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Abstract: Siamese trackers have achieved a good balance between accuracy and efficiency in generic
object tracking. However, background distractors cause side effects to the discriminative represen-
tation of the target. To suppress the sensitivity of trackers to background distractors, we propose
a Double Branch Attention (DBA) block and a Siamese tracker equipped with the DBA block named
DBA-Siam. First, the DBA block concatenates channels of multiple layers from two branches of the
Siamese framework to obtain rich feature representation. Second, the channel attention is applied to
the two concatenated feature blocks to enhance the robust features selectively, thus enhancing the
ability to distinguish the target from the complex background. Finally, the DBA block collects the
contextual relevance between the Siamese branches and adaptively encodes it into the feature weight
of the detection branch for information compensation. Ablation experiments show that the proposed
block can enhance the discriminative representation of the target and significantly improve the
tracking performance. Results on two popular benchmarks show that DBA-Siam performs favorably
against its counterparts. Compared with the advanced algorithm CSTNet, DBA-Siam improves the
EAO by 18.9% on VOT2016.

Keywords: object tracking; Siamese framework; self-attention mechanism

1. Introduction

Generic object tracking is a fundamental task in the field of computer vision, with
a wide range of application needs in the fields of monitoring, automatic driving [1,2],
surgical detection [3], posture recognition [4], and industrial measurement [5]. In recent
years, many excellent achievements emerged in the visual object tracking task, but this
task remains challenging due to the impact of external factors, such as target deformation,
environmental illumination, and background disturbance. These adverse factors damage
the feature representation of objects, making it difficult for trackers to distinguish the target
from the background distractors, resulting in misdetection.

To enhance the feature representation of objects, the majority of current tracking
algorithms rely on the neural network to obtain fine target features [6–8]. Benefiting from
the strong information extraction capability of the neural network, visual object tracking
has made rapid progress in recent years. Among them, the Siamese framework proposed
by Betty [9] in 2016 has achieved a good balance between accuracy and efficiency. It uses
the same set of network parameters to extract the deep features of a given target and search
inputs, then locates the target by calculating the cross-correlation similarity between the
two. The core of this framework is to transform the tracking problem into the template
matching problem. Therefore, the template is not restricted by the training data, making
the Siamese framework universal in object tracking. However, the background distractors
bring side effects to the discriminative representation of the target, and the effects are hard
to suppress. It is because the Siamese framework follows the principle that the target
within the search region shows substantial feature similarity to the given target, while
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the background shows weak feature similarity. Some background distractors may also
produce features similar to the given target, thus leading the tracker to judge them as targets.
Fortunately, these background distractors produce significant differences from the given
target in some detail features. It would be easier to distinguish the target from distractors
by performing similarity calculations for features that produce differences. However, the
changeable tracking scenarios are challenging to determine which feature can produce
differences in the current tracking scenario. To obtain these features and add them to the
calculation of distinguishing target from background distractors, we need to expand the
range of feature representation.

Many strategies have been used to obtain a rich feature representation in the Siamese
framework. Some algorithms increased the amount of input information. DSiam [10]
processed the characteristics of a given target, the current search image, and the previous
search image in one prediction by integrating the historical target features to build a rich
target template information database. It had a good treatment of the deformation problem,
but the distractor problem remains. DaSiamRPN [11] added negative samples contain-
ing distractors to the training data, facilitating network learning about handling similar
negative samples, but it required a large amount of additional training data from other
domains. Other algorithms obtained a richer feature representation by changing the net-
work structure. SiamRPN [12] extracted the features of the search regions of different scales
and shapes through the region proposal network (RPN) and indirectly obtained the target
shape information through the similarity calculation. Similar to DSiam, it only has a good
effect on the target deformation problem. In addition, SiamDW [13] and SiamRCR [14]
enriched feature representation by refining the current features. SiamDW obtained deeper
pattern information to fit complex tracking objects by increasing the depth of the network.
SiamRCR added a regression branch to adjust for features dynamically against the sam-
ples. SA-SIAM [15] used two sets of Siamese networks to obtain semantic and appearance
features to enrich the variety of input features. The similar SPM [16] also described the fea-
tures as two types, namely coarse and fine representations. The difference is that SPM uses
a single Siamese network and a smaller number of parameters. Since these algorithms do
not consider background distractors suppressing, they cannot advance the discriminative
representation, though abundant features have been obtained.

To suppress the sensitivity of trackers to background distractors, we propose a Double
Branch Attention (DBA) block to advance the discriminative representation for Siamese
tracking. It selects the features that the current tracking scenario focuses on from rich feature
representations and then selectively enhances and effectively integrates them. First, to
obtain a rich feature representation, the DBA blocks concatenate channels of multiple layers
of backbone. Second, the attention mechanism acts on two branches of the Siamese structure
to separately compute for channel self-attention, which achieves selective enhancement
of the target and detection branches. Finally, the enhanced features of the two branches
are fused by cross-correlation computation. Furthermore, we associate two branches to
engage the target information in the procession of feature expression in the detection branch
to highlight the features related to targets. To achieve end-to-end tracking, we propose
a Siamese tracker equipped with the DBA block named DBA-Siam. Experiments show that
DBA-Siam achieves advanced results on UAV123 [17] and VOT [18,19] benchmarks.

2. Related Work
2.1. Siamese Trackers

In recent years, the trackers based on the Siamese framework have many advanced
proposals. Full convolution trackers, such as SiamFC [9] and SiamDW [13], directly predict
the target location through the similarity map and obtain a rough target bounding box with
a fixed aspect ratio. Region proposal trackers, such as SiamRPN [12] and SiamRPN++ [20],
feed the similarity map into the classification and regression branches and obtain a more
accurate bounding box through the region proposal network. Compared with full con-
volution trackers, the application of the region proposal network makes trackers well fit
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the shape of the target and has fine effectiveness in dealing with the target deformation
problem. Mask trackers, such as SiamMask [21], add a mask branch to the region proposal
tracker to provide pixel-level refinement masks, which are more accurate than bounding
boxes. However, they need a lot of extra semantic segmentation training data, and the
increased computational cost has a negative impact on tracking efficiency.

To achieve more accurate tracking effects at a low computational cost, we chose the
region proposal tracker as the baseline tracker to carry the proposed DBA block. The
baseline tracker consists of a feature extraction network and a region proposal network.
The feature extraction network φ extracts the feature information of the target z and the
search input x, respectively, and both of them share the same network parameters.

The feature information φ(x) and φ(z) are cross-correlated to obtain a similarity
measure g(x, z):

g(x, z) = φ(x) ? φ(z) (1)

where ? represents a cross-correlation operator. The similarity measure g(∗, ∗) expresses
the similarity between the target and the proposal region of the search input, which
reflects the possibility that the proposal region on the search input contains the real target.
The similarity measure g(∗, ∗) is fed into the Cls_head and Loc_head to generate dense
classification responses cls and regression responses loc.

[cls, loc] = [Cls_head(g(x, z)), Loc_head(g(x, z))] (2)

The classification responses are responsible for the pixel classification to obtain the
approximate location of the target, and regression responses are used to refine the size of
the bounding box.

2.2. Attention Mechanism

The attention mechanism [22,23] is a common strategy to advance feature representa-
tion to suppress background distractors. Its principle is to derive feature weights from the
feature information to highlight robust features dynamically. Recently, attention mecha-
nisms have been introduced into Siamese-based trackers to improve tracking performance.

MemTrack [24] applied the attention mechanism to the target features of historical and
current frames, enhancing the target representation by integrating features from previous
targets. DenseSiam [25] and RASNet [26] proposed attention blocks in the target branch
to refine target features, generating reliable response maps to the deformed target. These
algorithms focus on the target branch of the Siamese architecture, where the role of the
attention mechanism is to weight regions of the target in different channels to find and
focus on regions of interest that can describe the essential characteristics of the target. The
focused features can still guide the network to the target when the target is deformed in
long-distance tracking.

The proposed algorithm is structurally different from the above algorithms. These
algorithms were designed to find the features that describe the essential properties of the
target or the tracking scene, so they do not need to pay attention to too many channels and
layers. However, we aim to find features that make background distractors differ from
the target, which may be distributed across partial channels at multiple layers, responding
to specific properties of the object. This idea forced us to include features of channels of
multiple layers as input to attention blocks to obtain more alternative features.

In the Siamese framework, search inputs contain more background regions and similar
distractors than the target, so the detection branch may focus more on the feature channels
that generate variability. To prevent the detection branch from losing attention to the
feature reflecting the essential properties of the target during training, we compensated the
detection branch with attention information from the target branch to preserve the essential
information of the target.
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3. Proposed Method

In this section, we introduce the details of the DBA block and how it combines with
the Siamese framework. The DBA-Siam is a Siamese tracker equipped with a DBA block,
whose structure is shown in Figure 1.
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Figure 1. The schematic diagram of DBA-Siam. It includes Input, Feature Extraction Network,
Double Branch Attention block, and Region Proposal Network where ? stands for cross-correlation
operation. The template frame contains a single target and part of the background, and the detection
frame is the video frame that needs to search for the target.

3.1. Overall Overview

In the Siamese framework, the feature extraction network extracts the target and
search inputs. With the increase of network layers, it calculates deeper and deeper features.
We refer to the processing method of Siamban [27], which uses the features of the last three
layers on the two Siamese branches as the information to be processed. The proposed DBA
block performs channel concatenation of these features and weights them by attention
computation to selectively enhance layers and channels. In addition, the channel self-
attention matrix of the target branch is used to compensate the detection branch to ensure
the tracker’s ability to recognize the target.

3.2. DBA Block

For most tracking scenes, there are significant semantic gaps between target and
background, so the deep features of the tracking network are peculiarly prone to be trained
to pattern features of the semantics, making the tracker challenging to distinguish the target
from background distractors with the same semantics. Thus, the proposed DBA blocks
fuse feature information of the target branch and the detection branch at multiple layers,
enabling the tracker to focus on both deep features and shallow features of the target and
background distractors.

The channel attention mechanism demonstrates that equal treatment of features across
all channels would hinder the network’s power of representation because each channel
responds to a specific feature type. For example, for deep features that can reflect object
category information, each channel generally responds to a specific semantics; for shallow
features that can reflect object detail information, each channel may respond to a specific
shape structure. The features we need that can produce variability of the target and the dis-
tractors may exist on some channels of a certain layer, while other channels in this layer con-
tribute less. Treating all channels equally may drown the information in these channels that
produce variability in the average calculation. Thus, the proposed DBA block focuses on
channels of multiple layers and hopes to assign dynamic weights to these channels through
attention calculation to highlight channels that produce discriminative representation.

In summary, the proposed DBA block extends the attention block into a two-branch
form combined with the Siamese framework. Its purpose is to selectively enhance features
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of the two branches based on the current tracking task to enhance channels that can
produce discriminative representation. In contrast to attention blocks focusing on channels
or regions, we focus on three aspects of the tracker structure: layers, channels, and branches.
For the different layers of each branch, we hope to determine which layer of features reflect
the difference between distractors and the target according to the current tracking task;
for channels of a specific layer, we hope to enhance the feature channels beneficial to
target recognition while reducing the distractor of the invalid feature channel; for the
two branches of the Siamese framework, we hope that the detection branch maintains the
ability to recognize the target when distinguishing the target from background distractors.
According to these requirements, we proposed the DBA block, as shown in Figure 2.
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Figure 2. Schematic diagram of the proposed DBA block. The module consists of two parts: Channel-
wise Concatenation and Layer-Channel Self-attention.

Specifically, the DBA block takes the feature maps of multiple layers of the two
branches as input and outputs modulation features by applying the channel attention
mechanism. The whole process includes channel-wise concatenation and layer-channel
self-attention calculation. Among them, channel-wise concatenation gathers channels of
multiple layers, so the layer-channel self-attention calculation can simultaneously calculate
the attention of channels of multiple layers only by using the channel attention mechanism.
To enable the detection branch to maintain the ability to identify the target’s features, we
integrate the channel self-attention matrix of the target branch into the detection branch.
Finally, the similarity measure obtained from the cross-correlation calculation is output to
the subsequent region proposal network for classification and regression.

3.2.1. Channel-Wise Concatenation

We extracted the feature maps of the last three layers of the feature extraction network,
with the three layers of two branches represented as L3(x), L4(x), L5(x), L3(z), L4(z), and
L5(z). We perform channel-wise concatenation on them:

L(x) = Cat(L3(x), L4(x), L5(x)) (3)

L(z) = Cat(L3(z), L4(z), L5(z)) (4)

To ensure that each layer of features has the same importance in attention calcu-
lation, L3(∗), L4(∗), and L5(∗) are adjusted to the same thickness, respectively, include
256 channels. L3(∗) and L4(∗) are down-sampled to keep the same image size as L5(∗).
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Figure 2 shows the details of channel-wise concatenation and subsequent
attention calculation.

3.2.2. Channel Self-Attention

We calculate the channel self-attention for the L(z) ∈ R3C × Hz× Wz and L(x) ∈
R3C × Hx× Wx . For the target branch, we use three independent convolution layers with
1 × 1 kernels to generate the query feature QZ, the key feature KZ, and the value feature
VZ. Then QZ, KZ, and VZ are stretched to form coded data QZ

′, KZ
′, and VZ

′, in which QZ,
KZ, VZ ∈ R3C × Hz× Wz , QZ

′, KZ
′, VZ

′ ∈ R3C × N, and N = Hz ×Wz.
A channel self-attention matrix Azsc ∈ R3C ×3C is generated by calculating the sim-

ilarity between the query feature QZ and the key feature KZ. The specific method is to
calculate matrix multiplication for QZ

′ and KZ
′ and apply the softmax operation to it to get

a similarity measure:
Azsc = softmax(QZ

′KZ
′T) (5)

We perform channel-wise concatenation on three layers, so Azsc expresses the weight
information of the channels of three layers. The channel self-attention matrix is used as
weights to guide the rearrangement of the value feature VZ, and then the new value feature
is superimposed on the stretched inputs Z ∈ R3C × N as residuals to form attention features
Fzsc ∈ R3C × N:

Fzsc = αAzscV′ + Z (6)

where α is a scalar parameter. At last, the attention feature Fzsc is rearranged to the original
size 3C × Hz ×Wz.

3.2.3. Information Compensation

In the channel self-attention mechanism mentioned above, we take the similarity
between the query feature Q and the key feature K as the weight to guide the weighted
summation of the value feature V. Q, K, and V are different from each other but come from
the same input L(∗). This channel self-attention mechanism tends to enhance channels with
stronger self-associations, namely the channels that remain steady when the background
provides distractors. The branches of the Siamese framework share network parameters and
structure, so their channels show one-to-one correspondence. Theoretically, their channel
self-attention should also show a similar relationship. However, the calculations for the
two branches are independent. For the template branch, the attention mechanism enhances
the channel reflecting the essential attributes of the target because the template image only
contains a single target. For the detection branch, the attention mechanism is dedicated
to making the real target different from the background for efficient recognition, so it will
enhance the channel that distinguishes the target from all the distractors, including similar
objects. To avoid the detection branch losing focus on the target features in distinguishing
background distractors from targets, we provide the target branch’s channel self-attention
matrix Azsc as a clue to the detection branch, guiding the weighted superposition of Vx
with the fusion of the channel self-attention maps of two branches. Specifical, the attention
feature Fxsc of the detection branch is affected by the two branches’ layer-channel self-
attention Azsc and Axsc:

Fxsc = α(Azsc + Axsc)V′/2 + X (7)

where α is a scalar parameter and X ∈ R3C × N is the stretched inputs of the
detection branch.

Finally, we calculate the cross-correlation of the modulation features Fzsc and Fxsc of
the two branches. The similarity measure g(x, z) is input into the region proposal network
for subsequent location.

g(x, z) = Fzsc ? Fxsc (8)
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4. Results

This section introduces the results of DBA-Siam on UAV123 and VOT benchmarks
and compares them with advanced tracking algorithms. To prove the effectiveness of
the proposed block, we conducted ablation experiments and analyzed the effects of the
DBA block. Additionally, we visualize the tracking results and analyze the performance of
DBA-Siam in some challenging video sequences.

4.1. Experimental Details

In the experiment, we use the pre-training parameters provided by SiamRPN to
initialize DBA-Siam and freeze the first three backbone networks to train the parameters of
the target branch of the DBA block. Then we freeze the target branch and train the detection
branch on the selected challenging video sequences of the training data. Training data
includes COCO [28], VID [29], and YouTube-VOS [30]. We tested DBA-Siam on an NVIDIA
GTX 1660 with 6GB memory.

4.2. Algorithm Comparison

We compared the proposed tracker DBA-Siam with the advanced trackers on UAV123
and VOT benchmarks. The baseline tracker is SiamRPN [12].

4.2.1. UAV123 Benchmark

UAV123 [17] contains 123 image sequences that are collected by a low-altitude un-
manned aerial vehicle (UAV). The targets in these images have a tiny size which makes
them challenging for tracking. Accuracy and Precision are used to evaluate the perfor-
mance of the tracker. Accuracy measures the success rate by calculating the ratio of video
frames whose Intersection over Union (IoU) between the ground truth and the predicted
bounding box exceeds a given threshold. The larger the Accuracy, the better the tracker.
Precision measures the location precision by calculating the ratio of the video frames whose
distance between the center of the ground truth and the center of the predicted bounding
box exceeds a given threshold. The larger the Precision, the more accurate the tracker.
Typically, the threshold distance is set to 20 pixels.

As shown in Table 1, among these advanced algorithms, DBA-Siam achieves top
Accuracy. DBA-Siam achieves a Precision score of 0.792, which is close to the best score
of DaSiamRPN, while outperforming the DaSiamRPN on Accuracy with a gain of 3%.
Although the two methods have similar performance results, DBA-Siam needs no training
negative instances from other fields, which saves training expenses. In addition, DBA-Siam
surpasses the algorithm ARCF that is proposed for UAV images, with 28.5% and 18.2%
improvement on Accuracy and Precision, respectively.

Table 1. Results on UAV123 benchmark. Red fonts indicate the top tracker. ↑ indicates that the larger
the parameter value, the better the tracker performance.

Accuracy ↑ Precision ↑
SiamFC [9] 0.447 0.681
ARCF [31] 0.470 0.670

STAPLE_CA [32] 0.425 0.597
STRCF [33] 0.457 0.627
CCOT [34] 0.409 0.659
CFNet [35] 0.428 0.680

SiamRPN [12] 0.527 0.748
ECO [36] 0.525 0.741

ECOhc [36] 0.472 0.660
DaSiamRPN [11] 0.586 0.796

Ours 0.604 0.792
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4.2.2. VOT Benchmark

VOT2016 [18] and VOT2019 [19] are widely used visual object tracking benchmarks.
Each tracking benchmark contains 60 sequences with various challenging factors, and part
of the video sequences is identical across the two benchmarks. Each frame in the video
sequences is calibrated with the bounding box of a single target object. VOT benchmark
adopts Accuracy (A), Robustness (R), and Expected Average Overlap (EAO) as measure-
ment standards. A evaluates the tracker based on the IoU of the ground truth and the
predicted bounding box. The larger parameter indicates the higher accuracy of the tracker.
R is used to evaluate the stability of trackers. The larger the R, the worse the stability of the
tracker, the easier it is to lose the target. EAO takes the overlap rate of bounding boxes and
the re-initialization time after the tracker loses the target into account. EAO evaluates the
overall performance of trackers. The larger EAO parameter indicates a stronger integrated
strength of the tracker.

We tested DBA-Siam on the VOT benchmark and compared it with the advanced
trackers. As shown in Table 2, the proposed tracker achieves the best performance on A
and EAO on VOT2016 and VOT2019. It shows that the proposed tracker has the highest
accuracy for target positioning and the strongest overall performance.

Table 2. Results on VOT benchmark. Red fonts indicate the top tracker. The blank boxes mean
that these algorithms did not announce the results. ↑ indicates that the larger the parameter value,
the better the tracker performance. ↓ indicates that the smaller the parameter value, the better the
tracker performance.

VOT2016 VOT2019

A ↑ R ↓ EAO ↑ A ↑ R ↓ EAO ↑
Staple [37] 0.544 0.378 0.295

DeepSRDCF [38] 0.528 0.326 0.276
SiamFC [9] 0.532 0.461 0.235 0.477 0.687 0.204

SiamRPN [12] 0.560 0.260 0.344 0.517 0.552 0.224
DaSiamRPN [11] 0.610 0.220 0.411

ECOhc [36] 0.540 1.190 0.322
CCOT [34] 0.539 0.238 0.331 0.495 0.507 0.234

FlowTrack [39] 0.578 0.241 0.334
MemTrack [24] 0.530 1.440 0.273
SA-SIAM [15] 0.540 1.080 0.291 0.559 0.492 0.253

S_SiamFC 0.487 0.261 0.328 0.459 0.577 0.207
CSTNet [40] 0.571 0.219 0.349
TADT [41] 0.516 0.677 0.207

Gasiamrpn [42] 0.548 0.522 0.247
CSRDCF [19] 0.496 0.632 0.201

Gasiamrpn [19] 0.548 0.522 0.247
SiamMsST [19] 0.575 0.552 0.252

Ours 0.634 0.242 0.415 0.587 0.602 0.261

Compared with the CSTNet and SA-Siam, DBA-Siam is inferior on R. It is because
DBA-Siam uses the fixed target branch features for more efficient tracking, which leads to
relocating less efficiently. Even so, our overall performance is better. Specifically, DBA-Siam
outperforms SA-Siam on EAO with gains of 42.6% on VOT2016 and 3.5% on VOT2019 and
outperforms CSTNet on EAO with a gain of 18.9% on VOT2016.

Thanks to the equipped DBA block, DBA-Siam surpasses the baseline SiamRPN, with
20.6% and 16.5% EAO improvement on VOT2016 and VOT2019.

4.3. Ablation Experiment

The DBA block is the core component of the proposed tracker DBA-Siam. To evaluate
its effectiveness, we compared the version without this block with the version with this
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block. We used ResNet50 as the backbone network to conduct ablation experiments on the
DBA block. The two networks use the same pre-training parameters.

4.3.1. Data Experiments

To validate the effect of the proposed DBA block in dealing with the distractor problem,
we show the number of frames that the two trackers lost targets on challenging sequences
containing background distractors of the VOT dataset. We argue that the fewer lost frames
indicate the stronger ability of trackers to handle background distractors.

Figure 3 shows the number of lost frames of two trackers and samples of image
sequences with outstanding effects, in which the target is marked by a red bounding box.
In these samples, similar background distractors exist near the target, such as players in
sequence Basketball. The tracker with the DBA block loses fewer frames in these image
sequences, which indicates that the DBA blocks have a positive effect on dealing with frame
dropping caused by similar background distractors.
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Table 3 shows the comparison of evaluation results between the two trackers on three
datasets, the tracker with the DBA block achieves superior tracking results on different
datasets, which shows that the proposed block has a positive effect on improving tracking
accuracy. Compared with VOT2016, our promotion effect on VOT2019 and UAV123 is
not obvious because the proposed DBA block only aims at the background distractors
problem and lacks the ability to solve other challenges in these data sets, such as tiny
targets’ recognition and relocation of the lost targets. Nevertheless, we still achieved
a slight improvement in the effect. The detection speed shown in Table 3 is tested on
a computer equipped with an NVIDIA GTX1660 graphics card. Although the proposed
tracker achieved performance improvement, it increased the time cost. Nevertheless, it can
still work at 30FPS in real-time.

Table 3. A comparison of evaluation results of DBA-Siam without DBA block and DBA-Siam with
DBA block on multiple datasets (items with better parameters are marked in red). ↑ indicates that
the larger the parameter value, the better the tracker performance. ↓ indicates that the smaller the
parameter value, the better the tracker performance.

DBA Block VOT2016-EAO ↑ VOT2019-EAO ↑ UAV123-Accuracy ↑ UAV123-Precision ↑ Speed FPS ↑
0.344 0.260 0.582 0.772 31.6√
0.415 0.261 0.604 0.792 30.93
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4.3.2. Visualization Experiments

We selected five image samples prone to low tracking accuracy from five challenging
video sequences for comparative experiments. Similar background distractors in these
samples interfere with the target feature representation. Figure 4 shows the predicted
bounding box and the response heat map of the compared trackers. Figure 4a–e shows
the search inputs of the samples, in which the red box indicates the ground truth, the blue
box indicates the prediction result of the tracker without the DBA block, and the green box
indicates the prediction result of the tracker with the DBA block. Figure 4a.1–e.1 are the
response heat maps of the tracker without the DBA block. Figure 4a.2–e.2 are the response
heat maps of the tracker with the DBA block. The response heat maps indicate the similarity
between the target and the search input. The larger the value of the point in the heat map,
the more similar the target and search input are.
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Figure 4. Response heat map of DBA-Siam without the DBA block and DBA-Siam with the DBA block
in five samples. The red bounding box represents the ground truth, the blue and green bounding
box respectively represents the prediction result of DBA-Siam without the DBA block and DBA-Siam
with the DBA block. (a–e) are the search inputs of the five samples. (a.1–e.1) are the response heat
maps of the tracker without the DBA block. (a.2–e.2) are the response heat maps of the tracker with
the DBA block.

The prediction box in Figure 4a–e shows that both trackers can identify the correct
target, while the predicted bounding box of the tracker with the DBA block has a larger
overlap area with the ground truth, thus positioning the target more accurately. The
response heat maps can reflect the reason for this result. For example, in the search input
Figure 4c,c.1 contains two purple areas, which shows that the tracker without the DBA block
has identified two proposal regions similar to the target ant, while Figure 4c.2 contains
one purple area and less blue area, which shows that the tracker with the DBA block
can distinguish the target ant from similar background ants. It can also be seen from the
prediction results in Figure 4c that the target location output by the tracker without the
DBA block contains the real target and a similar object, while the tracker with the DBA
block can locate the real target more accurately.

5. Discussion and Conclusions

To solve the problem of background distractors, we aggregate features that may
produce differences and selectively enhance features based on the current tracking task to
help distinguish the target from the distractors. For trackers of the Siamese framework, we
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designed the DBA block for adaptive feature fusion. It selectively enhances the features
of channels of multiple layers of the two branches through attention computation. For
unrestricted tracking tasks, the DBA block is adaptive to adjust the features of different
channels of layers according to the current tracking target and scene. In addition, we
explore how to combine the proposed DBA block with the Siamese framework to achieve
end-to-end tracking. Experiments on the UAV123, VOT2016, and VOT2019 show that
compared with the baseline tracker SiamRPN, DBA-Siam has superior tracking accuracy,
which shows that the DBA block has a positive effect on improving the performance of the
Siamese tracker.

Although the proposed block can enhance the ability of feature representation, it
is limited by the fixed template input, which makes the attention mechanism not fully
released. How to get richer template input and combine it with the DBA block needs
further research.
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