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Abstract: Fire risk will increase in the upcoming years due to climate change. In this context,
GIS analysis for fire risk mapping is an important tool to identify high risk areas and allocate
resources. In the present study, we aimed to create a fire risk estimation model that incorporates
recent land cover changes, along with other important risk factors. As a study area, we selected
Dadia-Lefkimi-Soufli National Forest Park and the surrounding area since it is one of the most
important protected areas in Greece. The area selected for the case study is a typical Mediterranean
landscape. As a result, the outcome model is generic and can be applied to other areas. In order to
incorporate land cover changes in our model, we used a support vector machine (SVM) algorithm to
classify a satellite image captured in September 2021 and an image of the same period two years ago
to obtain comparable results. Next, two fire risk maps were created with a combination of land cover
and six other factors, using the analytic hierarchy process (AHP) on a GIS platform. The results of
our model revealed noticeable clusters of extreme high risk areas, while the overall fire risk in the
National Park Forest of Dadia-Lefkimi-Soufli was classified as high. The wildfires of 1st October 2020
and 9th July 2021 confirmed our model and contributed to quantification of their impact on fire risk
due to land cover change.

Keywords: wildfire; fire risk; model; MCDA; AHP; Natura; protected zones; GIS; SVM; land
cover change

1. Introduction

The frequency of forest fires is rapidly increasing in southern Europe, posing major
challenges for Greece, Italy, Portugal, Spain, and France [1]. Wildfires can represent a
serious threat to human health and infrastructure, as well as ecosystems and biodiversity [2].
More specifically, the impact of wildfires on human health can be either direct, causing
severe physical damage due to burns, or indirect, since the exposure to pollutants such as
ozone and PM [3] can lead to serious disorders. In addition, large wildfires can damage
properties or critical infrastructure, such as electricity grids and houses, resulting in major
economic losses [4]. Finally, wildfires play an important role in ecological balance, in which
humans are a part of. The increase in fire frequency in the past few years enhances forest
degradation and biodiversity loss [5].

In terms of biodiversity, Greece is one of the richest countries in Europe, having the
highest number of flora species among the Balkan countries. In fact, it contains over 5700
different species of flora, 20% of which are endemic to the country. Most of these species
are located in the northern regions of the country, thanks to the ideal geographic and
climate conditions [6,7]. It seems that species richness of Greece combined with the high
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risk of fire in the Mediterranean region—because of its hot and dry summers—makes
Greece extremely susceptible to wildfires. Consequently, the average annual burned area
caused by wildfires has shown an increasing trend in the past decades. During 2001–2017,
wildfires burned an average of 55,000 ha per year, most of which was covered by forested
areas [8]. Recently, one of the most disastrous wildfires took place in August 2021 in Evia
island, where 34,893.5 ha of forest and 1111.6 ha containing houses and infrastructure were
destroyed or seriously affected by fire [9]. As a result, it is critical to study how various
factors influence the probability of fire occurrence, in order to create a fire risk layer for the
Fire Management Geographic Information

Fire risk expresses the likelihood of a fire occurring during a specific time period and
place. The risk is the result of the different hazardous parameters interacting with the
conditions of vulnerability, which are present in the region [10]. On the one hand, hazardous
parameters describe the danger of fire occurrence and on the other hand, vulnerability
expresses the predilection of an area to be negatively affected by wildfire [11]. It is very
common for the terms ‘fire risk’ and ‘fire danger’ to have interchangeable meanings. The
factors that influence the ignition and development of fires constitute the fire danger. Fire
ignition can derive from natural causes (mostly thunder), or it can be a result of human
activity [12]. According to a study, approximately 93% of fires in Northern Europe are
caused by humans, either intentionally or unintentionally [13], and thus the location of
populated places and roadways is critical in identifying areas at high risk of fire. The
development of fires is influenced by topography, meteorological conditions, fuel condition,
and fuel availability [14]. Many studies have shown that vegetation and topography are
the key elements responsible for fire severity in many types of forests. [15–18]. Since
topographic features influence the distribution of local climate, topography is an important
factor in fire propagation. Fires spread quickly across steep and upward slopes, but slowly
in places with a downhill slope [19]. Moreover, the probability of fire occurrence may vary
in different elevations on the basis of factors such as temperature and vegetation [20]. The
topographic wetness index (TWI) [21] is another parameter that contributes to fire spread
and ignition. To a certain extent, TWI simulates the impact of topography to soil and fuel
moisture [22,23].

Geographic information systems (GIS) is mature technology and effective platform to
analyze, visualize, and disseminate spatial and temporal data and information. GIS is a
multidisciplinary approach that can combine methods from science, engineering, and the
economy with the experience of field officers to produce robust knowledge in firefighting.
GIS, besides its analytical capabilities, is the ideal platform for coordination, information
exchange, and awareness provision for all involved stakeholders (all levels of authorities,
fire department, police, forest services, agricultural coops, citizens, etc.).

Multiple levels of spatial and nonspatial data and information related to fire risk, such
as meteorological data, land cover, vegetation features, and topography, in the form of
historical information is combined and evaluated to create detailed fire risk maps [24–26].
The information to be used by the fire risk model has to be reliable, the most recent, easy to
obtain, and processable with reasonable H/W and S/W resources in order to produce an
update fire risk map. The key for the analysis is the determination and assignment of the
proper weights between all these pieces of information. Many studies, in particular, have
used multi-criteria decision analysis (MCDA) in conjunction with the analytic hierarchy
process (AHP), which assigns weights to the influencing parameters, so as to successfully
develop fire risk maps [14,24–28]. In the AHP framework, a decision is broken down into
a hierarchy of criteria or alternatives, and subsequently one can evaluate the significance
of each criterion to the final decision, given the relevant weights between each pair of
criteria [29]. After an exhaustive review of the bibliography, we proposed seven factors to
be used as criteria in AHP to estimate fire risk: the land cover (LC), the elevation, the aspect,
the slope, the TWI, and the distance from roads (DfR) and settlements (DfS). Out of those
seven factors, studies have shown that land cover is the most important for estimating
fire risk [24,27], especially in cases where the land cover indicates the type of vegetation
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that covers the area [28,30]. It is evident that having a detailed and updated depiction of
land cover is critical for estimating fire risk. In view of this fact, GIS can be used to classify
land cover and vegetation from satellite imagery with the implementation of machine
learning algorithms [31,32]. Various algorithms have been used by different studies for
land classification, such as k-means clustering [33], maximum likelihood classification [34],
and support-vector machines (SVM) [35]. In fact, support-vector machine models have
been used for land classification with promising results [31,35].

In this paper, the SVM algorithm was applied to satellite images obtained in 2019
and 2021 in order to create detailed land cover maps for the Natura 2000 (GR1110005)
zone, which includes the Dadia-Lefkimi-Soufli National Park Forest in the county of Evros.
Subsequently, the use of these land cover maps in combination with six other important
fire risk factors can determine the fire risk of the National Park for September 2019 and
September 2021. On the basis of the fire risk maps of 2019 and 2021 in conjunction with
the burned areas from the past fires of 1st October 2020 and 9th July 2021, we evaluated
how substantial land cover changes can affect fire risk mapping. In order to make a valid
comparison, we chose to include in the fire risk model factors that remain relatively constant
for long periods of time. This creates a baseline fire risk map of our study area.

2. Study Area

Our study area is the Natura 2000 zone with codename GR1110005, which coincides
with the National Park Forest of Dadia-Lefkimi-Soufli. The study area is located in Evros
county, as shown in Figure 1, and it extends from 26.03◦ E to 26.32◦ E and from 40.98◦ N
to 41.26◦ N, covering a total area of 42,481 ha. The climate in the area is Mediterranean,
with daytime maximum average temperatures of 32 ◦C in August and lowest average
temperature of 8 ◦C in January [36]. The average number of rainy days per year is 13.3 and
the average yearly rainfall is 732 mm [37]. The lowest point of the study area has a height
of 10 m, and the highest point is located in Kapsalo at 620 m [37,38].

The National Park Forest of Dadia-Lefkimi-Soufli contains two protected zones, A1
and A2, which cover an area of 7350 ha. Oak and pine trees make up the majority of the
forested areas. The spatial distribution of the different types of trees in the National Park
can be divided into two areas. The center is covered with pine trees, whereas the north
and southwest are covered mostly with oak trees [39]. During 2019 and 2021, two major
fires occurred within the National Park, both of which took place in the southern region, on
the northern part of the village Lefkimi. The first burstfire occurred on 1st October 2020,
burning approximately 694 ha, and the second one took place on 9th July 2021, burning
approximately 242 ha.



Appl. Sci. 2022, 12, 2938 4 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 19 
 

Out of those seven factors, studies have shown that land cover is the most important for 
estimating fire risk [24,27], especially in cases where the land cover indicates the type of 
vegetation that covers the area [28,30]. It is evident that having a detailed and updated 
depiction of land cover is critical for estimating fire risk. In view of this fact, GIS can be 
used to classify land cover and vegetation from satellite imagery with the implementation 
of machine learning algorithms [31,32]. Various algorithms have been used by different 
studies for land classification, such as k-means clustering [33], maximum likelihood clas-
sification [34], and support-vector machines (SVM) [35]. In fact, support-vector machine 
models have been used for land classification with promising results [31,35]. 

In this paper, the SVM algorithm was applied to satellite images obtained in 2019 and 
2021 in order to create detailed land cover maps for the Natura 2000 (GR1110005) zone, 
which includes the Dadia-Lefkimi-Soufli National Park Forest in the county of Evros. Sub-
sequently, the use of these land cover maps in combination with six other important fire 
risk factors can determine the fire risk of the National Park for September 2019 and Sep-
tember 2021. On the basis of the fire risk maps of 2019 and 2021 in conjunction with the 
burned areas from the past fires of 1st October 2020 and 9th July 2021, we evaluated how 
substantial land cover changes can affect fire risk mapping. In order to make a valid com-
parison, we chose to include in the fire risk model factors that remain relatively constant 
for long periods of time. This creates a baseline fire risk map of our study area. 

2. Study Area 
Our study area is the Natura 2000 zone with codename GR1110005, which coincides 

with the National Park Forest of Dadia-Lefkimi-Soufli. The study area is located in Evros 
county, as shown in Figure 1, and it extends from 26.03°E to 26.32° E and from 40.98° N 
to 41.26° N, covering a total area of 42,481 ha. The climate in the area is Mediterranean, 
with daytime maximum average temperatures of 32 °C in August and lowest average 
temperature of 8 °C in January [36]. The average number of rainy days per year is 13.3 and 
the average yearly rainfall is 732 mm [37]. The lowest point of the study area has a height 
of 10 m, and the highest point is located in Kapsalo at 620 m [37,38]. 

 
Figure 1. (a) Location of the study area in Greece (b) and in Evros county. (c) Longitude and latitude 
of Natura 2000 area (GR1110005) that coincides with the National Park Forest of Dadia-Lefkimi-
Soufli, including the protected zones A1 and A2. 

The National Park Forest of Dadia-Lefkimi-Soufli contains two protected zones, A1 
and A2, which cover an area of 7350 ha. Oak and pine trees make up the majority of the 
forested areas. The spatial distribution of the different types of trees in the National Park 

Figure 1. (a) Location of the study area in Greece (b) and in Evros county. (c) Longitude and latitude
of Natura 2000 area (GR1110005) that coincides with the National Park Forest of Dadia-Lefkimi-Soufli,
including the protected zones A1 and A2.

3. Data and Methods

To construct the land cover maps, Sentinel-2 images were used, which were captured
on 18th September 2019 at 09:06 a.m. and on 27th September 2021 at 09:06 a.m., with
minimal cloud coverage (<0.1%) [40]. Both images were level 2 Sentinel-2 products, and
thus they had already received atmospheric correction. Next, the spectral bands B03,
B04, and B08 were extracted from the original images, with spatial resolution of 10 m, in
order to produce the color infrared images needed for the land classification. Finally, to
classify the color infrared image, we used a supervised machine learning (SML) model,
using the application of the support vector machine (SVM) algorithm. SVM algorithms
have been proven to be a reliable method of creating land cover maps from Sentinel-2
images [31,32,35].

For the calculation of the topographic factors, the freely available digital elevation
model (DEM) of the Copernicus Land Monitoring Service was used. The Copernicus DEM
offers spatial resolution of 25 × 25 m, with vertical accuracy of ±7 m (RMSE). For the
purpose of our study, the 1000 × 1000 km tile with codename E50N20 was used, and the
elevation of our study area was isolated from it [38]. The remaining topographic factors
(slope, aspect, and TWI) were derived by analyzing the DEM. The roads and settlement
locations were downloaded from open data sources [41,42]. For the raster analysis and
calculations mentioned above, the GIS software ArcGIS Pro 2.9.1. was used.

In order to validate our results and examine the impact of the fire on land cover and
subsequently the fire risk, detailed burn scar maps from the National Management Body
of Dadia-Lefkimi-Soufli Forest National Park were used [37], which depict the extent of
fires that occurred during October 2020 [43] and July 2021 [44]. VIIRS hotspot locations
were also used to validate the spatial extend of the burned areas [45]. The workflow of our
method is represented in Figure 2.
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3.1. Factors
3.1.1. Land Cover (LC)

To create the land cover maps, we used an SVM algorithm to process color infrared im-
ages from September 2021 and September 2019, which were derived from the combination
of Sentinel-2 B03, B04, and B08 bands. The resulting color infrared images are presented
in Figure 3, in which vegetation appears in shades of red, bare land in cyan or white, and
water in black.

Color infrared images can help distinguish among different plant types, depending
on their leaf characteristics [46]. Inside the National Park of Dadia-Lefkimi-Soufli, oak
and pine trees account for more than the 70% of vegetation [39]. Oak trees belong to the
broad-leaved tree family, and therefore they appear in brighter red in the color infrared
image. In Figure 3, oak trees can be seen as clusters of bright red in the northern and
southwestern parts of the national park. Pine trees have thinner leaves, and thus they
appear to have a darker red color. Finally, shrubs and low grass appear in faint red.
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To classify the images, we considered six classes: pine forest, oak forest, shrubs and
low grass, bare land, water bodies, and built-up areas. To train the SVM algorithm, we
carefully gathered multiple samples of homogeneous parts from each image, representing
one of the six classes. After the classification of the image, we made some adjustments to
the product image, mainly to distinguish some parts of bare land from the buildup areas.
The accuracy of the land cover classification was estimated using the Kappa coefficient,
which was found to be 0.87. The final land cover maps from September 2019 and September
2021 of the National Park of Dadia-Lefkimi-Soufli are presented in Figure 4a,b, respectively.
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from September 2021.

Each type of tree has different flammability properties. Considering that pine trees are
more flammable than oak trees, the forest areas were classified accordingly [47]. Finally,
since water bodies cannot ignite, they were classified with the fire risk class ‘no risk’.



Appl. Sci. 2022, 12, 2938 7 of 20

The classification of land cover, based on the fire risk, is shown in Table 1, and the final
reclassified risk map of the land cover maps is presented in Figure 5.

Table 1. Fire risk classification of land cover.

Land Cover Class Risk Class Risk Description

Pine forest 5 Extremely high
Oak forest 4 High

Shrubs and low grass 3 Medium
Bare land 2 Low
Buildup 1 Extremely low

Water body 0 No risk
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3.1.2. Altitude

Altitude influences the humidity of vegetation and temperature. Vegetation in high
altitudes has higher rates of humidity and lower temperature [31]. Moreover, high altitudes
usually have lower vegetation density. Considering the topographic characteristics of the
area, we distributed the fire risk into five classes, as shown in Table 2. Elevation in our
study area, according to DEM [38], ranged from 10 m meters to 645 m meters. The altitude
raster and the final reclassification of fire risk appear in Figure 6.

Table 2. Fire risk classification of altitude.

Altitude (m) Risk Class Risk Description

10–100 5 Extremely high
100–200 4 High
200–300 3 Medium
300–400 2 Low

>400 1 Extremely low
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3.1.3. Aspect

In the northern hemisphere, south-oriented slopes receive more sunlight, and thus the
vegetation loses humidity faster and becomes more flammable [28]. Moreover, because
of the difference in sunlight distribution among the different orientations of slope, the
southern aspects usually have more dense vegetation. Less humidity and dense vegetation
results in higher fire risk, and thus vegetation facing south is more flammable. The fire risk
classification of the aspect appears in Table 3 [25,28].

Table 3. Fire risk classification of aspect.

Aspect Risk Class Risk Description

South 5 Extremely high
Southeast–East 4 High

Northeast 3 Medium
North 2 Low

Flat–Southwest–West–
Northwest 1 Extremely low

The aspect derives from the DEM and the is presented with different colors depending
on the orientations. The final aspect raster along with reclassified fire risk map can be seen
in Figure 7.
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3.1.4. Slope

Fire propagates faster on steeper slopes because the flames can reach higher vegetation
more easily at great surface angles [30]. Moreover, on steep slopes, water runoff increases,
resulting in less soil moisture [24]. Both of these factors make areas with steeper slopes have
a higher risk of fire. We derived the fire risk classification of slope as shown in Table 4 [25].
In order to calculate the slope raster, we used the DEM and chose to present the results in
percentage. The slope raster of the National Park Forest of Dadia-Lefkimi-Soufli along with
the fire risk map of the slope is presented in Figure 8.
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Table 4. Fire risk classification of slope.

Slope (%) Risk Class Risk Description

>30 5 Extremely high
20–30 4 High
10–20 3 Medium
5–10 2 Low
0–5 1 Extremely low

3.1.5. Topographic Wetness Index (TWI)

The TWI can simulate water concentration can be derived from topography. The
presence of water affects soil moisture and makes the surrounding vegetation harder to
ignite [22]. We calculated the TWI of the study area from the total catchment area, the flow
width, and slope from the DEM [21]. The risk classification of the TWI is presented in
Table 5. The TWI raster of the study area along with the fire risk map of TWI is shown in
Figure 9.

Table 5. Fire risk classification of TWI.

TWI Risk Class Risk Description

4–6 5 Extremely high
6–7 4 High
7–8 3 Medium
8–9 2 Low
>9 1 Extremely low
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3.1.6. Distance from Roads

Human activities near roads can be the cause of fire ignition, and therefore the areas
surrounding the road network are at a higher fire risk [48]. To attribute fire risk to those
areas, we took into consideration previous studies along with the structure of the road
network [24,28]. The first 200 m near the road network was determined to be at high risk of
fire, and afterwards the risk decreased by one class at 200 m intervals. The classification of
fire risk is presented in Table 6. Multi-buffer rings of 200 m each were calculated around
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each road segment and transformed to rasters in order to be incorporated into the model
(Figure 10).

Table 6. Fire risk classification of the area around the road network.

DfR (m) Risk Class Risk Description

0–200 5 Extremely high
200–400 4 High
400–600 3 Medium
600–800 2 Low

>800 1 Extremely low
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3.1.7. Distance from Settlements

The distance around settlement locations affects the risk of fire similarly to that of the
road network. The areas closer to settlements are in higher risk than those farther away [13].
To distribute the fire risk, we took the spatial extent of the settlements into consideration.
Since most of the settlements inside and near our study are small, we estimated that their
average extent is 500 m. Taking this into account, we assigned the area inside a radius
of 900 m around the settlements to be in extreme risk of fire, and afterwards the risk
decreased by one class at 400 m intervals, as it is depicted in Table 7. Buffer zones using
the aforementioned distances were applied around each settlement. The results and the
assigned fire risk is shown in Figure 11.

Table 7. Fire risk classification of the area around settlement locations.

DfS (m) Risk Class Risk Description

0–900 5 Extremely high
900–1300 4 High
1300–1700 3 Medium
1700–2100 2 Low

>2100 1 Extremely low
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3.2. Attribution of Weight to the Factors

To calculate the weight of each factor, we used the AHP as a multi-criteria method.
The AHP can estimate the significance of each factor given the pairwise comparisons
among each one of the seven factors [29]. In our model, each factor belongs to one major
category that influences fire risk. Particularly, slope, DEM, aspect, and TWI reflect the
impact of topography and to some extent fuel condition on fire risk. The distance from
roads and settlements captures the impact of human activity on fire ignition. Finally, land
cover depicts the alternations of fire risk, due to fuel availability and fuel type. In order
to estimate the pairwise comparisons, we consulted past studies and expert opinions. We
considered the land cover to be the most important factor for this estimation [24,25,27].
Moreover, human activity plays a key role in fire risk identification, since in most cases,
humans are the main cause of fires [13]. Therefore, the distance from roads and settlements
has a serious impact on fire risk. The most important topographic factor is TWI, since it has
a direct correlation with soil humidity, whereas the rest topographic factors contribute less
to the overall fire risk. The final distribution of pairwise comparisons is presented in Table 8.
Afterwards, the weights were calculated using the mathematical procedure established by
Thomas L. Saaty [49]. The final weights of each factor are also shown in Table 8.

Table 8. Pairwise comparisons of fire risk factors along with the assigned weight.

Land
Cover Altitude Aspect Slope TWI DfR DfS Weight

Land cover 1 3 3 3 3 2 2 0.27
Altitude 0.33 1 3 2 0.5 0.33 0.33 0.09
Aspect 0.33 0.33 1 0.5 0.25 0.33 0.33 0.05
Slope 0.33 0.5 2 1 0.5 0.33 0.33 0.07
TWI 0.33 2 4 2 1 0.33 0.33 0.12
DfR 0.5 3 3 3 3 1 3 0.23
DfS 0.5 3 3 3 3 0.33 1 0.17

SUM 3.32 12.83 19 14.5 11.25 4.65 7.32 1
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To verify the consistency of our comparison estimations, we calculated the consistency
ratio (CR) by applying the following equations [30],

CI = (λmax − n)/(n − 1) (1)

CR = CI/RI (2)

The λmax in Equation (1) is the perturbated eigenvalue of the matrix constructed by
the pairwise comparisons, as depicted in Table 8. n is the order of the matrix, n = 7. The
consistency index (CI) in Equation (1) measures the difference between λmax and the exact
eigenvalue, n. The CR in Equation (2) is calculated from the random consistency index
(RI) [50], as shown in Table 9.

Table 9. Values of the random consistency index (RI).

n 1 2 3 4 5 6 7

RI 0 0 0.58 0.9 1.12 1.24 1.32

According to Table 9, RI = 1.32 for seven factors. Subsequently, concerning our
pairwise estimations, CR = 0.07. Since CR < 0.1, the estimations of the pairwise matrix were
consistent.

The fire risk maps were calculated by the weighted sum of all factors

Fire Risk = 0.27 ∗ LC + 0.09 ∗ Altitude + 0.05 ∗ Aspect + 0.07 ∗ Slope + 0.12 ∗ TWI + 0.23 ∗ DfR + 0.17 ∗ DfS (3)

4. Results

The fire risk maps for September 2019 and September 2021, with spatial resolution of
25 m × 25 m, were calculated using Equation (3), and they are presented in Figure 12, along
with the relative fire risk scale value. The risk class for most areas was unchanged, which is
expected. The parameters used in our model remained relatively invariant for long periods
of time. Therefore our risk map represents the baseline fire risk in the area [24].
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The average fire risk in the National Park Forest of Dadia-Lefkimi-Soufli was high for
both years. Specifically, 50% of the total 42,481 ha of our study area for 2019 was considered
to be at high fire risk. Similarly, 48% of the total area was considered to be at high fire risk
for 2021. Moreover, for both years, 5% of the National Park was at extremely high risk
of fire.

The extreme fire risk areas form clusters. The most noticeable ones are located near
the center of the National Park, spreading along the line that connects the points with
coordinates 41◦10′ N, 26◦7′ E and 41◦6′ N, 26◦16′ E. Two additional extremely high risk
areas were detected. The first one is located in the northwest of the National Park, near
the settlement of Giannouli, and the second one is located in the southeast of the park,
near the settlement of Lefkimi. The overall distribution of fire risk for September 2019 and
September 2021 in the National Park is presented in Table 10.

Table 10. The distribution of fire risk in the National Park of Dadia-Lefkimi-Soufli for September
2019 and September 2021.

Risk Class Risk Description Fire Risk Areas
(Sept 2019)

Fire Risk Areas
(Sept 2021)

5 Extremely high 5% 5%
4 High 50% 48%
3 Medium 33% 34%
2 Low 11% 12%
1 Extremely low 1% 1%

Within the National Park Forest of Dadia-Lefkimi-Soufli, two major fire incidents took
place between September 2019 and September 2021. The first one was recorded in October
2020, and the second one in July 2021 [46]. In order to validate our results and measure the
impact of change in the land cover on the fire risk, due to the fires, each fire incident was
examined separately as follows.

4.1. Impact of Fire in October 2020

The fire of October 2020, as stated by the fire department, started in the north of the
village of Lefkimi, near the southwest extreme high fire risk area, and burned approximately
694 ha. According to VIIRS hotspot measurements, the brightness temperature during the
fire ranged from 24 ◦C to 81 ◦C [46]. Moreover, the area affected by the fire before the fire
occurrence was considered at high risk. In fact, according to our fire risk map of 2019, 41%
of the area was classified as high risk and 36% as medium risk. The fire extent and the fire
risk map of 2019, along with the distribution of the fire risk inside the affected area, are
presented in Figure 13.

The fire had a significant impact on the fire risk in the area. The change in land cover
we identified with the SVM algorithm passed on the fire risk and was captured by the
difference among the fire risk maps inside the extent of the affected area before and after
the fire incident. The fire risk of the area dropped from high to medium–low risk. The
high-risk areas dropped from 41% before the fire to 10% after the fire, while the low-risk
areas increased by 17%. These changes are attributed to the loss of vegetation from the
fire on 5 October 2020. The fire extent related to the fire risk map of 2021, along with the
updated distribution of the fire risk inside the affected area, is presented in Figure 14.
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4.2. Impact of Fire in July 2021

The second serious fire incident in the National Park Forest of Dadia-Lefkimi-Soufli
was recorded on 9th July 2021, in the north of the settlement of Lefkimi. The fire burned
approximately 242 ha of forested areas, and it was close to the limits of the fire that
occurred in October 2020, as is shown in Figures 14 and 15. According to VIIRS hotspot
measurements, the brightness temperature during the fire ranged from 59 ◦C to 32 ◦C [46].
According to our model, the affected area before the fire occurrence was considered to be at
high risk of fire. In particular, 59% of the overall area was classified as having a high fire
risk, and 10% as having an extremely high fire risk. On the contrary, only 4% of the area
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was classified as low and 0% as extremely low fire risk. The detailed distribution of the fire
risk inside the affected area (according to the risk map of 2019) is presented in Figure 15.
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The fire had a significant impact on the overall fire risk classification of the area. The
fire risk of the affected area after the fire was classified as medium with 49%. After the
fire incident, the high-risk areas dropped from 59% of the whole area to 26%, while the
extremely high risk areas dropped from 10% to 3%. On the other hand, areas categorized
as low risk increased by 18%. The fire extent related to the fire risk map of September 2021,
along with the updated distribution of the fire risk inside the affected area, is presented
in Figure 16.
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5. Discussion

In this study, we combined elevation, slope, aspect, TWI, land cover, settlement
location, and road networks to create a fire risk model. Subsequently, we applied the model
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to the National Park Forest of Dadia-Lefkimi-Soufli. Topography, vegetation, and human
activity are the major categories represented in our model that affect wildfire generation
and spread. Similar factors have been used by other studies, in combination with AHP to
assign weights, in order to calculate fire risk in various areas [14,24–28,30]. In our analysis,
land cover was proved to be the factor with the highest weight. This does not mean
that topography and human activities are of less importance. In fact, human activity is
the main cause of wildfire ignition. Approximately 93% of fires in Northern Europe are
caused by humans, either intentionally or unintentionally [13]. Land cover, besides having
the highest weight in the resulting model, also changes more frequently compared to
human activities (road network, settlements) and topography. For this reason, we derived
land cover classification from Sentinel 2 imagery since they are georeferenced, frequently
updated, freely available, and have suitable spatial resolution. Classification was carried
out with the use of SVM algorithm, since it has already been used in similar applications
with promising results [31,35].

With the combination of AHP (to determine the fire risk) and the SVM algorithm
(to classify the land cover), we managed to identify the baseline fire risk of the National
Park Forest of Dadia-Lefkimi-Soufli for September 2019 and September 2021. According to
those fire risk maps, most of the areas in the National Park Forest of Dadia-Lefkimi-Soufli
are classified as high risk. More specifically, the map of 2021 reveals that 5% out of the
total area of the National Park was classified as extremely high risk, and 48% was high
risk. Consequently, fire risk distribution in the National Park suggests that local authorities
should be at high alert, especially during heatwaves and near the areas classified as extreme
high risk.

We also examined in detail the impact of the land cover change on fire risk in the areas
affected by the two major fire incidents (October 2020 and July 2021). It is concluded that
the average risk of those areas dropped significantly, while the rest of the fire risk map
remained relatively unchanged between September 2019 and September 2021. It is evident
that land cover changes caused by past fires have a significant drop on the fire risk of the
affected areas. The main cause is the loss of the highly flammable pine tree forest near
the settlement Lefkimi. Considering the effect of land cover changes on fire risk mapping,
it is important that fire risk management plans incorporate those changes and reallocate
resources accordingly on a local scale. In this way the SVM algorithm, along with other
classification algorithms [33–35,51], can offer a powerful tool for updating fire risk maps
year by year. Finally, it is notable to point out that both October 2020 and July 2021 fires
started near areas classified as ‘extreme high’ fire risk. This is yet another validity indicator
of the proposed fire risk model. Additionally, the above-mentioned fire incidents spread
mostly at areas classified as ‘high risk’ (Figures 13 and 15).

We acknowledge that daily risk maps at the national [52] and European levels [53],
which are mostly derived from weather data, are freely available and easily accessible to all
stakeholders, including the citizens. Prediction models based on weather information alert
civil protection and fire services on areas of increased readiness. Fire risk models and maps
(such as the one proposed in this study) are supplementary to weather data, indicating high
risk areas usually at higher spatial resolution and where proactive measures can, or should,
be taken. Those measures can include the optimal allocation of observatories and/or fire
service areas by using GIS tools such as visibility, network, or other suitable analysis.

We utilized GIS technology for fire risk model development, not only because of GIS’s
analytical and presentation capabilities, but also due to information dissemination and its
integration ability along with other organizational workflows. Developing the proposed
model, a key issue addressed is data availability. As the reader can see all data utilized
are from reliable [38,40] and freely referenced or downloaded sources [41,42]. As a result,
local authorities, which are responsible in specifying precautional policies and measures
(especially in high fire risk periods), such as increased supervision, temporal road closures
to traffic, prohibition of certain activities, and more optimal resource allocation, have the
means to identify areas of higher risk.
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The spatial resolution of the presented model is limited to the resolution (25 by
25 m) of the DEM used to calculate it [38]. Higher-resolution DEMs are calculated by
mapping agencies during orthophoto production workflows. They can also be acquired
by drones [54]. A question of further research and investigation is if higher resolution
DEMs help in a better understanding and mapping fire risk or just add higher frequency
data, which sometimes are noise rather than actual information. A constrain of our model
is the lack of meteorological factors. Furthermore, it is important to note that in order
to determine the fire risk of an area, meteorological factors such as temperature, wind,
and humidity play a very important role [26]. These factors change dynamically, and
therefore it is hard to establish a baseline risk map to compare results from different years.
Human activity layers of information (road network and settlements) were derived from
OpenStreetMap in testing our model. More important than the accuracy of road network is
completeness and the level of update. State agencies and local authorities are advised to use
the most updated information they have access to. Other data sources of human activities,
such as electricity grids and landfills, which are of great importance, can be incorporated in
our model, creating multi-buffer rings, similar to how road network and settlement areas
were treated.

6. Conclusions

Wildfires, unfortunately, are an inevitable consequence of climate crisis. Every year, we
are witnessing more and more devastating wildfires in the western United States, Amazon
basin, South Europe, Siberia, Australia, and elsewhere, with a priceless impact on our
environment. Understanding and modelling the phenomenon can make us more effective
in addressing it. Especially in firefighting, the timely response is the most crucial factor
to fight it. The role of fire risk models in conjunction with other GIS analysis tools can
provide us useful information for optimal arrangement of all available resources before the
ignition of the phenomenon such as selecting supervision locations for areas characterized
as ‘high risk’ and even allocate firefighting trucks for a more immediate response in case of
an incident. Knowledge of ‘high risk’ areas can assist all levels of administration to increase
citizen awareness and take targeted proactive measures.

Models and all data needed to support it should be free and easily accessible for
agencies and authorities to integrate it with their systems. All necessary data to implement
the model can be easily found at Copernicus services and other European or National
spatial data infrastructures. The most essential data to classify land cover, Sentinel 2 images,
are available freely worldwide through the same services. We will keep working and
testing the model in other areas to test its portability. Findings and suggestions will help us
to improve it. All future improvements will be embedded and published.
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