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Abstract: Free-space optical (FSO) communication possesses the advantages of high security, large
information capacity, high-speed transmission, small terminal size, low power consumption, easy
and flexible deployment, etc. It is a promising communication technique, and could be an alternative
to optical fiber communication and traditional radio frequency (RF) communication. One of principal
challenges that FSO faces is the susceptibility of the atmospheric channel, which is turbulent in
nature. After the optical signals propagate over the atmospheric channel, their wavefronts suffer from
deleterious perturbation, thus resulting in degradation in the performance of the FSO. This knowledge
with respect to FSO links helps to optimize the system design and reduce the adverse effects of
atmospheric turbulence. The atmospheric coherence length of FSO links reflects the atmospheric
turbulence effects, and it is one of the key parameters of FSO systems. Measuring the atmospheric
coherence length, as a result, is of great interest as well as importance to the FSO community. In this
paper, several methods associated with atmospheric coherence length measurement are reviewed.

Keywords: atmospheric coherence length; free space optical communication; atmospheric turbulence

1. Introduction

Conventional radio frequency (RF) systems suffer from vulnerability to interference,
bandwidth limitations, high power consumption and frequency licensing, while free-space
optical (FSO) communications are not subject to these limitations. The laser beam has a
highly narrow divergence, which enables immunity against eavesdropping. Even free-
space quantum optical communication can provide unconditional information security [1,2].
Compared to radio spectrum resources, which are highly regulated, optical frequencies
are not regulated and can be readily used. Additionally, the terminals in FSO are more
compact and consume less energy than those in RF. Accordingly, the FSO system can
be deployed in less time. The above advantages make FSO a promising communication
technique [3–6]. However, the FSO links are easily affected by deleterious atmospheric
turbulence effects [7–11]. Atmospheric turbulence is generated due to the continuous
mixing of air temperatures and the formation of turbulent motion under the action of wind.
Atmospheric turbulence is actually a process of continuous energy transfer. As the wind
speed and its Reynolds number increases, locally unstable air masses are generated. This is
known as an eddy. The largest eddy, with a size of L0, is called the outer scale of turbulence
(typically in dozens to hundreds of meters), while the smallest eddy, with a size of l0, is
referred to as the inner scale of turbulence (typically in a few millimeters). Under the
influence of inertial forces, the large eddies split into smaller ones. The eddy that is smaller
than the inner scale l0 belongs to the viscous dissipation region, where the turbulent eddy is
dissipated into heat. Eddies between l0 and L0 form the inertial subrange. The atmospheric
turbulence, in turn, causes random perturbations to the atmospheric refractive index in the
temporal and spatial domains [12–14].

After optical signals propagate through the free-space channel, both the wavefront
phases and amplitudes will produce random fluctuations due to the presence of atmo-
spheric turbulence. Therefore, the optical signals are distorted, which markedly degrades
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the performance of FSO. In this regard, measuring the turbulence intensity and under-
standing the characteristics and transformation laws of turbulence are of great interest and
importance to FSO. The atmospheric coherence length reflects the turbulence intensity and
characterizes the magnitude of both the phase and amplitude fluctuations of the optical
waves. Thus, the atmospheric coherent length measurement can be used for the evaluation
of FSO links [4,7,8,11–13,15–17] as well as for other optical applications operating over
atmosphere, such as optical imaging [18,19], optical remote sensing [20,21], etc.

The atmospheric coherence length is defined as the coherence distance of the phase in
the beam cross section after the optical beam is transmitted over the atmospheric channel
in the presence of turbulence. This concept was first introduced by Fried in his study of the
structure function of the wavefront phase undulation [22]. The atmospheric coherent length
is related to the integral over the propagation distance. Given that atmospheric turbulence
is statistically homogeneous and isotropic, within the framework of the Kolmogorov model

it can be expressed as r0 =
(

0.423k2
∫ L

0 C2
n (z)dz

)− 3
5 , where k = 2π/λ is the wave number

with λ being the optical signal wavelength; C2
n is the atmospheric refractive index structure

parameter. This integral is applied along the entire path from the source to the destination L.
When considering a horizontal FSO link, C2

n is often assumed to not vary and is a constant

with r0 =
(
0.423C2

nLk2)− 3
5 . The coherence length r0 captures the total fluctuations induced

by atmospheric turbulence. A smaller value of r0 indicates a more severe disturbance
of atmospheric turbulence [12]. Therefore, an essential part of studying the impact of
atmospheric turbulence on FSO is the measurement of the atmospheric coherence length.

The currently existing methods for measuring the atmospheric coherence length can
be divided into two categories: one is the retrieval of r0 based on the atmospheric refractive
index structure parameter C2

n , and the other is the coherence length r0 direct measurement
method. This paper presents a comprehensive review with respect to the atmospheric co-
herent length measurement methods. Sections 2 and 3 outline both measurement categories,
respectively. A summary is presented in Section 4.

2. Retrieval of r0 Based on C2
n

The atmospheric coherence length r0 can be easily derived from its definition, which
is closely related to the value of C2

n. If known C2
n, one can calculate the value of r0 by dint

of the definition. This method is referred to as the retrieval of r0 based on the atmospheric
refractive index structure parameter, C2

n. There are multiple methods to measure C2
n,

including the temperature structure measurement method, scintillation method and radar
measurement method.

2.1. Temperature Structure Measurement Method

The principle of the temperature structure measurement method for measuring the
atmospheric coherence length is that the transformation of temperature is measured using
a temperature pulsation meter, and then the relationship between the temperature structure
function and the atmospheric refractive index structure function is applied to find C2

n [12].
According to the Kolmogorov theory of atmospheric turbulence, the structure function of
the temperature fluctuations is subject to the two-thirds universal law in the inertial range
under the assumption of statistical homogeneity and isotropy

DT(|r1 − r2|) = 〈 [T(r1)− T(r2)]
2 〉,

DT(|r1 − r2|) = C2
T |r1 − r2|2/3, l0 << R << L0,

(1)
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where T(r1) and T(r2) denote the temperatures of two spatial points with r1 and r2 away
from the reference point, respectively; C2

T is the temperature structure parameter; and 〈·〉
indicates the ensemble average. Accordingly, C2

T can be expressed by

C2
T =

〈
|T(r1)− T(r2)|2

〉
|r1 − r2|2/3 . (2)

Further, the atmospheric refractive index structure parameter C2
n is related to C2

T as

C2
n = (79× 10−6 P

T2 )
2
C2

T , (3)

where P is the atmospheric pressure in millibar; and T is the atmospheric ambient tempera-
ture in K. Therefore, C2

n can be calculated by substituting Equation (2) into Equation (3). A
schematic sketch of the traditional temperature structure measurement method is shown in
Figure 1. The experimental setup contains four resistors, two standard resistors R and two
platinum wire resistors, Rs1 and Rs2, which together form the Wheatstone bridge. The two
standard resistors are allocated under the two platinum wire resistors Rs1 and Rs2, and
Rs1 and Rs2 are located on the probes of a platinum wire thermometer separated by the
length of r. The platinum wire thermometer measures the values of Rs1 and Rs2, which
are eventually converted into T(r1) and T(r2). C2

T can be calculated by merely employing
Equation (2). The temperature structure measurement method is able to provide the turbu-
lence profile along the vertical direction, so it can also be adopted to reveal the relevant
physical processes involved in the evolution of atmospheric turbulence. In practice, the
sensor in Figure 1 is oriented following the streamwise.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 14 
 

( ) ( ) 2
1 2 1 2

2/32
0 01 2 1 2

( )

( ) , ,

    ,T

T T

D r r T r T r

D r r C r r l R L

− = −  

− = − << <<

〈 〉
 
 

(1) 

where T(r1) and T(r2) denote the temperatures of two spatial points with r1 and r2 away 
from the reference point, respectively; 𝐶ଶ் is the temperature structure parameter; and 
 indicates the ensemble average. Accordingly, 𝐶ଶ் can be expressed by 

2
1 22

2/3
1 2

| ( ) ( ) |
| |T

T r T r
C

r r
−
−

= . (2) 

Further, the atmospheric refractive index structure parameter 𝐶௡ଶ is related to 𝐶ଶ் as 

2 6 2 2
2(79 10 ) ,n T

PC C
T

−= ×
 

(3) 

where P is the atmospheric pressure in millibar; and T is the atmospheric ambient tem-
perature in K. Therefore, 𝐶௡ଶ can be calculated by substituting Equation (2) into Equation 
(3). A schematic sketch of the traditional temperature structure measurement method is 
shown in Figure 1. The experimental setup contains four resistors, two standard resistors 
R and two platinum wire resistors, Rs1 and Rs2, which together form the Wheatstone 
bridge. The two standard resistors are allocated under the two platinum wire resistors Rs1 
and Rs2, and Rs1 and Rs2 are located on the probes of a platinum wire thermometer sepa-
rated by the length of r. The platinum wire thermometer measures the values of Rs1 and 
Rs2, which are eventually converted into T(r1) and T(r2). 𝐶ଶ் can be calculated by merely 
employing Equation (2). The temperature structure measurement method is able to pro-
vide the turbulence profile along the vertical direction, so it can also be adopted to reveal 
the relevant physical processes involved in the evolution of atmospheric turbulence. In 
practice, the sensor in Figure 1 is oriented following the streamwise. 

 
Figure 1. Schematic sketch of the temperature structure measurement method. 

2.2. Scintillation Method 
Due to the presence of atmospheric turbulence in the FSO link, the optical signal will 

experience arrival angle fluctuation at the receiving site. The temporal statistics related to 
the arrival angle fluctuation are known as the scintillation effect. It has been concluded 

Figure 1. Schematic sketch of the temperature structure measurement method.

2.2. Scintillation Method

Due to the presence of atmospheric turbulence in the FSO link, the optical signal will
experience arrival angle fluctuation at the receiving site. The temporal statistics related to
the arrival angle fluctuation are known as the scintillation effect. It has been concluded that
the scintillation is closely related to the atmospheric refractive index structure parameter
C2

n. Within the framework of the Kolmogorov model, C2
n can be expressed by [23,24]

C2
n = Eσ2

χD7/3
t L−3, (4)
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where E = 4.48Dr/Dt with Dr and Dt representing the diameter of the receiving aperture
and the diameter of transmitting aperture, respectively; L is the propagation distance from
source to destination; σ2

χ indicates the log-amplitude variance of the receiving optical field.
Generally, the scintillation index denoted by β2

I , which characterizes the light intensity
scintillation intensity, is readily adopted instead of the log-amplitude variance. Under
weak turbulence conditions (β2

I < 1), the scintillation index can be expressed by the
log-amplitude variance σ2

χ. It follows that [12]

β2
I = exp(4σ2

χ)− 1. (5)

In practice, the scintillation index is measured by

β2
I =

〈
I2〉− 〈I〉2
〈I〉2

, (6)

where I indicates the intensity of optical signal. By measuring β2
I , C2

n can be calculated based
on Equations (4)–(6). As such, the laser scintillation method measures the path-integrated
atmospheric refractive index structure parameter C2

n, and then performs the retrieval of the
atmospheric coherence length r0.

The scintillometer is a widely-used instrument to measure the scintillation index of
optical signals traveling along a specific atmosphere path [12,23–28]. It is also commonly
used as the ground-based equipment to evaluate new measurement approaches associ-
ated with C2

n [25]. Up to now, multiple scintillometers with diverse configurations have
been proposed, including the large area scintillometer with two separate LED discs [25],
the saturation-resistant scintillometer with large incoherent transmitting and receiving
optics [23], the inner-scale-measurement scintillometer with two sets of transceivers [27],
etc. Some of them are already commercially available [29], but all scintillometers are de-
signed by following the principle mentioned above. A schematic sketch of a traditional
scintillometer is shown in Figure 2. The instrument adopts a layout that consists of a
transmitter, receiver, and data processing module. The specific workflow of the traditional
scintillometer is as follows. The optical beam is emitted by the transmitter. After the beam
propagates over the turbulent atmosphere in the middle, it reaches the receiver on the right
side and is converted to an electrical signal. Eventually the data-processing module carries
out an analysis of the demodulated electrical signals, and provides an evaluation of the
scintillation index. In concrete terms, the produced electrical signal U is proportional to the
emitted optical signal intensity I, thus Equation (5) becomes

β2
I =

〈
I2〉− 〈I〉2
〈I〉2

=

〈
U2〉− 〈U〉2
〈U〉2

. (7)

Additionally, a deep machine learning algorithm has been presented to evaluate β2
I [30].

With the scintillation index β2
I , one can calculate C2

n by merely substituting Equation (6)
into Equation (4). Now based on C2

n, the retrieval of the atmospheric coherence length
r0 is performed. We should note that scintillometers are susceptible to the scintillation
saturation effect [26,31]. Therefore, the scintillometer would fail once it enters regions of
strong turbulence (β2

I ≥ 1) since scintillation saturation occurs. Fortunately, new techniques
have sprung up to address such issues [23,32,33].
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Figure 2. Schematic sketch of the traditional scintillometer.

2.3. Radar Measurement Method

As far as the radar measurement method is concerned, there are two strategies. One
involves the backscattering cross section, while the other focuses on the emitted power. For
the former, the radar signal carrier can be either acoustic or electromagnetic waves. Under
the assumptions of isotropy and statistical homogeneity, the backscattering cross section
for the case of acoustic waves can be expressed as [34]:

ρs(θ) =
π

2
k4 cos2 θ[

ΦT [2k sin(θ/2)]
T2 + cos2(θ/2)

V[2k sin(θ/2)]

πca[2k sin(θ/2)]2
], (8)

where θ is the scattering angle; k is the wave number; T is the atmospheric temperature, ca
is the acoustic velocity, ΦT[] is the temperature spectral function; and V[] is the velocity
spectral function. The expression for the backscattering cross section for the case of the
electromagnetic wave is given by

ρs(r′) =
π

2
k4ΦT [2k sin(θ/2)] sin2 i(r′), (9)

where i(r′) is the angle between the electric field vector and the line from the scatterer to
observation point, with r′ denoting the vector from the transmitter towards the scatterer.
The temperature structure constant C2

T can be derived in light of the backscattering cross
section ρs above [35],

C2
T =

ρs × T2

4× 10−3 × λ−1/3 . (10)

Similar to the preceding temperature structure measurement method, since C2
T can be

known, so can C2
n. As such, a retrieval of the atmospheric coherence length r0 is performed.

The other method is to directly measure the atmospheric refractive index structure
parameter C2

n by employing the wind profile radar to evaluate its echo power Ps [36–38]:

C2
n =

Psr2

7.3× 10−4 × PtG(cτ/2)E2λ5/3 , (11)

where G is the gain; r is the radar-scatterer distance; E is the antenna loss; c is the speed
of light; τ is the signal pulse width; Pt indicates the transmitted power. For a specific
wind profile radar, the parameters G, r, E, c, τ, Pt are given. The return signal power, Ps is
estimated directly from the original signal-to-noise ratio of the return signal obtained from
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the wind profile radar by probing the atmosphere. Once C2
n has been calculated, one could

perform the retrieval of r0.

3. Coherence Length r0 Direct Measurement Method

Studies have demonstrated that the measurement of C2
n will deteriorate due to the

path and accuracy of the measurement. The temperature structure measurement method
can only be used on the pylons at low altitude; hence, measurements at relatively high
altitude cannot be acquired. The scintillometer has a limited measurement range due to
the scintillation saturation effect. As for the radar measurement method, it is appropriate
for fixed-point targets only, and it involves cumbersome installation and huge cost. To
circumvent those drawbacks, the direct measurement of the atmospheric coherence length
r0 has been proposed, which includes the differential image motion monitor (DIMM), wave-
front structure function method, slope difference method and wavefront phase variance
method, wherein the Shack–Hartman wavefront sensor (SHWS) is applied. Note that the
DIMM may use the CCD instead of the SHWS [39,40]. The SHWS is generally considered
as one of the crucial components in the adaptive optics system, as it enables accurate and
rapid measurement of the wavefront shape and phase information. It includes an array
of chromium-mask microlenses that image the beam onto a CCD, creating a point-array
distribution of the wavefront information. The wavefront of the optical signal is usually
fitted with the Zernike polynomial. The Zernike polynomial coefficients are calculated
based on the positions of the dot array on the CCD, which is eventually employed for
wavefront reconstruction. As such, the reconstructed wavefront provides the basis for the
measurement of atmospheric coherence length.

3.1. DIMM

The DIMM obtains the atmospheric coherence length r0 by measuring the variance of
the differential arrival angle [15,41,42]. Since the variance originates from the arrival angles
over the two subapertures of the SHWS, DIMM eliminates other optical distortions in the
FSO link, such as jitter resulting from the optical terminal platform and inherent distortions
of the optics.

A schematic sketch of the arrival angle deviation is shown in Figure 3. The spot
centroid of (xr, yr) from the aberrant wavefront imaging at the receiving plane deviates
from its centroid of (xo, yo) when there is no aberration, and the relationship between the
arrival angle α and the spot centroid is

xr = α fL, yr = xr cot α, (12)

where fL denotes the focal length of the imaging lens. The angle-of-arrival undulation
variance is

α2 = 0.340(
λ

D
)

2
(

d
r0
)

5/3
, (13)

where D is the diameter of the subaperture of the telescope and d is the distance between
the centers of the two subapertures. The atmospheric coherence length measurement found
by using the DIMM is shown in Figure 4.

In Figure 4, two relatively independent telescope lenses are shown on the left. The
upper beam is reflected by the plane mirror to the attenuator and then passes through the
filter. The lower light travels through the diaphragm and light wedge, and then reaches the
imaging mirror of the CCD together with the upper light. By doing so, the arrival angle
deviation can be measured. After several observations, one can obtain the arrival angle
undulation variance.
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In 1990, Roddier et al. advanced the method associated with the DIMM measure-
ment of r0, which yields the equations for the lateral, longitudinal and total atmospheric
coherence length expressed as [43]

r01 = (
2 f 2

Lλ5/3[0.179( λ
D )

1/3 − 0.0968( λ
d )

1/3
]

x2 )

3/5

, (14)

r02 = (
2 fL

2λ5/3[0.179( λ
D )

1/3 − 0.0968( λ
d )

1/3
]

y2 )

3/5

, (15)

r0 = (
2 fL

2λ5/3[0.179( λ
D )

1/3 − 0.0968( λ
d )

1/3
]

x2 + y2 )

3/5

. (16)

One is able to measure the variance of the angle of arrival, and then substitute it into
the three equations above to obtain the horizontal, vertical and total atmospheric coherence
lengths in turn.

It is worth noting that the above two-point-based differential imaging method exists
backward. Experimental studies have shown that the measured atmospheric coherence
length r0 at a given time often jumps suddenly by 2–3 cm within a few seconds, and
occasionally by nearly 10 cm. The abnormal behavior contradicts the nature of the dynamic
disturbance of atmospheric turbulence. It is attributed to the fact that the sample statistics
are not sufficient, namely, the wavefront undulation induced by atmospheric turbulence is
not identical in each direction, and the differential imaging method only counts the motions
of the centroid of two subapertures at a fixed position. Consequently, it requires a long
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time to obtain a comprehensive count. However, increasing the number of samples causes
a delay in the measurement, while the turbulence has varied. To circumvent this drawback,
the authors of [44] designed a multipoint differential imaging method, which increases
the number of atmospheric coherence length r0 samples from the spatial perspective. As
such, it enhances the central symmetric statistics based on the concept of spatial groups,
and significantly reduces the statistical time required to obtain the atmospheric coherence
length r0, yielding stable and accurate values.

3.2. Wavefront Phase Structure Function Method

The DIMM outlined in Section 3.1 is used to measure r0 based on the variance of the
arrival angle undulation after turbulence, and its accuracy is highly related to the target
elevation angle, thus it requires hundreds of frames of data for analysis and calculation.
Unlike the DIMM, an instantaneous method for measuring r0 has been proposed [45–47],
which is known as the wavefront structure function method. According to the Kolmogorov
theory, assuming that atmospheric turbulence is statistically homogeneous and isotropic
as well as temporally ergodic, the phase structure function can be expressed as the time
average of the phase difference between two points on the receiving plane, which is

DΦ(
→
r1,
→
r2) = DΦ(r) =

〈
[Φ(r)−Φ(0)]2

〉
, (17)

where r = |
→
r1 −

→
r2| denotes the distance between r1 and r2, and Φ(r) is the phase at the

distance r from the reference point.
Based on the reconstructed wavefront by the SHWS, the phase structure function

is immediately obtained [48]. According to the Kolmogorov model, the phase structure
function can be expressed as

DΦ(r) = (
λ

2π
)

2
6.88(

r
r0
)

5/3
[1− 0.975(r/D)1/3] + 2σ2, (18)

where D is the diameter of the subaperture of the telescope, and 2σ2 is the scattering
coefficient, which is generally negligible. The schematic sketch of the wavefront phase
structure function method is shown in Figure 5. The optical beam originating from the laser
propagates through the atmospheric channel. After passing through a concave–convex
lens, it is scaled up to a plane wave. Subsequently, another concave–convex lens is applied
to scale it down to the receiver side. It is divided into two parts by a beamsplitter. One part
is transmitted to the CCD for imaging, and the other is collimated by the lens and incident
to the SHWS. The measurement of r0 using the wavefront structure function method is
performed by using five steps.

1. Obtain the Zernike 1 coefficient of the wavefront aberration for a single frame using
the SHWS;

2. Subtract the initial Zernike 0 coefficient of the FSO system from the Zernike 1 coeffi-
cient of wavefront aberration, noted as Zernike 2;

3. Calculate the corresponding wavefront structure function from Zernike 2, and record
it as the measured value;

4. Calculate the corresponding theoretical wavefront structure function according to
Equation (17);

5. Find the atmospheric coherence length r0 by the least-squares estimation based on the
measured value of the wavefront structure function from step (3) and the theoretical
value of the wavefront structure function from step (4).



Appl. Sci. 2022, 12, 2980 9 of 14

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 14 
 

3. Calculate the corresponding wavefront structure function from Zernike 2, and record 
it as the measured value; 

4. Calculate the corresponding theoretical wavefront structure function according to 
Equation (17); 

5. Find the atmospheric coherence length r0 by the least-squares estimation based on 
the measured value of the wavefront structure function from step (3) and the theo-
retical value of the wavefront structure function from step (4). 

 
Figure 5. Schematic sketch of the wavefront phase structure function method. 

3.3. Slope Difference Method 
In contrast to the two-observation-point approach in the DIMM, the slope difference 

method uses an array of slopes measured from the SHWS to capture the turbulence effects 
in statistics [49–53]. Since the spatial–temporal slope structure implicates both spatial and 
temporal fluctuations resulting from the atmospheric turbulence, the structure function is 
useful for characterizing both statistics. The spatial–temporal slope structure function is 
defined as the mean squared difference between the slopes measured in any two subap-
ertures. One advantage of the slope structure function is that it is insensitive to system 
jitter and overall wavefront tilt. The inherent mathematical processing associated with the 
slope structure function offsets any overall tilt that the subapertures bring. On the other 
side, the insensitivity to system jitter effectively avoids the systemic errors when meas-
urements are operated with a moving or vibrating platform. 

The SHWS splits the pupil of the imaging system into a limited number of sub-optical 
paths. Each sensor element focuses incident light onto the CCD with a subaperture lens. 
As such, an array of points in the focal plane is created. We assume that the subapertures 
are squares with the same orientation, but in an arbitrary geometric arrangement. The 
centroid position of the irradiance points on the detector array is calculated according to 
occupied pixels in the CCD. The centroid position is related to the average slope or gradi-
ent of the wavefront on the subaperture lens. The average slope gradient is written as [49], 

( , ) [ ( ) ] ( , ),x t dr Z r x r tχη χ θ−= ∇  (19) 

where χη (𝑥, 𝑡) is the measured slope in direction 𝜒 centered at x and time t; the wave-
front phase is specified as θ(r, t); and ∇  is the gradient operator. 𝜒 is a unit vector in 

Laser

Phase 
plate

Separator

Lenses 2

Lenses 1

Figure 5. Schematic sketch of the wavefront phase structure function method.

3.3. Slope Difference Method

In contrast to the two-observation-point approach in the DIMM, the slope difference
method uses an array of slopes measured from the SHWS to capture the turbulence effects
in statistics [49–53]. Since the spatial–temporal slope structure implicates both spatial and
temporal fluctuations resulting from the atmospheric turbulence, the structure function is
useful for characterizing both statistics. The spatial–temporal slope structure function is
defined as the mean squared difference between the slopes measured in any two subaper-
tures. One advantage of the slope structure function is that it is insensitive to system jitter
and overall wavefront tilt. The inherent mathematical processing associated with the slope
structure function offsets any overall tilt that the subapertures bring. On the other side, the
insensitivity to system jitter effectively avoids the systemic errors when measurements are
operated with a moving or vibrating platform.

The SHWS splits the pupil of the imaging system into a limited number of sub-optical
paths. Each sensor element focuses incident light onto the CCD with a subaperture lens. As
such, an array of points in the focal plane is created. We assume that the subapertures are
squares with the same orientation, but in an arbitrary geometric arrangement. The centroid
position of the irradiance points on the detector array is calculated according to occupied
pixels in the CCD. The centroid position is related to the average slope or gradient of the
wavefront on the subaperture lens. The average slope gradient is written as [49],

ηχ(x, t) =
∫

dr[∇Z(r− x)χ]θ(r, t), (19)

where ηχ(x, t) is the measured slope in direction χ centered at x and time t; the wavefront
phase is specified as θ(r, t); and∇ is the gradient operator. χ is a unit vector in the direction
of slope measurement sensitivity. The function Z(r) is the aperture function with

Z(r) =
{

1, r ∈ R
0, else

, (20)
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where R is the aperture diameter. Combining the definition of the structure function and the
slope measurements given in Equation (18), the slope structure function can be expressed as

Dχ
η (x, x′, t, t′) =

〈
[ηχ(x, t)− ηχ(x′, t′)]2

〉
=
〈
[
∫

dr[∇Z(r− x)χ]θ(r, t)−
∫

dr[∇Z(r− x′)χ]θ(r, t′)]2
〉

,
(21)

where Dχ
η (x, x′, t, t′) is the slope structure function of the subaperture slope measurement

centered at x and at moment t and the phase structure function can be expressed as

Dϕ(x, x′, t, t′) =
〈
[θ(x, t)− θ(x′, t′)]2

〉
. (22)

Based on the basic variations of the slope structure function, the phase structure
function, and the atmospheric coherence length variable, the spatial slope structure function
can be expressed by a dimensionless integral as [49]

Dχ
η (∆xs, ∆ys, ∆xt, ∆yt) = Υβd−2( d

r0
)

β−2∫
du

∞∫
0

dvW(z)tui(u)

×{[2|∆xs + ∆xt(z)− 1, u + ∆xs + ∆xs(z)|
β−2

−|∆xs + ∆xt(z) + 1, u + ∆ys + ∆yt(z)|
β−2

−2(
∣∣0, u

∣∣
β−2−

∣∣1, u
∣∣

β−2
)
},

(23)

where ∆xs, ∆ys, ∆xt(z) and ∆yt(z) represents normalized spatial and temporal separation of
subaperture slope measurements; xs = (x − x′)/d, ∆ys = (y − y′)/d, ∆xt(z) = Wx(z)(t − t′)/d,
∆yt (z) = Wx(z) (t − t′)/d; tri(u) is a triangular function; β is the power law of the power
spectrum of the refractive index fluctuations and γβ is function of the power law. W(z) is a
normalized profile. It is clear from the above equations that the slope structure function
depends on these normalized separations as well as on the atmospheric parameters, γβ,
r0 and W(z).

The slope structure function is calculated based on the average slope measured by
the SHWS, which is used to evaluate r0. It has been shown that the direct use of slope
measurements to characterize atmospheric turbulence is feasible and less computationally
intensive than wavefront phase reconstruction.

3.4. Wavefront Phase Variance Method

The wavefront phase variance method uses the SHWS to measure the variance of the
wavefront phase induced by atmospheric turbulence, which is used to obtain r0 [17,54].
Compared to the wavefront structure function method, it has less exposure time, thus the
measurement would be more accurate. Additionally, its operation is tractable.

According to Equation (17), the phase structure function can be expressed as the time
average of the phase difference between two points. To observe the wavefront aberra-
tion caused by atmospheric turbulence, a plane wave is introduced as a reference. The
instantaneous wavefront phase variance over the aperture can be expressed as

σ2(R, t) = 1
πR2

ψ=2π∫
ψ=0

r=R∫
r=0

[(Φ(r, ψ, t)−Φ(0, 0, t)]2rdrdψ

= 1
πR2

ψ=2π∫
ψ=0

r=R∫
r=0

DΦ(r)rdrdψ,
(24)

where R is the aperture radius, and the horizontal line indicates the statistical average
in time. The relationship between the wavefront error variance and the phase structure
function can be obtained by averaging the left and right sides of the above equation in
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time. According to the Kolmogorov model, the structure function of a plane wave can be
expressed as

DΦ(r) = 6.88(
r
r0
)

5/3
. (25)

If the atmospheric turbulence is assumed to be statistically homogeneous and isotropic,
then the wavefront error variance averaged over time is equal to the phase structure
function averaged over space. Now Equation (24) becomes

σ2(R, t) ≈ 1
πR2

ψ=2π∫
ψ=0

r=R∫
r=0

6.88(r/r0)
5/3rdrdψ = 3.75(R/r0)

5/3. (26)

It follows that the value of the atmospheric coherence length can be estimated as

r0 = (
3.75× R5/3

σ2(R, t)
)

3/5

. (27)

The principle of the wavefront phase variance method is demonstrated in Figure 6.
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The laser launches the optical beam, which is scaled up by a beam expander. Subse-
quently, the beam travels through an atmospheric chamber mimicking turbulence. On the
receiving side, the beam is scaled down to match the aperture size of the SHWS.

Since the aperture size of the Shack–Hartman sensor is generally smaller than the
internal scale l0 of the turbulent cells, when the aperture radius is small, r0 is not a constant.
The Kolmogorov model is appropriate within the inertial subrange only. The inner scale l0
is usually between a few millimeters and a few centimeters, decreasing with the turbulence
strength. The outer scale L0 is usually in the order of meters. Thus, the Kolmogorov
model is inappropriate for the analysis of the FSO link with an optical beam diameter less
than l0. That is, the methodology associated with the wavefront phase variance above
may fail. In this regard, the optical beam width needs to be extended so that enough
turbulence information can be sampled. The beam is scaled down by a beam adjuster
after propagating over the atmospheric channel to match the aperture of the SHWS. By
doing so, the effective aperture of the sensor is expanded. According to Equation (27), the
atmospheric coherence length r0 is evaluated by the use of the measured phase variance
and R. It is worth noting that the method depends strongly on the effective aperture of the
sensor used in the experimental setup. When the aperture size of the SHWS is close to the
inner scale l0, the model that incorporates the inner scale factor, instead of the Kolmogorov
model, could be adopted.
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4. Discussion

The atmospheric coherence length reflects the optical wavefront distortion caused by
atmospheric turbulence, which is able to predict the performance of FSO links operating
under conditions of atmospheric turbulence. In this paper, the measurement methods
associated with the atmospheric coherence length for the FSO links were reviewed. These
include the temperature structure measurement method, the scintillation method, the radar
measurement method, the differential imaging method, the wavefront structure function
method, the slope difference method and the wavefront phase variance method.

The temperature structure measurement method, laser scintillation method and radar
measurement method calculate the atmospheric refractive index structure parameter by
measuring the temperature, scintillation index and scattering cross section, and then re-
trieve the atmospheric coherence length. However, the temperature structure measurement
method fails to measure in high altitude. The scintillometer is appropriate for the mea-
surement in a limited range only due to the scintillation saturation effect. The radar
measurement method is only suitable for the measurement of fixed-point targets. Further-
more, it is cumbersome to deploy and the cost is huge. The measurement of r0 based on the
SHWS has drawbacks. The non-orthogonality of the polynomial derivatives introduces
modal cross-coupling, which affects the variance. The wavefront phase variance method,
which has a short exposure time and a large enough sample, can increase the accuracy of
the calculation. It also has some improvements to address the limitation of the aperture
size of the wavefront sensor.

As for the measurements resulting from the methods described above, differences
may exist due to intrinsic defects in the employed specific instruments. The temperature
structure measurement method is highly reliant on the design of the Wheatstone bridge.
The authors of [25] demonstrated that the scintillometer may provide larger turbulence
strength than the DIMM. This might be attributed to the APD shot noise in the scintillometer
receiver, which may be coupled with a measurement path. The radar measurement method
depends on the calibration accuracy [35,36]. Noise, aliasing and modal cross-coupling are
deleterious effects introduced by the SHWS, which degrade the quality of the wavefront
reconstruction and limit the accuracy of the wavefront structure function method, the slope
difference method and the wavefront phase variance method [45].
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