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Featured Application: This study proposes a novel cross-channel DWRPCA algorithm for multi-
channel pulse signal de-noising. This algorithm can extract features from multiple cycles in each
channel with dynamic weighting according to the signal patterns of channels in a single sensor.
This algorithm can separate noise from the main frequency band of the input pulse signal.

Abstract: Pulse wave analysis (PWA) has been widely used in the medical field. A novel multi-
channel sensor is employed in arterial pulse acquisition and brings richer physiological information
to PWA. However, the noise of this sensor is distributed in the main frequency band of the pulse
signal, which seriously interferes with subsequent analyses and is difficult to eliminate by existing
methods. This study proposes a cross-channel dynamic weighting robust principal component
analysis algorithm. A channel-scaled factor technique is used to manipulate the weighting factors in
the nuclear norm. This factor can adaptively adjust the weights among the channels according to the
signal pattern of each channel, optimizing the feature extraction in multi-channel signals. A series of
performance evaluations were conducted, and four well-known de-noising algorithms were used
for comparison. The results reveal that the proposed algorithm achieved one of the best de-noising
performances in the time and frequency domains. The mean of h1 in the amplitude relative error
(ARE) was 23.4% smaller than for the WRPCA algorithm. Moreover, our algorithm could accelerate
convergence and reduce the computational time complexity by approximately 34.6%. These results
demonstrate the performance and efficiency of the algorithm. Meanwhile, the idea can be extended
to other multi-channel physiological signal de-noising and feature extraction fields.

Keywords: de-noising algorithm; radial arterial pulse wave; multi-channel signals

1. Introduction

Pulse waves (PW) are propagating waves generated by heart pulsation in blood
circulation. Pulse wave analysis (PWA) is one of the earliest vital analyses in modern
medicine [1–3]. Some cardiac outputs (COs), such as arterial stiffness, can be measured
and estimated by key physiological points in the arterial blood pressure (ABP) waveform,
which has considerable clinical significance [4]. In recent years, multi-channel signal
acquisition has been applied in complex physiological signal acquisition studies. The
acquired signals are also called three-dimensional pulse images (3DPIs) and are arranged
in a matrix form. The 3DPI can provide multiple accurate temporal pulse waves [5] and
provide three-dimensional spatial features of pulse waves. The shapes and trends of the
pulse waves reflect more physiological information, such as arterial stiffness [6,7].
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Today, researchers employ tactile sensors to obtain multi-channel pulse wave signals.
Chung developed a pulse diagnosis instrument (PDI) with 12-channel (3 × 4 channels)
tactile sensors [8]. Kong and his colleague designed an arterial palpation instrument with
24-channel (4 × 6 channels) tactile sensors [9]. Peng developed a wrist pulse acquisition
device with 24-channel (5× 5− 1 channels) tactile sensors [6]. These studies above used the
tactile sensor systems developed by PPS (Pressure Profile Systems Inc., Los Angeles, CA,
USA), which are recommended tools for biomedical signal acquisition with hundreds of
peer-reviewed papers. A typical PPS sensor system has 12 or 24 sensing elements arranged
on a near 1 cm2 sensor tip, with over 4 cm conductive leads on a flexible substrate to
the circuits (amplifier, filter, analog-to-digital converter, and so on), which can be used
independently [10] or assembled on the robot finger [6].

Due to crosstalk and material properties of the sensing elements in the multi-channel
sensor, more consequent background noises in 3DPI may be generated or enlarged [11–13].
In addition, the sensor also has contact noise while measuring pulse waves. Furthermore,
the relatively long conductive leads further disturb the signals before entering the amplifier
and filter circuits, which is unavoidable due to the requirements for flexible use. Hence,
these noises cannot be completely eliminated by the system. Aimed at reducing these noises
of tactile sensors in pulse wave acquisition, researchers have proposed several de-noising
methods. Hu et al. used a wavelet transform algorithm to remove motion artefacts and
background noise from pulse waves acquired by a 12-channel tactile sensor [14]. Other
methods such as variational mode decomposition (VMD) were applied to 3DPI de-noising
and achieve a noticeable effect [15]. However, some of the noises are mixed with signals in the
frequency domain and are, therefore, difficult to eliminate using these traditional methods.

Principal component analysis (PCA) is a statistical method employed for data dimen-
sionality reduction and de-noising [16]. The PCA method can extract the pulse charac-
teristics for multiple pulse cycles in a specific channel. Previous studies have found that
pulse signals between cycles in a short period have small nonlinearity [5,16–18]. Hence, the
PCA method can be used in pulse signal feature extraction and de-noising fields. How-
ever, the weak robustness of PCA restricts the application of signal de-noising in PWA.
Another modified method named robust principal component analysis (RPCA) has better
robustness than PCA in the field of multi-channel arterial pulse signal de-noising [19]. He
et al. developed an RPCA-based method named weighted robust principal component
analysis (WRPCA) to process multi-channel pulse signals and indicated that WRPCA could
achieve better three-dimensional visual performance than RPCA [20]. However, these
researchers extracted signal features separately for every channel without taking advantage
of the internal associations between these channels. Since 3DPI is a pulse signal with a
spatial and temporal correlation of each channel [6], this study introduces a new de-noising
algorithm called cross-channel DWRPCA, which produces a channel-scaled factor (CSF)
technique to manipulate the weights of WRPCA. This paper uses a convolutional neural
network to adaptively tune the CSF; therefore, the factors can adjust the weights in the
nuclear norms according to the signal pattern of each channel. This technique can optimize
the feature extraction for multi-channel signals such as 3DPI to eliminate the noise in the
original signals. In addition, this paper employed a complete and standard pulse signal
processing system, including preprocessing, de-noising algorithm implementation, signal
reconstruction, and display. Then, we evaluate the performance in the time domain and
frequency domain. The idea of the proposed cross-channel DWRPCA algorithm can be
generalized to other biomedical signal de-noising cases. In other words, our work provides
a novel and promising thought to de-noise biomedical signals [21–26].

The remainder of this paper is structured as follows: Section 2 introduces the dataset
employed in this work and the overall signal processing framework; Section 3 describes
our de-noising algorithm cross-channel DWRPCA, as well as the evaluation method used
throughout the experiments; Section 4 mainly presents the time-domain and frequency-
domain analysis results of the experiments. The final two sections discuss the experimental
results and present the conclusions of this paper.



Appl. Sci. 2022, 12, 2931 3 of 19

2. Data and Overall System
2.1. Dataset

The dataset was provided by National Cheng Kung University using a pulse diagnosis
instrument with 24-channel (5× 5− 1) tactile sensors and a data acquisition system [6]. There
were 37 subjects (including four females and 33 males) aged 62.52± 11.85 years (mean± SD).
All subjects were hypertensive patients and their family members in National Cheng Kung
University Hospital, who were selected randomly. Specifically, 24 subjects of the dataset were
hypertensive patients (systolic/diastolic blood pressure: 148.08/85.08± 17.51/11.69), and the
other 13 subjects were healthy persons (sp/dp: 118.68/73.62 ± 8.69/6.90). The multi-channel
pulse wave signals were recorded under IRB approval (IRB#: B-ER-103-263). The recording
length was about 8–9 s per subject with a sampling rate of 50 Hz. The information details of
the dataset can be found in a previous study [6].

An example of a 3DPI with stereoscopic (upper left) and planar (upper right) views
is shown in Figure 1. The PPS 5 × 5 tactile sensor records spatiotemporal information of
the radial artery. The x-axis of the 3DPI represents the pulse length along the artery blood
flow direction, while the y-axis is perpendicular to the artery blood flow direction. Pulse
amplitude on the z-axis is normalized to 0–1 with color settings (red = 1 and violet = 0).
The amplitude changes periodically to form a dynamic 3DPI.
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Figure 1. A three-dimensional pulse image (3DPI) at peak amplitude. Upper left: stereoscopic 3DPI;
upper right: planar 3DPI; lower: data acquisition by a PPS tactile sensor.

2.2. Signal Processing Framework

A complete and standard framework was employed in this study. The overall frame-
work included the following steps (shown in Figure 2): raw data acquisition, pre-processing
(including data truncation, baseline wandering removal, and cycle alignment), algorithm
implementation, signal reconstruction, and display. Data from different pulse-taking depths
were truncated and selected before pre-processing. Then, a Butterworth high-pass filter (cut-
off frequency: 0.5 Hz) was performed to remove the low-frequency noise of the measured
multi-channel signals, and the baseline drift was mainly eliminated by cubic spline esti-
mation [27]. Multi-channel raw data were partitioned into segments, each corresponding
to a complete heartbeat cycle. For every channel, these segments were scaled and aligned
along the time axis and composed into a group. After pre-processing, multiple groups
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of one-dimensional temporal pulse waves were sent into the algorithm implementation
module. The algorithm implementation module proposes a signal de-noising and feature
extraction algorithm with interchannel weights to decompose input data matrices into
signal and noise matrices. Subsequently, to evaluate the performance of the proposed cross-
channel DWRPCA algorithm, we analyzed the signal features and noises extracted from
the original signals from the aspects of the time domain and frequency domain. Finally, the
filtered signals were reconstructed into a complete multi-channel signal with less noise and
displayed in the form of 3DPI.
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3. Proposed De-Noising Algorithm and Evaluation Method
3.1. Cross-Channel Dynamic Weighting RPCA

Robust principal component analysis has been universally applied in many research
fields [28], such as video surveillance, face recognition, latent semantic indexing, ranking
and collaborative filtering, low-rank representation, target detection, signal de-noising, and
classification [19,29–34].

The main idea of RPCA is that a data matrix D can be decomposed as a low-rank
component L and a sparse component S [15], defined as

min‖L‖∗ + λ‖S‖1, subject to D = L + S, (1)

where ‖L‖∗ denotes the nuclear norm (sum of singular values), and ‖S‖1 is the L1-norm
(sum of absolute values of matrix entries). In the field of arterial pulse signal de-noising
and decomposition, D ∈ Rm×n is an input pulse matrix, where m and n (rows and columns
of D) are the number of horizontally and vertically arranged channels in a tactile sensor,
respectively. λ is a positive constant parameter set to 1/

√
max(m, n) [19].

Weighted robust principal component analysis, as an extension of RPCA, has been a
mature and versatile method in the video frame interpolation [34], low-level vision [35],
and singing voice separation fields [36]. WRPCA can be defined as follows:

min‖L‖ω,∗ + λ‖S‖1, subject to D = L + S, (2)
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where ‖L‖ω,∗ is the low-rank matrix with different weighted values. An efficient inexact
version of the augmented Lagrange multiplier is used to solve the convex model [30]. The
corresponding augmented Lagrange function is defined as

Y(D, L, S, µ) = ‖L‖ω,∗ + λ‖S‖1 + Y, D− L− S +
µ

2
‖D− L− S‖2

F, (3)

where Y is the Lagrange multiplier, µ is a positive scaler, and ‖D− L− S‖2
F = D− L−S, D−

L− S. Specifically, 〈D− L− S, D− L− S〉 is the Euclidean inner product of D− L− S, and
D is the observation data.

The proposed cross-channel DWRPCA uses a channel-scaled factor technique to
manipulate the weights of the WRPCA algorithm. We construct a convolutional neural
network (CNN) to adaptively tune the channel-scaled factor according to the signal pattern
of each channel. The pre-processed signals (not the extracted features) are used as the input,
and the channel-scaled factor values are used as the target. Hence, the calculated CSF can
dynamically adjust the weights among channels according to the signal patterns, which
can optimize the de-noising effect in multi-channel signals like 3DPI.

Figure 3 illustrates the whole process of the cross-channel DWRPCA algorithm. Multi-
channel pulse data matrices are normalized and transformed into D′ ∈ RM×T′. The
convolutional neural network constructed in this paper can predict a specific factor value
for each channel. Therefore, the CSF can adaptively adjust the weight of a particular
channel in a single sensor. In the context of this paper, we represent the signal input as a
matrix D′ ∈ RM×T′ (M is the number of beats in the dataset, and T′ is the signal vector
length). The details of the constructed neural network are discussed in Section 4. As the
initial weighting factors for each channel in WRPCA vary, we named this method dynamic
weighting RPCA. The DWRPCA method is repeated for each channel with different CSFs
and extracts corresponding low-rank and sparse matrices. The low-rank matrix in a channel
represents the feature components extracted from multiple cycles in that channel.
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Thus, the cross-channel DWRPCA algorithm is described below.
In Algorithm 1, ρ is a positive numerical constant and is usually small enough to

prevent µk from increasing too fast. After DWRPCA processing, a low-rank matrix L and a
sparse matrix S can be obtained.
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Algorithm 1: Cross-Channel DWRPCA

Input: D ∈ Rm×n×T : Multi-beat pulse signal
MAX_Iter: the maximum number of iterations

Output: L: Low-rank matrix (de-noised pulse signal)
S: Sparse matrix

1: normalize input data matrix D
2: transform D into D′ ∈ RM×T′

3: for n = 1 to length (m× n) do
4: Use D′ as the input of the trained CNN model
5: Compute the CSF of n-th channel using the model
6: Initialize µ0, ρ, L0 = D, Y0 = 0;
7: While not convergence or iter ≤ MAX_Iter do
8: repeat
9: decomposed singular value σiter(D) = max(max(svd(L0)))
10: weighting factor ωn =

ηn
σiter(D)

11: Sk+1 = argmin
S
‖S‖1 +

µk
2 ‖D + µk

−1Yk − Lk − S‖2
F;

12: Lk+1 = argmin
L
‖L‖ω, ∗ +

µk
2 ‖D + µk

−1Yk − Sk+1 − L‖2
F;

13: Yk+1 = Yk + µk(D− Lk+1 − Sk+1);
14: µk+1 = ρ ∗ µk;
15: k = k + 1;
16: end while
17: end for

The detailed calculation of weighting factors ωn of the cross-channel DWRPCA is
defined below.

Lemma 1. Let D = UΣVT be the singular value decomposition (SVD) of D ∈ Rm×n, where

Σ =

(
diag(σ1(D), σ2(D), · · · , σn(D))

0

)
, (4)

where σi(D) denotes the i-th singular value of D. If the positive regularization parameter C
exists and the positive value ε < min

(√
C, C

σi(D)

)
holds, by using the reweighting formula

ω`
i = C

σi(L`)+ε
[31] with initial estimation L0 = D, the reweighted problem has the closed-form

solution: L∗ = UΣ′VT , where

Σ ′ =
(

diag(σ1(L∗), σ2(L∗), · · · , σn(L∗))
0

)
, (5)

and

σn(L∗) =

{
0

c1+
√

c2
2 ,

(6)

where c1 = σi(D)− ε and c2 = (σi(D) + ε)2− 4C. C is set to max(m, n). Gu et al. [35] described
a more specific proof of Lemma 1.

The weighted value ωn of the proposed algorithm is defined as follows:

σn(L∗) = max
(
σn(D)− ωn

γ
, 0
)
, (7)

where
ωn =

η

σn(D) + ε
, (8)
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where η denotes the n-th channel-scaled factor (CSF) of D′ in the n-th resorted channel. The
regularization parameter γ is set to 1/

√
max(m, n), and reconstruction error tolerance ε is

set to 1.0× 10−6.
In Equation (8), the weighting factor ωn, also called the weight of the nuclear norm,

is determined by the CSF and dynamically updated during iterations until convergence.
The CSF is computed through a convolutional neural network, which considers the signal
patterns among channels. The CSF is the numerator of Equation (8) and, therefore, con-
structs the initial value of weighting factor ωn. σn(D), part of the denominator of Equation
(8), is adjusted dynamically in iterations of each channel to significantly optimize low-rank
estimation performances. The major difference between WRPCA and our cross-channel
DWRPCA can be specified at ωn. In WRPCA, ωn is identical in every channel, while, in
our algorithm, ωn is adaptively adjusted by CSF η.

Hence, the cross-channel DWRPCA can extract features from multiple cycles in each
sensor channel and consider energy differences in different channels.

3.2. Performance Evaluation Method

The performance of this algorithm was evaluated in the time domain and frequency
domain. Four well-known de-noising algorithms were used for comparison with our
algorithm in the experiments: wavelet transform, VMD, RPCA, and WRPCA, introduced
in the previous section. In this paper, the maximum number of iterations was set to 1000.

Time domain analysis for extracted signals focuses on comparing low-rank matrices
before and after de-noising by different de-noising algorithms. Four examples in channels
with different energy (maximum, medium, low, and minimum) are given in this section.
We also employ time domain analysis for extracted noise, which gives us an intuitive
impression of the noise amplitude.

Then, non-deviation errors of key physiological points are evaluated. Figure 4 shows
the positions of the key physiological points of the radial pulse wave in a complete heart-
beat cycle. In the beginning, the aortic valve opens (onset) as the ventricular pressure rises.
The ventricle continues to contract, and the systolic pressure rises to a peak (P1) during ejec-
tion [37]. Due to the diastole of the ventricle and backward wave from periphery branches,
the attenuated arterial pressure reaches the second peak (P2) of the pulse wave [38]. The
closure and opening of the arterial valve cause the dicrotic notch (P3) and diastolic wave
(P4) [27]. In clinics, the augmentation index (Aix) is formulated as h2/h1, which is an
important metric of arterial stiffness estimation [39]. The positions and amplitudes of these
key points should not be affected after de-noising, which is the primary premise of all
de-noising algorithms. Thus, the time absolute error (TAE) and amplitude relative error
(ARE) at key points P1 and P2 are used to evaluate the non-deviation performance, defined
as follows:

TAE = |ti − toi|, (9)

ARE =
|hi − hoi|
|hoi|

× 100%, (10)

where ti or toi is the sampling number of processed or original i-th key points, and hi or hoi
is the amplitude of processed or original i-th key points.

Frequency-domain analysis for extracted noises uses power spectral density (PSD)
to show the distribution of noises. A reference noise is recorded using a PPS 5 × 5 tactile
sensor. Noise-dominant frequency bands of PPS tactile sensors are compared with extracted
noises by five de-noising algorithms.

Furthermore, run-time complexities are tested in this paper. The total calculation
amount and run time required by our algorithm must be at acceptable levels for practical
de-noising applications. A host PC can be the recommended experimental environment
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for our study. The host PC was equipped with four Intel Xeon Platinum 2.10 GHz CPUs,
384 GB memory, and an Inventec KQ80G4 Motherboard (C620 series chipset running
Windows Server 2016 Datacenter). All programs were run in Matlab2020b.
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Figure 4. Four key physiological points of the radial pulse wave in a complete heartbeat cycle:
(a) onset: aortic valve open; (b) P1: ventricular contraction; (c) P2: reflected wave; (d) P3: aortic
valve closure; (e) P4: diastolic wave. t represents time, and h represents the amplitude of each key
physiological point.

4. Results

Figure 5 shows that all sensor channels of original signals formed a subject after base-
line wandering removal, data truncation, and cycle alignment. Each subfigure represents
data in multiple cycles of every channel of a PPS sensor. Channel 11 with a red subtitle
has the maximum calculated energy. All channels were then reordered according to the
signal energy from high to low. For example, channel 11 on the spatial arrangement was
renumbered as channel no. 1.
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Figure 5. Original signals of 25 channels. Each subplot represents aligned and scaled cycles of each
channel. Channel 11 shown in red has the maximum energy.

As described in the above section, a convolutional neural network was constructed
to determine the channel-scaled factors of each sensor channel. The neural network archi-
tecture of the CSF estimation module is shown in Figure 6a. We implemented a custom
nine-layer CNN to predict the CSF values. The size of the input pulse data was 1× 72. Train
sets and test sets selected from our 3DPI dataset were split into 80/20 ratio, respectively. In
addition, we use the Adam (Kingma and Ba 2014) optimizer with a mini-batch size of 27
for a fixed number of training epochs.
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Figure 6. Overview of our CSF estimation module and the calculated weighting factors of each
reordered channel in iterations 1–1000. (a) Model architecture; (b) the calculated weighting factors
for 25 channels.

Figure 6b shows the value ranges of weighting factors in each channel during the
iteration of our algorithm. As the channel number increased from 1 to 25, the signal pattern
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of each channel varied. Meanwhile, the weighting factors of each channel showed an
increasing trend along the channel axis.

4.1. Time-Domain Analysis
4.1.1. Time-Domain Analysis for Extracted Signals

Figure 7a shows the original data in channel no. 1, which is the input D matrix (data
matrix) of de-noising algorithms. Figure 7b–f show the extracted pulse wave signals by
five de-noising methods, which are the computed low-rank matrices. Compared with
traditional wavelet transform and VMD methods, RPCA based methods, particularly the
proposed and PRCA methods, had better performance on the feature extraction of pulse
wave signals from multiple cycle data. Furthermore, our algorithm outperformed RPCA in
terms of accurate amplitude peaks.
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Figure 7. Original and extracted signals from five de-noising algorithms in sorted channel no. 1.
(a) Original signal; (b) wavelet transform; (c) variational mode decomposition (VMD); (d) robust
principal component analysis (RPCA); (e) weighted robust principal component analysis (WRPCA);
(f) cross-channel DWRPCA (proposed method).

The de-noising and feature extraction effects shown in Figure 8 were similar to channel
no. 1. RPCA-based algorithms could retain more information with significant de-noising
performance. It is worth noting that there was a slight jitter of key physiological point P1 in
the original signal. All algorithms could successfully remove the jitter and restore the signal’s
physiological information.

Figure 9 shows the original and extracted signals from five de-noising algorithms in
channel no. 17. Obviously, the signal-to-noise ratio (SNR) of the original signal was low. Wavelet
transform and VMD could not eliminate the noise well. On the contrary, RPCA eliminated
some informative signals, while WRPCA caused distortion in some cycles (see the red curve
flattening in subfigure WRPCA).
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Figure 9. Original and extracted signals from five de-noising algorithms in channel no. 17 (low
energy). (a) Original signal; (b) wavelet transform; (c) VMD; (d) RPCA; (e) WRPCA; (f) cross-channel
DWRPCA (proposed method).
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Figure 10 shows the results in channel no. 25. Similarly to channel no. 17, RPCA
eliminated some informative signals mixed with noises. The de-noising effect of wavelet
transform and VMD was not obvious, while RPCA overprocessed the signal. WRPCA
distorted the signal slightly and was inferior to the proposed method.
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Figure 10. Original and extracted signals from five de-noising algorithms in channel no. 25 (minimum
energy). (a) Original signal; (b) wavelet transform; (c) VMD; (d) RPCA; (e) WRPCA; (f) cross-channel
DWRPCA (proposed method).

4.1.2. Time-Domain Analysis for Extracted Noise

Figure 11a shows the reference noise gauged in the time domain. Figure 11b–f show
noises extracted by five de-noising algorithms in channel no. 25. The results suggest that
noises extracted by WRPCA and cross-channel DWRPCA had similar amplitudes to the
reference noise.

4.1.3. Non-Deviation Errors of Key Physiological Points

We selected the channel (containing several complete heartbeat cycles) with maximal
energy of each subject to evaluate the errors of key physiological points after five de-noising
methods. A total of 259 heartbeat cycles from 37 subjects were evaluated in this experiment.
Ventricular contraction P1(t1, h1), reflected wave P2(t2, h2), and the augmentation index
(AIx) were regarded as essential evaluation indicators for further calculation and analysis.

The time absolute error (TAE) and amplitude relative error (ARE) calculated before
and after de-noising are shown in Table 1. Results with small errors are shown in bold.
It can be seen that the cross-channel DWRPCA performed well, along with WRPCA, in
almost all TAEs and AREs. The ARE of h1 for the cross-channel DWRPCA and WRPCA
was much smaller than that for wavelet transform, VMD, and RPCA. Moreover, the ARE
for the cross-channel DWRPCA was 23.4% smaller than that for the WRPCA.
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Figure 11. Reference noise and noises extracted by five de-noising algorithms. (a) Reference noise; (b)
wavelet transform; (c) VMD; (d) RPCA; (e) WRPCA; (f) cross-channel DWRPCA (proposed method).

Table 1. Errors of key physiological points of data after five de-noising methods.

Method Wavelet VMD RPCA WRPCA Proposed Method

TAE (s)
t1 4.267 ± 1.964 3.000 ± 1.864 0.784 ± 0.854 0.784 ± 0.854 0.784 ± 0.854
t2 11.375 ± 4.498 14.286 ± 3.954 2.757 ± 2.910 2.730 ± 2.941 2.730 ± 2.891

ARE (%)
h1 8.330 ± 6.140 1.770 ± 0.880 1.090 ± 0.500 0.470 ± 0.410 0.366 ± 0.286
h2 16.760 ± 9.210 12.740 ± 6.810 2.760 ± 2.710 2.280 ± 2.740 2.348 ± 2.704

AIx 0.113 ± 0.056 0.1340 ± 0.073 0.020 ± 0.025 0.022 ± 0.027 0.022 ± 0.026

Since the key physiological data obeyed a normal distribution with homogeneous
variance according to the k–s test, we paired every two indices and compared each matched
pair with a two-tailed paired t-test. The t-test results in Table 2 show that AREs for the
proposed algorithm were significantly smaller compared to the others, especially VMD
and wavelet transform. At the same time, the AREs of h2 and AIx for RPCA and WRPCA
showed no significant differences. In addition, the TAEs for the cross-channel DWRPCA,
RPCA, and WRPCA were significantly smaller than those for the VMD and wavelet
transform methods.
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Table 2. p-Values of TAEs and AREs of key physiological points from the paired t-test.

p-Value Wavelet VMD RPCA WRPCA Our Proposed

TAE (s)

t1

Wavelet
VMD 0.0295 *
RPCA 0.0000 * 0.0000 *

WRPCA 0.0000 * 0.0000 * 1.0000
Proposed method 0.0000 * 0.0000 * 1.0000 1.0000

t2

Wavelet
VMD 0.0487 *
RPCA 0.0000 * 0.0000 *

WRPCA 0.0000 * 0.0000 * 0.9684
Proposed method 0.0000 * 0.0000 * 0.9684 1.0000

ARE (%)

h1

Wavelet
VMD 0.0000 *
RPCA 0.0000 * 0.0000 *

WRPCA 0.0000 * 0.0000 * 0.0000 *
Proposed method 0.0000 * 0.0000 * 0.0000 * 0.2086

h2

Wavelet
VMD 0.0954
RPCA 0.0000 * 0.0000 *

WRPCA 0.0000 * 0.0000 * 0.4464
Proposed method 0.0000 * 0.0000 * 0.5155 0.9114

AIx

Wavelet
VMD 0.2420
RPCA 0.0000 * 0.0000 *

WRPCA 0.0000 * 0.0000 * 0.7563
Proposed method 0.0000 * 0.0000 * 0.8065 0.9462

* p < 0.05, significant difference.

4.2. Frequency-Domain Analysis

From the power spectral density subfigure of reference noise (Figure 12a), frequency
bands of 6–7 Hz and 12–13 Hz should be considered the noise-dominant frequency bands
of PPS tactile sensors. Figure 12b shows that the traditional wavelet de-noising method
could not filter noise in these two frequency bands. The VMD method correctly found the
distribution of the noise (Figure 12c), but the noise in particular frequency bands was only
partly filtered out. However, all RPCA-based methods (Figure 11d–f) could successfully
filter out the main frequency bands of the noise. In addition, it is worth noting that our
method could eliminate the noise better in a lower-frequency band (0–2 Hz) compared with
other RPCA-based methods. Other noise frequency bands were strongly mixed with pulse
signals, which are considerably hard to eliminate.

4.3. Run-Time Complexities

The results of the time complexity experiment are shown in Figure 13. Each run-time
result was the total time for all subject trials. As the total run time of the cross-channel
DWRPCA and RPCA algorithms was substantially lower compared to other algorithms,
the y-axis is demonstrated on a log scale. The run-time result of the cross-channel DWRPCA
does not include the CNN model training time, since the model no longer needs to be
updated when constructed for a specific sensor type. Owing to the dynamic adjustment of
weighting factors ω, the computational time complexity of the cross-channel DWRPCA
was strongly reduced and was even slightly lower than the conventional RPCA algorithm.
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Figure 12. Power spectral density of reference noise and extracted noise. (a) Reference noise;
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method). The y-axis is in a log scale.
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5. Discussion

This paper proposed a cross-channel dynamic weighting RPCA algorithm to im-
prove the de-noising performance of a multi-channel pulse wave processing procedure.
Wavelet transform, VMD, RPCA, WRPCA, and the proposed cross-channel DWRPCA were
evaluated for 3DPI noise removal performance with time-domain and frequency-domain
analysis, run-time complexity analysis, and non-deviation error evaluation.

The de-noising results show that the RPCA-based methods are better than the tra-
ditional wavelet transform and VMD methods, whereby smooth and consistent periodic
signals were extracted from the original signal at every energy level (see Figures 6–9). Since
the energy distribution of noise is mixed with that of the physiological signal, the results
processed by the traditional methods are not much different from the original ones. While
the noise is always random in tactile sensors, we strengthen the periodicity of the signal
by segmenting and aligning it by heartbeat cycles, which enables RPCA-based method to
better de-noise the original signal.

Compared with the cross-channel DWRPCA and WRPCA, RPCA overprocessed the
signals and reduced the amplitudes of extracted signals, even approaching a straight line
in Figure 10d. In the cross-channel DWRPCA and WRPCA, the weighted nuclear norm
(WNN) replaced the nuclear norm used in RPCA to apply different thresholds for different
features. This WNN technique prevents the main features of the pulse signal from being
removed.

Furthermore, by applying the corresponding CSF to different channels, the weighting
factors estimated in the cross-channel DWRPCA were smaller compared to the WRPCA in
sensor channels with relatively low signal energy, thus performing better (see Figures 9 and 10).
Notably, the CSF values were predicted from our custom nine-layer CNN. The CNN structure
was basic but decent enough for this study, and we can naturally expect that different sensor
types require different neural network designs for appropriate CSF estimation. In brief, the
basic CNN model used in this paper is one of the solutions for CSF estimation and can be
developed in further studies.
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The non-deviation errors of key physiological points revealed that, with different
individuals and heartbeat cycles, the TAEs and AREs of the cross-channel DWRPCA and
WRPCA algorithm were significantly smaller compared to other algorithms. This result
indicates that the physiological information of these two methods was relatively less distorted.
In the analysis of noise comparison, we found that the amplitude of the noise extracted by
RPCA (Figure 11d) was not constant, indicating that some of the signal features were still
mixed with noise. Moreover, a time complexity experiment was conducted to evaluate the
total run time required by our algorithms. Our method was the least time-consuming in this
experiment since the dynamic weighing technique could save compute time.

Overall, the proposed cross-channel DWRPCA achieved better performance than
other well-known algorithms through several evaluation studies, such as evaluation in
the time and frequency domains. There exist hardware and software modules for de-
noising in a standard multi-channel sensor system; however, for the reasons mentioned
earlier, it is difficult to eliminate noise that is mixed with the signal. Despite not being
the focus of this paper, a redesigned hardware is expected to fundamentally improve
de-noising performance and deserves further study. Now that the system has output the
noise mixed with signal, this study makes a novel contribution by proposing and verifying
a generalizable de-noising method considering inter-channel correlation.

A limitation of the current research is the relatively small sample size, and some sharp
noises (e.g., the jitter in Figure 7) were rarely collected. Since RPCA-based algorithms are
very good at removing such sharp noises in image processing [40], in follow-up studies,
we would like to quantitatively evaluate the effect of the proposed method on removing
these kinds of noise in multi-channel physiological signals. In addition, various wave-
form signals with different physiological features or at different measurement locations
(e.g., carotid artery) should be evaluated in the future to verify the generality of the pro-
posed method. Nevertheless, the present study is the first step in determining the generality
of the cross-channel DWRPCA, applied to signals collected from both healthy and hyper-
tensive subjects. Given that energy distribution differences are ubiquitous in multi-channel
tactile sensors [6,8,9], which are used for the weight calculation of the proposed method,
the positive results of this study provide confidence for future studies on the de-noising of
different kinds of physiological signals.

6. Conclusions

This study proposed the cross-channel DWRPCA algorithm for de-noising multi-
channel arterial pulse signals. A channel-scaled factor technique is used to manipulate the
weighting factors of WRPCA. This channel-scaled factor can adjust the weights among
the channels according to their signal patterns, optimizing the feature extraction in multi-
channel signals. By assigning weights of different channels, the noise mixed with the
physiological signal can be eliminated quantitatively without signal distortion. The results
of a series of performance evaluations in the time and frequency domains reveal that,
compared with other existing de-noising algorithms such as wavelet transform, VMD,
RPCA, and WRPCA, the proposed cross-channel DWRPCA could achieve better de-noising
performance with less time consumed.

Therefore, a complete multi-channel pulse wave processing system was constructed
and recommended with the novel de-noising algorithm. The system includes data trunca-
tion, baseline wandering removal, cycle alignment, the de-noising algorithm, and signal
reconstruction. The outcome data are preferable for future analytical research with less
noise and distortion.

In short, the proposed cross-channel DWRPCA algorithm is recommended for radial
arterial pulse acquisition and analysis systems to ensure the quality of the extracted pulse
signal. Furthermore, the idea of this algorithm by assigning weights to different channels can
benefit other multi-channel physiological signal de-noising and feature extracting fields.
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