.52 and CIn,66 = 12.0. For this
structure, the fill fraction corresponds to a fixed value of 0.25. The computational results
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of Equation (33) for the nonzero elements of the homogenized matrices ρe f f (kg/m3) and

Ce f f = S−1
e f f (102 GPa) are:

ρe f f =

 7720.5 0 0
0 7720.5 0
0 0 7720.5

,

and

Ce f f =



1.58 0.906 0.911 0 0 0
0.906 1.58 0.911 0 0 0
0.911 0.911 1.570 0 0 0

0 0 0 0.635 0 0
0 0 0 0 0.635 0
0 0 0 0 0 0.685

.

According to these results, the 3D solid phononic crystal has a tetragonal symmetry
(6 independent values of elastic stiffness constants in Ce f f ). The matrix ρe f f is isotropic,
being characterized by the scalar [3]:

ρe f f = ρa f + ρb(1− f ), (35)

which, as has been demonstrated, is the standard average for periodic structures constituted
of solid-solid elastic materials.

Another scenario is depicted in Figure 2, showing the geometry of a 3D phononic
crystal of a unit-cell cubic form and one centered inclusion in the form of a parallelepiped
of In in a Fe host.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 13 
 

𝜌𝑒𝑓𝑓 = 𝜌𝑎𝑓 + 𝜌𝑏(1 − 𝑓),  (35) 

which, as has been demonstrated, is the standard average for periodic structures 

constituted of solid-solid elastic materials. 

Another scenario is depicted in Figure 2, showing the geometry of a 3D phononic 

crystal of a unit-cell cubic form and one centered inclusion in the form of a parallelepiped 

of In in a Fe host. 

 

Figure 2. A 3D phononic crystal of a unit-cell cubic form with an inclusion in the form of a 

parallelepiped. 

Here, the filling fraction has a value of 0.078. Thus, from (33), we find that the array 

of values for the effective density (kg/m3) and stiffness constants matrices (102 GPa) are: 

𝜌̄𝑒𝑓𝑓 = (
7824.2 0 0
0 7824.2 0
0 0 7824.2

), 

and 

𝐶̄𝑒𝑓𝑓 =

(

  
 

2.07 1.18 1.20 0 0 0
1.18 2.01 1.19 0 0 0
1.20 1.19 2.09 0 0 0
0 0 0 0.0962 0 0
0 0 0 0 1.017 0
0 0 0 0 0 0.0967)

  
 

. 

The effective mass density turns out to be diagonal, and it adjusts to Equation (35) 

again. On the other hand, the effective stiffness constants exhibit nine independent values 

that are shown in matrix-form for 𝐶̄𝑒𝑓𝑓 ; therefore, the three-dimensional solid-solid 

phononic media behaves like an orthorhombic crystal, which is due to the parallelepiped 

form of the inclusion. 

Now we are going to focus our attention on presenting the computational results for 

the effective mass density and elastic stiffness tensors of a 3D phononic crystal with a 

cubic lattice, with a centered inclusion of In in a T-form (not centrosymmetric) of a square 

cross-section (chosen for computational convenience), where the host material is Fe. The 

scenario is depicted in Figure 3. 
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Here, the filling fraction has a value of 0.078. Thus, from (33), we find that the array of
values for the effective density (kg/m3) and stiffness constants matrices (102 GPa) are:

ρe f f =

 7824.2 0 0
0 7824.2 0
0 0 7824.2

,

and

Ce f f =



2.07 1.18 1.20 0 0 0
1.18 2.01 1.19 0 0 0
1.20 1.19 2.09 0 0 0

0 0 0 0.0962 0 0
0 0 0 0 1.017 0
0 0 0 0 0 0.0967

.

The effective mass density turns out to be diagonal, and it adjusts to Equation (35)
again. On the other hand, the effective stiffness constants exhibit nine independent val-
ues that are shown in matrix-form for Ce f f ; therefore, the three-dimensional solid-solid
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phononic media behaves like an orthorhombic crystal, which is due to the parallelepiped
form of the inclusion.

Now we are going to focus our attention on presenting the computational results
for the effective mass density and elastic stiffness tensors of a 3D phononic crystal with a
cubic lattice, with a centered inclusion of In in a T-form (not centrosymmetric) of a square
cross-section (chosen for computational convenience), where the host material is Fe. The
scenario is depicted in Figure 3.
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For this specific design of artificial material, the corresponding filling fraction is 0.081.
The corresponding effective parameters values calculated from Equation (33) are:

ρe f f =

 7822.9 0 0
0 7822.9 0
0 0 7822.9

,

and

Ce f f =



2.057 1.198 1.185 0 0 0
1.198 2.088 1.187 0 0 0
1.185 1.187 2.014 0 0 0

0 0 0 0.959 0 0
0 0 0 0 0.921 0
0 0 0 0 0 1.024

.

As can be seen, the resulting effective mass density matrix (in kg/m3) indicates a linear
behavior for its three spatial components that shows good agreement with Equation (35), as
it is again a periodic structure with solid components. Based on the results provided by the
matrix of effective elastic constants (in 102 GPa), the homogenized 3D phononic structure
presents nine different elastic constants, which indicates that the artificial material has
an orthorhombic crystalline anisotropy. Indeed, the anisotropy in the components of the
effective elastic stiffness tensor of this structure obeys the form and the relationship of the
length of the inclusion in the period of the cubic lattice, along the principal axes, x̂, ŷ and ẑ
(see also the parallelepiped inclusion). It is evident in this non-centrosymmetric inclusion
that the anisotropic response will be more noticeable if the filling fraction is increased.

Finally, we present the computational results at the quasi-static limit for the effective
elastic compliance constants (Se f f ) of several well-known phononic structures that are com-
posed of isotropic solid materials. The case studies will consist of the individual calculation
of a spherical and cubic inclusion in a cubic lattice. The solid phononic material will be
composed of steel (bulk modulus (B) = 160 GPa and shear modulus (µ) = 79.3 GPa) [41] in a
glass host (B = 40 GPa and µ = 26.2 GPa) [41] for different values of the filling fraction (see
Figure 4). Here, the effective parameters were determined by using the following expressions:
S11 = (3B + µ)/(9Bµ), S12 = (2S11 − S44)/2 and S44 = 1/µ. In the case of the spherical

inclusion, we use Equation (34); F(G)sphere = 3 f sen(G·r0)

(G·r0)
3 −

cos(G·r0)

(G·r0)
2 , with f = 4π

3
r3
0

VC
, and r0 is

the radius of the sphere.
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Figure 4. Effective parameters as a function of the filling fraction of a solid-solid 3D phononic crystal
for a cubic matrix of glass with cubic and spherical inclusions of steel: (a) Beff; (b) S11,eff –S12,eff,

and (c) S44,eff .

As f is increased in these high-symmetry structures, note that in the case when
the spherical inclusions of the neighboring cells touch each other, the sphere reaches its
maximum volume within the unit cell and does not completely fill it; therefore, the fill
fraction (Vinc/Vc) covers the interval 0 ≤ f ≤ π

6 . This is unlike the scenario of cubic
inclusions, where, by touching the inclusions of neighboring cells, the cubes consequently
completely fill the unit cell, and f reaches the value of 1.

As verification, we have also compared our results with those of other homogenization
theories reported in the literature, considering the quasi-static limit. We have obtained
the effective parameters ρe f f and Ce f f of a 3D phononic material comprising a prismatic
inclusion in a cubic unit cell (a = 0.01 m), which represents a typical one-dimensional
periodic structure (Figure 5). The inclusion, as in the previous case, is discretized into
small cubic elements wherein the form factor is defined by Equation (34). The materials
corresponding to the matrix and inclusion are aluminum (ρAl = 2700 kg/m3; the stiffness
constants (GPa) are CAl,11 = 106.80, CAl,12 = 60.70 and CAl,44 = 28.20) [42] and silicon
(ρSi = 2330 kg/m3; the stiffness constants (GPa) are CSi,11 = 166.00, CSi,12 = 63.90 and
CSi,44 = 79.60) [42], respectively.

The effective parameters obtained by this approach using the discretization of the
inclusion are presented by points in Figure 6 (see panels (a)–(d)). Solid, dotted, and
dashed lines indicate the effective values obtained in the long-wavelength regime, using
the theories for laminated composite materials developed in previous studies [38,43,44]
(e.g., the conventional homogenization theory and asymptotic homogenization). As can be
seen in the graphs, the results obtained by the approximation presented here have good
agreement with the other calculations at the filling fractions indicated.
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Figure 6. Comparison of the calculation of the effective parameters ρe f f and Ce f f obtained in the
quasi-static limit for a one-dimensional phononic crystal. The lines correspond to the results obtained
by other homogenization theories, while the dots indicate the values obtained by this inclusion
discretization approach. There is a good agreement between the calculations.

These results allow us to explain and analyze the anisotropy of homogenized three-
dimensional elastic phononic crystals as a function of the crystal symmetry of their con-
stituents and any shape of the inclusions in the unit cell.

4. Conclusions

The results demonstrate that three-dimensional solid phononic crystals can be con-
sidered as a homogeneous anisotropic medium in the low-frequency limit. The approach
presented here is efficient and provides accurate calculations of the effective parameters,
specifically the stiffness tensor and mass density. Numerical simulations show a depen-
dence in terms of summations over the vectors of the reciprocal lattice, by discretizing
the inclusion volume into small parts (small cubes). Particularly for three-dimensional
solid-solid phononic crystals composed of In inclusions in a Fe host with fixed values
of the filling fraction in a cubic lattice, it was observed that anisotropy is found in the
rigidity and is associated with the Bravais lattice of the materials that constitute it and
of the geometry of the inclusion, e.g., for a cube inclusion, the homogenized phononic
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crystal behaved as a tetragonal material, unlike the parallelepiped and T-form inclusions,
which exhibited orthorhombic crystal symmetry. Moreover, the effective density ρe f f of
solid-solid composites at the quasi-static (long-wavelength) limit is isotropic linear in form
and depends on f . This relationship does not apply to composite structures with a fluid
matrix. Besides this, our method can be extended to study high-symmetry structures versus
the inclusion fill fraction (e.g., spherical and cubic inclusion in a cubic lattice composed
of isotropic solid materials). Finally, as a check, for a one-dimensional phononic crystal,
our results show good agreement with other homogenization theories reported in the
literature. In conclusion, the examples and results shown here will be useful for the design
of metamaterials with predetermined elastic properties.
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