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Abstract: Accurate traffic prediction is crucial to the construction of intelligent transportation systems.
This task remains challenging because of the complicated and dynamic spatiotemporal dependency in
traffic networks. While various graph-based spatiotemporal networks have been proposed for traffic
prediction, most of them rely on predefined graphs from different views or static adaptive matrices.
Some implicit dynamics of inter-node dependency may be neglected, which limits the performance
of prediction. To address this problem and make more accurate predictions, we propose a traffic
prediction model named Time-Evolving Graph Convolution Recurrent Network (TEGCRN), which
takes advantage of time-evolving graph convolution to capture the dynamic inter-node dependency
adaptively at different time slots. Specifically, we first propose a tensor-composing method to
generate adaptive time-evolving adjacency graphs. Based on these time-evolving graphs and a
predefined distance-based graph, a graph convolution module with mix-hop operation is applied
to extract comprehensive inter-node information. Then the resulting graph convolution module
is integrated into the Recurrent Neural Network structure to form an general predicting model.
Experiments on two real-world traffic datasets demonstrate the superiority of TEGCRN over multiple
competitive baseline models, especially in short-term prediction, which also verifies the effectiveness
of time-evolving graph convolution in capturing more comprehensive inter-node dependency.

Keywords: traffic prediction; spatiotemporal network; graph convolutional network; time-evolving
graphs; graph generation

1. Introduction

In recent years, the rapidly growing number of vehicles in urban transportation
systems has raised huge challenges to society. Traffic congestion in the road network
increases the commuting time of residents. In addition, it brings additional loss to the
freight supply chain, which reduces the efficiency of economic activities and produces
more pollution [1]. To cope with these problems, constructing an efficient and convenient
transportation system is of great necessity. Traffic prediction, which aims to predict future
traffic states (e.g., traffic speed, traffic volume and traffic congestion index) in the road
networks based on historical observations, acts a crucial part in the intelligent transportation
system. Accurate prediction of traffic is the foundation of a wide range of real-world
applications, such as travel time estimation, route planning, traffic light management,
autonomous vehicle control and logistics distribution [2].

However, the tasks of traffic prediction remain challenging due to the complicated
spatial and temporal dependency in the road networks. On the one hand, there are
complex non-linear patterns in the time domain. The traffic conditions of a traffic node
may follow a similar periodic trend over different days, but may see anomalous fluctuation
in a short period. For example, as shown in Figure 1, the traffic speed of a main road
segment decreases during rush hours in the morning and evening, and increases back
to a normal level gradually. However, as indicated by the red dotted box, there is a
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dramatic drop in the afternoon of a day, which increases the difficulty of making accurate
prediction. On the other hand, traffic shows complicated spatial correlations. For example,
as shown in Figure 2, a traffic node usually has similar conditions to its neighboring nodes.
The traffic speed of a road segment may become slower because of the congestion at
its downstream road segment. Moreover, the traffic nodes that are not neighboring but
with similar road topology or in similar functional areas tend to share similar patterns.
Making accurate predictions requires comprehensive modeling of inter-node dependency.
Therefore, with the spatiotemporal relations mentioned above, the tasks of traffic prediction
are still challenging.
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Figure 1. Traffic speed of a traffic node on three consecutive days. The value of speed follows a
similar periodic trend on these days, but may see anomalous fluctuation in the short period indicated
by the red dotted box.
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Figure 2. Traffic speed of three neighboring traffic nodes on a day. The values of these three nodes
show strong correlations.

Extensive studies have been conducted on the tasks of traffic prediction. Early stud-
ies [3–5] employ statistical methods or shallow machine-learning methods, which are
limited in representation capability and thus have lower performance. With the emergence
of deep learning, methods based on Recurrent Neural Networks (RNN) and Convolutional
Neural Networks (CNN) are applied in traffic prediction to extract more complex spatial
and temporal features [6–10]. However, since CNNs can only process spatial traffic depen-
dency in a grid-based manner, Graph Convolutional Networks (GCN) [11] are introduced
to handle traffic in irregular road networks with non-Euclidean structures. This kind of
method aggregates information from selected neighbors according to a certain graph struc-
ture. More recently, integrating GCNs with other temporal models has become a paradigm
for traffic-related tasks, which is followed by a number of studies [12–17].



Appl. Sci. 2022, 12, 2842 3 of 16

Although existing approaches have achieved promising results, we find that the
dynamics of spatial dependency have been rarely considered. Most of the existing graph-
based works utilize one or more adjacency matrices to represent the connections among
traffic nodes according to predefined similarity relations from different perspectives, such
as road network distance [12,13], time-series similarity [18], edge-wise line graph [19] or
point of interest (POI) similarity [20]. Some works also use adaptive adjacency matrices
with trainable parameters [14,21]. However, these inter-node relations are all static, which
means that the spatial adjacency does not change along with time. Therefore, some implicit
dynamic patterns of spatial adjacency may be neglected, limiting the performance of the
spatiotemporal models.

In view of the limitations mentioned above, we aim to introduce dynamic representa-
tions into the adjacency graphs to achieve better prediction performance. In this paper, we
propose a general traffic prediction framework named Time-Evolving Graph Convolutional
Recurrent Network (TEGCRN), which takes advantage of time-evolving graph convolution
to capture the dynamic inter-node dependency adaptively at different time slots. The
contributions of our method can be summarized as follows:

• We construct time-evolving adjacency graphs at different time slots with self-adaptive
time embeddings and node embeddings based on a tensor-composing method. This
method makes full use of information shared in the time domain and is parameter-
efficient compared to defining an adaptive graph in each time slot.

• To model the inter-node patterns in traffic networks, we apply a kind of mix-hop graph
convolution that utilizes both the adaptive time-evolving graphs and a predefined
distance-based graph. This kind of graph convolution module is verified as being
effective in capturing more comprehensive inter-node dependency than those with
static graphs.

• We integrate the aforementioned graph convolution module with RNN encoder–
decoder structure to form a general traffic prediction framework, which allows it
to learn the dynamics of inter-node dependency when modeling traffic sequential
features. Experiments on two real-world traffic datasets demonstrate the superior-
ity of the proposed model over multiple competitive baselines, especially in short-
term prediction.

The rest of the paper is organized as follows. In Section 2, we review the related works
systematically and explain their relations with our work. Then we formulate the problem
and introduce the details of the proposed traffic prediction model in Section 3. After that,
we conduct experiments on real-world traffic datasets to evaluate the performance of the
proposed method in Section 4. In Section 5 we conclude this paper.

2. Related Work
2.1. Traffic Prediction Methods

The methods of traffic prediction have been extensively researched. Traditional meth-
ods view this task as a univariant time-series regression and forecasting problem, using
statistical signal processing models or classic machine-learning models, such as Auto-
Regressive Integrated Moving Average (ARIMA) [3,4], Kalman filtering [22,23], Vector
Auto-Regression (VAR) [24] and Support Vector Regression (SVR) [5]. However, these
methods heavily rely on the stationary assumption, so they have limited representation
space and can hardly capture the dynamics of real traffic. Meanwhile, they treat the se-
quences of different traffic nodes separately and therefore are incapable of utilizing the
information of spatial dependency.

With the emergence of deep-learning methods, some researchers employ CNN-based
and RNN-based models in the tasks of traffic prediction. Zhang et al. [8] proposed a
CNN-based residual network to model the citywide spatial correlations and predict the
region crowd traffic. Wu et al. [7] build a feature-level regression model with spatial and
temporal features captured by a 1-D CNN and two LSTMs, respectively, in different time
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scales. These works show the advantages of deep-learning methods in modeling nonlinear
spatiotemporal relationships.

More recently, to tackle traffic data in irregular road topologies with non-Euclidean
structures, graph neural networks have been widely used. Integrating graph networks
such as GCN with other temporal models to construct spatiotemporal graph networks has
become a new paradigm. We compare some typical works with our model and list the key
components in Table 1 to show the gaps. Li et al. [12] model the spatial dependency of
traffic with a diffusion process on the road distanced graph and replace the linear layer in
GRU with diffusion convolution operation. Yu et al. [13] propose the STGCN model, which
stacks temporal 1-D CNN with ChebyNet [25] alternately and conducts prediction in a
complete convolutional manner. Based on [13], Guo et al. [15] also add spatial and temporal
attention mechanisms to refine the correlations. Considering that the aforementioned works
limit the inter-node adjacency to predefined distance graphs, some works attempt to extend
the inter-node dependency to more views. Song et al. [16] design an augmented graph
with adjacency along both the spatial and temporal dimension, and capture these two
types of features with graph convolution synchronously. Following this idea, Li et al. [18]
further add the time-series similarity subgraphs into the spatiotemporal augmented graph.
Chen et al. [19] propose an attentive bicomponent GCN based on both the road distance
graph and its corresponding edge-wise line graph. Wu et al. [14,21] further equip graph
convolution with static adaptive adjacency graphs and apply dilated convolution in the
temporal dimension.

However, in the works mentioned above, the adjacency graphs of traffic nodes are
all static, and the graph convolutions are used to capture information in a fixed topology.
In this way, some implicit dynamics of the inter-node dependency may be neglected. In
contrast, our model takes advantage of evolving adjacency graphs at different time slots,
and learns the dynamic spatial dependencies together with sequential signal features.

Table 1. The comparison table of graph-based traffic prediction models.

Models
Graph Construction

for Inter-Node
Dependency

Inter-Node
Dependency Evolves

with Time?
Spatial Modeling Temporal Modeling

DCRNN [12] road distance graph # diffusion convolution 1 GRU

STGCN [13] road distance graph # ChebyNet CNN

ASTGCN [15] road binary graph # ChebyNet + attention CNN + attention

Graph-WaveNet [14] road distance graph +
adaptive graph # mix-hop GCN dilated CNN

STSGCN [16] spatio and temporal
augmented graph # JK-Net – 2

STFGNN [18]

spatio and temporal
and time-series

similarity augmented
graph

# JK-Net –

MRA-BGCN [19] road distance graph +
edge-wise line graph # GCN + attention GRU

MTGNN [21] adaptive graph #
mix-hop GCN +

residual
dilated CNN +

inception

TEGCRN (ours) road distance graph +
adaptive graph !

mix-hop GCN +
residual GRU

1 Diffusion convolution [12], ChebyNet [25], GCN [11], JK-Net [26] are different variants of graph neu-
ral/convolutional networks. 2 “–” in “Temporal Modeling” means the model has no separate temporal module
and process the temporal information along with the spatial module in “Spatial Modeling”.
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2.2. Graph Convolutional Networks

Graph convolutional networks have received extensive attention in recent years be-
cause of their capability for handling graph-structure data. Bruna et al. [27] generalize
the Fourier transform to graph signals and first apply trainable graph convolutions in
the spectral domain. Defferrard et al. [25] propose ChebyNet, which restricts the kernels
to Chebyshev polynomials and localizes the convolution operations. Based on this, Kipf
and Welling [11] further employ first-order approximation and propose the most popular
form of GCN, which simply conducts weighted aggregation directly in the neighborhood
defined by the graph. Veličković et al. [28] introduce an attention mechanism to learn the
weights between nodes. Li et al. [12] propose bidirectional diffusion convolution, which
can be regarded as the extended version of the model in [25].

It is demonstrated by some works that GCNs act as low-frequency filters and smooth
the signals on the graphs [29,30]. Too many layers and non-linear operations tend to lead
to the over-smoothing phenomenon and degrade performance [31]. Since spatiotemporal
networks are usually stacked by lots of layers or blocks, it is quite common that the inner
GCNs are shallow and the mix-hop operations are applied to aggregate information in
multi-scale receptive fields [21,26].

3. Proposed Method
3.1. Problem Preliminaries

A traffic network can be regarded as a weighted directed graph G(V , E , A). Here, V is
the set of N traffic nodes (i.e., sensors or road segments), E is the set of edges (i.e., directed
connections between traffic nodes), A ∈ RN×N is a certain type of weighted adjacency
matrix representing the proximity between each nodes pair, e.g., road distance graph.

The traffic features observed at time slot t are represented as the graph signals
Xt ∈ RN×F, where F is the number of traffic features of each node. For example, the
traffic features can be the traffic speed, traffic volume and congestion index of the road
segments or other traffic related parameters. Given a traffic graph G(V , E , A), the purpose
of traffic prediction is learning a model f to map the historical graph signals observations
of P time steps to the signals of the next Q time steps, which is denoted as:

[Xt−P+1, · · · , Xt]
f→ [Xt+1, · · · , Xt+Q]. (1)

3.2. Method Overview

Figure 3 illustrates the overview of our proposed method, which is referred to as
Time-Evolving Graph Convolutional Recurrent Network (TEGCRN). The model mainly
consists of three parts. First, the time-evolving adjacency graphs are generated through a
tensor-composing method using the adaptive embeddings of traffic nodes and time slots.
Then, the resulting adaptive graphs are combined with predefined static distance-based
graphs and employed in graph convolution module to capture the inter-node information.
Finally, the graph convolution modules with time-evolving graphs are used to replace the
fully-connected layers in GRU to form an integrated RNN encoder–decoder predicting
model. In each time step of the encoder–decoder, a different adaptive graph is selected
depending on the time of day. The key thought of this method is to learn the implicit
dynamics of spatial adjacency together with the traffic sequential features so as to capture
more detailed spatiotemporal information. In the following subsections, we will describe
each part in detail.
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Figure 3. Overview of the proposed model TEGCRN.

3.3. Generation of Time-Evolving Adaptive Graphs

As mentioned above, the spatial relationships among traffic nodes vary along with
time, so our aim is to model these dynamics adaptively using time-evolving adjacency
graphs. Moreover, we assume that the dynamics of the spatial adjacency also follow the
periodicity in a day. Thus, the same time slot on different days can share a graph. Previous
works [14,21] adopt matrix multiplication of trainable node embeddings to construct static
adjacency graphs. The obtained adaptive graphs are evaluated to be effective in capturing
global spatial information. To extend the adaptive graph to a time-evolving manner, a
simple idea is to directly assign a distinct set of node-embedding parameters to each time
slot. However, such a method may lead to a large number of trainable parameters, making
it hard to converge, especially when the number of traffic nodes N is large. To reduce the
number of model parameters, we employ a tensor-composing method similar to [32] to
generate the time-evolving adjacency graphs.

Suppose that a day is divided into Nt time slots, and the traffic network contains
N traffic nodes. We first construct three embedding matrices Et ∈ RNt×d, Es ∈ RN×d,
Ee ∈ RN×d and a core tensor C ∈ Rd×d×d, where d is the embedding dimension, d � N.
Specifically, Et represents the embedding matrix of different time slots in a day, Es represents
the embedding matrix of source nodes, Ee represents the embedding matrix of target nodes.
Tensor C builds connections among these embeddings and models the implicit factors
shared across time and space. All these embeddings and the core tensor are trainable and
randomly initialized. Next, a spatiotemoral tensor A′ ∈ RNt×N×N is calculated as the
following formula:

A′ = C×1 Et ×2 Es ×3 Ee, (2)

where ×i denotes the tensor mode-i product [33]. Specifically, the elements in A′ can be
denoted as

A′i,j,k =
d

∑
w=1

d

∑
v=1

d

∑
u=1

Cu,v,wEt
i,uEs

j,vEe
k,w. (3)

Then, non-linear transformation and normalization are applied to A′ to obtain the
tensor of time-evolving graphs Ate ∈ RNt×N×N :

Ate = so f tmax
(

LeakyReLU
(
A′
))

, (4)
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where the softmax normalization is operated in the last dimension. The l-th slice of Ate

along its first dimension Ate
l is the adaptive spatial adjacency graph of the l-th time slot in

a day.
With the approach above, we build connections between the representations of traffic

nodes and the representations of time slots through the calculations of tensor composing.
The resulting adaptive time-evolving graphs actually denote how much importance should
be attached to different node pairs in different time slot of a day when aggregating spatial
information in the road network. Later, these graphs will be used in the graph convolution
module to extract detailed spatial information.

3.4. Graph Convolution Module

A graph convolution module is used to capture spatial patterns by aggregating in-
formation based on the adjacency graphs. In our proposed model, we conduct graph
convolution with both the aforementioned adaptive time-evolving graphs and predefined
distance-based static graph. In this way, the static graph captures local patterns, and the
time-evolving graphs provide dynamic inter-node dependency from a global view as a
complement.

Following [12], we build a distance-based static graph As using thresholded Gaussian
kernel [34] as:

As
i,j =


exp

(
−

d2
vi ,vj

σ2

)
, dvi ,vj ≤ κ

0, others

, (5)

where dvi ,vj denotes the shortest directed distance from node vi to node vj in the road
network, σ denotes the standard deviation of these distances, and κ is the threshold to
control the sparsity of the graph.

As mentioned in the Section 3.2, in our proposed model the graph convolution op-
erations are integrated with an RNN structure. The recurrent manner in RNN inherently
expands the depth of the model. In fact, GCNs may suffer from performance degradation
due to the over-smoothing problem when the layers go deeper [31]. It is also argued that
the entanglement of information propagation and feature transformation in GCN may
limit the model performance [35]. By decoupling feature transformation with propaga-
tion and adding residual of input representation [36], or combining the representations of
multiple layers [26], these problems can be relieved to some extent. Motivated by these
ideas, we employ graph convolution operations in two steps: information propagation
and weighted mix-hop operation, similar to the method in [21]. First, for a certain type of
adjacency graph, the node information is propagated according to the graph topology and
the node representations of K hops are generated. Denote the origin node representation as
Hin ∈ RN×din , and the representation of the k-th hop H(k) is calculated as:

H(k) = (1− α)ÃH(k−1) + αHin, (6)

where α is a hyper-parameter to control the ratio of residual original information, Ã ∈
RN×N is the normalized form of the adjacency graph. Then, weighted mix-hop operation
is employed to obtain Hmix ∈ RN×dout using the propagated representations of all hops as
per the following formula:

Hmix =
K

∑
k=0

H(k)W(k), (7)

where H(0) = Hin, W(k) ∈ Rdin×dout is the learnable weighted transformation matrix.
For a time slot t, the corresponding index in a day is lt, graph convolution opera-

tions are applied using three graphs: the time-evolving graph in this time slot Ate
lt

, the

distance-based static graph As and its transposed one AsT . For As and AsT , asymmetric
normalization is applied with Ã = D̃−1(A + IN) and D̃ii = 1 + ∑j Aij. The time-evolving
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graphs have been normalized during generation. We further aggregate the mix-hop repre-
sentations of these three graphs to obtain the final output of the entire graph convolution
module Hout. For convenience, we briefly denote the calculations in this module as
Hout = Θ ∗G (Hin, Ate

lt
), where ∗G denotes the graph convolution operation, Θ represents

all the trainable parameters in a module. The static graph remains the same in all modules
so we omit its notation in the formula.

3.5. Temporal Recurrent Module

RNN is devised as a recurrent structure which processes input signals and updates
hidden states step-by-step. This kind of structure is suitable for combining with time-
evolving graphs to model the dynamics of spatial dependency. As is shown in Figure 3,
in each time step, a different adaptive graph is selected according to the time index in
a day. Then, following [12,19], we replace the matrix multiplication in GRU with the
graph convolution module introduced in the previous subsection. The structure of the
resulting recurrent unit is shown in Figure 4, which is referred to as Time-evolving Graph
Convolutional GRU (TGCGRU).

Figure 4. The structure of time-evolving graph convolutional gate recurrent unit.

For each time slot t, given the corresponding time-evolving graph Ate
lt

, the calculations
in TGCGRU are fomulated as follows:

rt = σ
(

Θr ∗G

(
Xt‖Ht−1, Ate

lt

)
+ br

)
,

ut = σ
(

Θu ∗G

(
Xt‖Ht−1, Ate

lt

)
+ bu

)
,

Ct = tanh
(

Θc ∗G

(
Xt‖(rt �Ht−1), Ate

lt

)
+ bc

)
,

Ht = ut �Ht−1 + (1− ut)� Ct,

(8)

where Xt ∈ RN×F, Ht ∈ RN×h denote the input traffic features and output hidden state
at time step t, respectively, h is the hidden size of TGCGRU. The notation ‖ denotes con-
catenation operation, σ(·) is the sigmoid function, and � denotes the Hadamard product.
rt ∈ RN×h and ut ∈ RN×h represent the reset gate and update gate, respectively. Θr,
Θu, ΘC are parameters for the corresponding graph convolution modules and br ∈ RN ,
bu ∈ RN , bC ∈ RN are trainable bias vectors. These parameters share all the time steps.

We stack multiple TGCGRUs to form an RNN sequence-to-sequence architecture [37]
for multi-step traffic prediction, as is shown at the top of Figure 3. On the decoder side,
an additional fully-connected layer is used to map the output hidden state of TGCGRU to
the output features. The output features of all time steps in the decoder are the predictions
we need. Both the embedding parameters for time-evolving graph generation and the
parameters in TGCGRU are trained together in an end-to-end manner. To relieve the
discrepancy in input distribution between the training and testing stage, the scheduled
sampling [38] strategy is applied. During training, the decoder takes as input either the
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ground truth with probability ε or the prediction of the previous step with probability 1− ε.
The probability of the i-th iteration εi is calculated as

εi =
τ

τ + exp
(

i
τ

) , (9)

where τ is a constant to control the speed of probability decay.

3.6. Example of the Prediction Process of TEGCRN

In this section, we will explain the entire process of TEGCRN and take the predic-
tion for traffic speed as an example. Given the historical speed observations of P steps
[Xt−P+1, · · · , Xt], the prediction targets are the speeds of the next Q steps. In this case,
Xt ∈ RN×F represents the speed of all the N nodes at time slot t and F = 1. As shown in
Figure 3, we first employ Equations (2) and (4) to generate tensor Ate and obtain the time-
evolving graphs of the corresponding time slots [Ate

lt−P+1
, · · · , Ate

lt
] and [Ate

lt+1
, · · · , Ate

lt+Q
]

for the encoder and decoder, respectively. Next, for each historical time slot, the speed
snapshot Xt and the corresponding time-evolving graph Ate

lt
are input to the TGCGRU

encoder step-by-step, as the calculations show in Equation (8). The graph convolution
operations in Equation (8) are formulated by Equations (6) and (7). The output in the last
step of the encoder is used to initialize the hidden state of the decoder. Then, following
the calculations similar to the encoder, in each step, the decoder takes the prediction of the
previous step as input and generates the speed predictions [X̂t+1, · · · , X̂t+Q] step-by-step.

4. Experiments and Discussion
4.1. Datasets

We evaluate the proposed model TEGRCN on two public real-world traffic datasets,
METR-LA and PEMS-BAY, which were released by Li et al. in [12]. METR-LA records
the traffic speed data collected from 207 sensors on the highways of Los Angeles County,
ranging from 1 March 2012 to 30 June 2012. PEMS-BAY records the speed data collected
from 325 sensors in the bay area by California Transportation Agencies, ranging from
1 January 2017 to 30 June 2017. The units of the speed data are both miles per hour.
Some basic statistics of these two datasets are listed in Table 2. Each sensor in the road
network is viewed as a traffic node. The numbers of the edges are counted according to the
distance-based static adjacency graphs. We can see that there is a relatively high proportion
of missing values in METR-LA while the counterpart in PEMS-BAY is almost negligible.
Following the data pre-processing procedures in [12], we set the interval between two time
steps to 5 min. Then, each dataset is split in chronological order, with 70% for training, 10%
for validation and 20% for testing. Z-score normalization is applied to the inputs.

In these two datasets, only the traffic speed in the road network is provided, so the
number of traffic features is F = 1. Take METR-LA as an example, the graph of traffic
network contains N = 205 nodes, so the traffic features (also called as graph signals)
at a specific time slot t can be denoted as Xt ∈ R205×1. To make multiple-steps-ahead
predictions with the historical observations, the series of these traffic features are input to
the encoder–decoder of the proposed model step-by-step.

Table 2. The statistics of of datasets.

Dataset Nodes Edges Size Sample Rate Missing
Proportion

METR-LA 207 1515 34272 5 min 8.109%
PEMS-BAY 325 2369 52116 5 min 0.003%
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4.2. Baseline Methods

To verify the predicting performance of TEGCRN, we compare it with typical time-
series models and some representative graph-based spatiotemporal networks. The selected
baselines are introduced as follows:

• HA : Historical Average, which views the traffic flow as seasonal signals and predicts
future speed with the average of the values at the same time slots of previous weeks.

• ARIMA: Auto-Regressive Integrated Moving Average model with Kalman filter, a
traditional time-series predicting method.

• FC-LSTM [37]: RNN sequence-to-sequence model with LSTM units, using a fully-
connected layer when calculating the inner hidden vectors.

• DCRNN [12]: Diffusion Convolutional Recurrent Neural Network, which combines
the bidirectional graph convolution with GRU encoder–decoder model. Only the
distance-based graph is utilized and the adjacency in different time steps remains static.

• STGCN [13]: Spatiotemporal Graph Convolutional Network, which alternately stacks
temporal 1-D CNN with spectral graph convolution ChebyNet to form a predicting
framework in a complete convolutional manner. Likewise, it relies only on the distance-
based static graph.

• Graph-WaveNet [14]: Based on the alternate convolutional architecture in [13], this
model applies dilated convolution in the time dimension and incorporates an adaptive
adjacency graph in the graph convolution module.

• MTGNN [21]: This model introduces a uni-directional adaptive graph and mix-hop
propagation into graph convolutions, and introduces dilated inception layers on the
time dimension to capture features in receptive fields of multiple sizes.

4.3. Experiments Settings and Metrics

As described in Section 3, the proposed model aims to make a multi-step prediction of
future traffic states according to historical observations. Following the typical settings in the
baseline methods using the same datasets, we set both the length of historical observations
and future predictions to one hour, i.e., P = Q = 12, to make fair comparison. When
generating the time-evolving graphs, the embedding dimension d is set to 30 for METR-LA
and 40 for PEMS-BAY. Since the length of each time slot is 5 min, the number of time slots
in a day Nt = 288. As for the graph convolution module, the maximum hop of K is set to
2 for both datasets and α is set to 0.01. The number of TGCGRU layers is set to two and
the size of the hidden state in TGCGRU is set to 40 for METR-LA and 50 for PEMS-BAY.
These hyper-parameters that are related to the proposed model are all selected via grid
search. During the training process, the value τ for scheduled sampling is set to 2000. The
model is trained by Adam optimizer and the learning rate is initialized to 0.01 with a decay
rate of 0.1. Mean absolute error (MAE) is selected as the loss function. The batch size
of input data is set to 64 for METR-LA and 32 for PEMS-BAY. Early stopping strategy is
employed. For each dataset, the experiment is repeated five times to obtain the average
metrics. To evaluate the performance of traffic prediction, three types of metrics are used,
including mean absolute error (MAE), root-mean-squared error (RMSE) and mean absolute
percentage error (MAPE).

4.4. Prediction Performance

The prediction results of our proposed method TEGCRN and the baseline methods on
METR-LA and PEMS-BAY are shown in Tables 3 and 4, respectively. We report the results
for 15 min (3 steps)-, 30 min (6 steps)-, 60 min (12 steps)-ahead predictions to show the
performance in the short term, middle term and long term.

As shown in Tables 3 and 4, TEGCRN achieves higher performance on both datasets.
It almost outperforms these baseline methods in all the time steps except for the long-term
prediction on METR-LA. We can also see that the performances of GCN-based methods
significantly outperform traditional series models such as ARIMA and FC-LSTM. This
emphasizes the importance of introducing spatial information into traffic prediction. In
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contrast to the models using only predefined distance-based graphs such as DCRNN
and STGCN, Graph-WaveNet and MTGNN achieve better performance. This is because
more inter-node dependency can be learned by the inner adaptive adjacency graph from
a global view. Moreover, the inception layers in MTGNN may capture more temporal
patterns in different time scales, which helps MTGNN surpass Graph-WaveNet in long-term
prediction. By using time-evolving graph convolutions and integrating them with recurrent
structure, our proposed model TEGCRN can capture more implicit dynamics of inter-node
dependency, so it can achieve better performance compared with the models with static
graphs. Since the recurrent structure in RNN usually suffers from accumulative errors when
the number of output time steps increases, TEGCRN may be more sensitive to missing
values in input data than the CNN-based models. However, the proportion of missing
values of METR-LA is much higher than that of PEMS-BAY. This may lead to the small
performance margin between TEGCRN and MTGNN when making long-term predictions
on METR-LA. To sum up, our proposed model TEGCRN shows its superiority over multiple
competitive traffic-predicting baseline models especially in short-term prediction.

Table 3. Prediction Results of METR-LA Dataset.

15 min (3 Steps) 30 min (6 Steps) 60 min (12 Steps)
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 4.16 7.80 13.00% 4.16 7.80 13.00% 4.16 7.80 13.00%
ARIMA 3.99 8.21 9.60% 5.15 10.45 12.70% 6.90 13.23 17.40%

FC-LSTM 3.44 6.30 9.60% 3.77 7.23 10.90% 4.37 8.69 13.20%
DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50%
STGCN 2.88 5.74 7.62% 3.47 7.24 9.57% 4.59 9.40 12.70%

Graph-WaveNet 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01%
MTGNN 2.69 5.18 6.86% 3.05 6.17 8.19% 3.49 7.23 9.87%
TEGCRN 2.65 5.10 6.74% 3.04 6.16 8.22% 3.49 7.32 10.03%

Table 4. Prediction Results of PEMS-BAY Dataset.

15 min (3 Steps) 30 min (6 Steps) 60 min (12 Steps)
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 2.88 5.59 6.80% 2.88 5.59 6.80% 2.88 5.59 6.80%
ARIMA 1.62 3.30 3.50% 2.33 4.76 5.4% 3.38 6.50 8.30%

FC-LSTM 2.05 4.19 4.80% 2.20 4.55 5.20% 2.37 4.96 5.70%
DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
STGCN 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79%

Graph-WaveNet 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%
MTGNN 1.32 2.79 2.77% 1.65 3.74 3.69% 1.94 4.49 4.53%
TEGCRN 1.29 2.72 2.69% 1.60 3.67 3.59% 1.88 4.39 4.43%

4.5. Ablation Study

We conduct an ablation study on the METR-LA dataset to validate the effectiveness
of the graph convolution module with adaptive time-evolving graphs. We first build a
model that replaces the time-evolving graphs in TEGCRN with a static adaptive graph as
the manner in [14]. Additionally, we further remove the time-evolving graph generation
module and use only static predefined distance-based graph, as per the manner in [12]. For
these models, we calculate the average metrics of all the output time steps. The results are
reported in Table 5. We can see that, with learned global dependencies, the convolution with
adaptive graph achieves higher performance than that with only predefined distance-based
graph. Furthermore, the proposed time-evolving graph convolution in TEGCRN further
improves the prediction performance by capturing more implicit inter-node dynamics.
Figure 5 shows the heatmaps of the normalized distance-based static adjacency graph and
the learned time-evolving adjacency graphs in some selected time slots. A darker color
means a higher value of weight between the corresponding nodes. When the static graph
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assigns high weights to the neighboring node pairs in a local manner, the time-evolving
graphs can learn some other sparse connections among the nodes from a global view.
In different time slots, the trained time-evolving graphs attach different importance to
the traffic node pairs and form dynamic topologies. These learned implicit dynamics of
inter-node dependency can act as the complement of the static distance-based graph. This
helps the graph convolution to capture more urban semantics, which contributes to the
better prediction performance. In sum, the proposed graph convolution with adaptive
time-evolving graphs is effective to model more comprehensive inter-node dependencies
than those with only static graphs.

Table 5. The results of ablation study on METR-LA.

Method Overall MAE Overall RMSE Overall MAPE

TEGCRN 2.908 5.705 7.866%
Static Adpative 2.969 5.792 8.072%

Static Predefined 3.015 5.887 8.258%
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Figure 5. Heatmaps of predefined distance-based graph and the learned time-evolving graphs
on METR-LA. (a) Distance-based graph. (b) Learned time-evolving graph at 08:00. (c) Learned
time-evolving graph at 17:30.

4.6. Parameters Study

We studied the model performance with different values of two important hyper-
parameters: the embedding dimension d in the time-evolving graph generation module
and the hidden size h of GRU units. The latter is also the output dimension of the graph
convolution module. For each experiment, we only change the selected hyper-parameter
while fixing other settings. The average MAE loss of different settings on METR-LA
and PEMS-BAY are shown in Figures 6 and 7, respectively. The optimal values of both
embedding dimension and hidden size on PEMS-BAY are larger because of the larger
amount of traffic nodes. For METR-LA, we set the embedding dimension at 30 and the
hidden size at 40. The counterparts of PEMS-BAY are 40 and 50. The performance on
METR-LA is more sensitive to the values of hyper-parameters.



Appl. Sci. 2022, 12, 2842 13 of 16

10 20 30 40 50
embedding dimension

2.9

2.91

2.92

2.93

2.94

2.95

M
A

E

(a)

20 30 40 50 60
hidden size

2.9

2.91

2.92

2.93

2.94

2.95

M
A

E

(b)

Figure 6. Parameters study on METR-LA. (a) Performance with different embedding dimensions.
(b) Performance with different hidden sizes.
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Figure 7. Parameters study on PEMS-BAY. (a) Performance with different embedding dimensions.
(b) Performance with different hidden sizes.

4.7. Discussion

The proposed model TEGCRN may need more costs when training the time-evolving
adjacency graphs. However, once the model is trained and the weights in the time-evolving
graphs are frozen, the time-evolving graphs can be stored offline and the calculations of
graph generation are no longer needed. So, the computational complexity of the graph
convolution modules is the same as those with static graphs when making predictions. In
the experiments described in the previous subsections, we take the prediction task for the
traffic speed as an example and set the number of traffic features F = 1. However, it is worth
mentioning that the proposed model is devised as a general traffic prediction framework
which can be applied to the predictions of other parameters in the traffic network (e.g.,
traffic volume and congestion index) and take multiple features as input. Therefore, the
proposed model can be employed as a building block in different traffic support systems
and provide more accurate predictions for multiple applications such as route planning
and logistics distribution.

5. Conclusions

In this paper, we propose a traffic prediction model named Time-Evolving Graph
Convolutional Recurrent Network. Our method uses a tensor-composing method to
generate adaptive time-evolving graphs, then integrates the graph convolution module with
these time-evolving graphs into the RNN structure to a form general prediction framework.
Experiments on two real-world traffic datasets demonstrate the superiority of TEGCRN
over multiple competitive baseline models especially in short-term prediction. We verify
the effectiveness of time-evolving graph convolution in capturing more comprehensive
inter-node dependency than the models with static graph convolution. The proposed model
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can be employed as a support block in traffic-related systems and provide more accurate
predictions for multiple applications. In the future, we plan to work on the heterogeneous
relationships in traffic networks and build a predicting model with more explainability.
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