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Abstract: NMR measurements combined with chemometrics allow achieving a great amount of
information for the identification of potential biomarkers responsible for a precise metabolic pathway.
These kinds of data are useful in different fields, ranging from food to biomedical fields, including
health science. The investigation of the whole set of metabolites in a sample, representing its
fingerprint in the considered condition, is known as metabolomics and may take advantage of
different statistical tools. The new frontier is to adopt self-learning techniques to enhance clustering
or classification actions that can improve the predictive power over large amounts of data. Although
machine learning is already employed in metabolomics, deep learning and artificial neural networks
approaches were only recently successfully applied. In this work, we give an overview of the statistical
approaches underlying the wide range of opportunities that machine learning and neural networks
allow to perform with accurate metabolites assignment and quantification.Various actual challenges
are discussed, such as proper metabolomics, deep learning architectures and model accuracy.

Keywords: NMR; metabolomics; biomarkers; clustering; artificial intelligence; machine learning;
deep learning; health science

1. Introduction

Metabolomics corresponds to the part of omics sciences that investigates the whole set
of small molecule metabolites in an organism, representing a large number of compounds,
such as a portion of organic acids, amino acids, carbohydrates, lipids, etc. [1–3]. The in-
vestigation and the recording of metabolites by target analysis, metabolic profiling and
metabolic fingerprinting (i.e., extracellular metabolites) are fundamental steps for the dis-
covery of biomarkers, helping in diagnoses and designing appropriate approaches for drug
treatment of diseases [4,5]. There are many databases available with metabolomics data,
including spectra acquired by nuclear magnetic resonance (NMR) and mass spectrometry
(MS), but also metabolic pathways. Among them, we mention the Human Metabolome
Database (HMDB) [6] and Biological Magnetic Resonance Bank (BMRB) [7] that contain
information on a large number of metabolites gathered from different sources. By means
of the corresponding web platform, it is possible, for instance, to search for mono- and
bi-dimensional spectra of metabolites, starting from their peak position [3]. However,
metabolomics databases still lack homogeneity mainly due to the different acquisition
conditions, including employed instruments. Thus, the definition of uniform and mini-
mum reporting standards and data formats would allow an easier comparison and a more
accurate investigation of metabolomics data [8].

In recent years, NMR has become one of the most employed analytical non-destructive
techniques for clinical metabolomics studies. In fact, it allows to detect and quantify
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metabolic components of a biological matrix whose concentration is comparable or big-
ger than 1 µM (see Appendix A). Such sensitivity, relatively low if compared with other
MS techniques, allows to assign up to 20 metabolites in vivo, and up to 100 metabolites
in vitro [9–11]. Numerous strategies are being designed to overcome actual limitations,
including a lower selectivity compared to the MS technique coupled with gas or liquid
chromatography (GC-MS and LC-MS, respectively) and a low resolution for complex bio-
logical matrices. These include the development of new pulse sequences mainly involving
field gradients for observing multidimensional hetero- or homo-nuclear correlations [12].
Within metabolomics investigations, NMR analyses are usually coupled with statistical
approaches: sample randomization allows to reduce the correlation between confound-
ing variables, sample investigation order and experimental procedures. In the last ten
years, nested stratified proportional randomization and matched case-control design were
adopted in the case of imbalanced results [13–15].

In any case, data pre-processing is a relevant step before performing data analysis
by means of a conventional approach or a statistical one. The goal of pre-processing is to
homogenize the acquired data, avoiding the presence of instrumental bias mainly involving
peaks’ features for a better quantification of metabolites. For example, the pre-processing
of NMR spectra concerns phasing, baseline correction, peak alignment, apodization proce-
dures, normalization and binning [16,17] (see Figure 1). In particular, the binning procedure
corresponding to the spectral segmentation is performed mainly in those cases of challeng-
ing spectral alignment or simply for reducing the data points [18]. Even though binning
reduces data resolution, binning procedures are commonly used [19–21].

Figure 1. Schematic workflow illustrating the steps of NMR based metabolomic studies coupled
with chemometrics and pathway analysis. (1) Sample preparation and NMR tube filling (top left);
(2) experimental parameters setting and data acquisition (top right); (3) data processing (middle left);
(4) execution of multivariate statistical analysis (bottom right); (5) determination of metabolic path-
ways (bottom left). Some figures are reprinted from Refs. [22,23] under the terms of the CC-BY license.
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For what concerns normalization, recorded spectra are usually normalized by the
total integrated area and thus the metabolites concentration can be compared among
different samples. In the case of large signals variation, probabilistic quotient normalization
can be adopted instead [24]. Finally, deconvolution is also employed for the necessary
assignment and quantification of those metabolites whose signals overlap [25,26]. All
these pre-processing methods are also chosen, taking into account that the approaches
adopted for the data processing are essentially dual: (1) chemometrics, consisting in
the employment of statistical analysis for the recognition of similar patterns and for the
significant determination of intensity values, and (2) quantitative metabolomics, based on
an initial assignment and quantification of metabolites with the subsequent statistics. We
outline that, from one side, chemometrics allows an automatic and non-biased classification
of metabolites, whereas from the other side, it needs a big number of uniform spectra.
These requirements do not apply for quantitative metabolomics [27,28].

In order to gain useful insights and a corresponding interpretation of NMR outcomes,
it is indeed mandatory to use statistical and bioinformatic tools, considering the complex
output generated [22]. In this work, we discuss the main statistical approaches currently
used for NMR-based metabolomics analysis, pointing out the advantages and disadvan-
tages. Illustrative examples are reported, and the actual challenges influencing the analysis
are also discussed. On the basis of these evidences, it emerged that innovative experi-
mental procedures would need to be implemented in order to improve the potentiality
of existing approaches (i.e., adequate sample sizes and conditions), thereby combining
their complementing features with the aim to achieve most of the metabolomic information
from an NMR measurement. Nevertheless, on considering the high complexity of biologi-
cal systems, each regulation level, including the genome, should be considered, yielding
corresponding insights on cellular processes. Thus, data coming from different biological
levels should be integrated within the same analysis for the observation of interconnectivity
changes between the different cellular components. In this context, neural network-based
approaches could be adequate in responding to this major challenge and indeed to the
exploitation of proper approaches for the weighted consideration of data corresponding to
different layers of biological organization.

2. Conventional Approaches
2.1. Unsupervised Methods

In the analysis of large metabolomic NMR datasets, unsupervised techniques are
applied with the aim to identify any significant pattern within unlabeled databases without
any human action. Below, we introduce and describe several unsupervised methods, high-
lighting their characteristics and implementation procedures. In particular, we describe the
following unsupervised techniques: (a) principal component analysis (PCA); (b) clustering;
(c) self-organizing maps (SOMs).

2.1.1. Principal Component Analysis (PCA)

Principal component analysis (PCA) is employed for lowering the dimensionality
of high-dimensional datasets, preserving as much information as possible by means of a
“linear” multivariate analysis [29,30]. This approach employs a linear transformation to
define a new smaller set of “summary indices”—or “principal components” (PCs)—that are
more easily visualized and analyzed [31]. In this frame, principal components correspond
to new variables obtained by the linear combination of the initial variables by solving
an eigenvalue/eigenvector problem. The first principal component (PC1) represents the
“path” along which the variance of the data is maximized. As happens for the first principal
component, the second one (PC2) also defines the maximum variance in the database. Nev-
ertheless, it is completely uncorrelated to the PC1 following a direction that is orthogonal
to the first component path. This step reiterates based on the dimensionality of the system,
where a next principal component is the direction orthogonal to the prior components
with the most variance. If there are significant distinctions between the ranges of initial
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variables (those variables with smaller ranges will be dominated by those with larger ones),
distorted results may occur. To avoid this kind of problem, it is required to perform a
standardization operation before executing PCA that corresponds to a transformation of the
data into comparable scales. This can be done by using different scaling transformations,
such as autoscaling, the generalized logarithm transform or the Pareto scaling with the aim
to enhance the importance of small NMR signals, whose variation is more affected by the
noise [32]. One of the most used transformation is the mean centered autoscaling:

value−mean
st.deviation

, (1)

Furthermore, the computation of the covariance matrix is required to discard re-
dundant information mainly due to the presence of any relationship between the initial
variables of the data. The covariance matrix is symmetric (a n × n) being composed by the
covariances of all pairs of the considered n variables (x1, ..., xn):Cov(x1, x1) · · · Cov(x1, xn)

...
. . .

...
Cov(xn, x1) · · · Cov(xn, xn)

 (2)

In this frame, PCs can be obtained by finding the eigenvectors and eigenvalues from
this covariance matrix. Figure 2 shows a graph with only three variables axes of the n-
dimensional variables space. The red point in this figure represents the average point used
to move the origin of the coordinate system by means of the mean-centering procedure
in the standardization process. Once we define PC1 and PC2, as shown in Figure 2, they
define a plane that allows inspecting the organization of the studied database. Further,
the projection of the data with respect to the new variables (PCs) is called the score plot,
and if the data are statistically different/similar, they can be regrouped and classified.

Figure 2. Example plot with 3 variable axes in a n-dimensional variable space. The principal
components PC1 and PC2 are reported.

PCA is usually applied in NMR-metabolomic studies because it simplifies the in-
vestigation of hundreds of thousands of chemical components in metabolomic database
composed of several collected NMR spectra. In this way, each NMR spectrum is confined
to a single point in the score plot in which similar spectra are regrouped, and differences on
the PC axes shed light on experimental variations between the measurements [28,33–35].
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However, it is noteworthy that PCA, like the other latent structure techniques, must be
applied to matrices where the number of cases is greater than the number of variables [36].

The PCA technique can also be combined with other statistical approaches, including
the analysis of variance (ANOVA) as reported by Smilde et al. [37] in their ANOVA-
simultaneous component analysis (ASCA). This method is able to associate observed
data changes to the different experimental designs. It is applied to metabolomics data,
for example, to study variations of the metabolites level in human saliva due to oral
rinsing [38], or the metabolic responses of yeast at different starving conditions [39].

2.1.2. Clustering

Clustering is a data analysis technique used to regroup unlabeled data on the basis of
their similarities or differences. Examples of clustering algorithms are essentially the follow-
ing: exclusive, overlapping, hierarchical, and probabilistic clustering [40,41]. Exclusive and
overlapping clustering can be described together because they differ for the existence of
one or multiple data points in one or more clustered sets. In fact, while exclusive clustering
establishes that a data point can occur only in one cluster, overlapping clustering enables
data points to be part of multiple clusters with different degrees of membership. Exclusive
and overlapping clustering are hard or k-means clustering and soft or fuzzy k-means
clustering, respectively [42–44]. In hard clustering, every element in a database might be
a part of a single and precise cluster, whereas in soft clustering, there is a probability of
having each data point into a different cluster [44]. Generally speaking, k-means clustering
is a “distance-based” method in which each “clustered set” is linked with a centroid that is
considered to minimize the sum of the distances between data points in the cluster.

Hierarchical clustering analysis (HCA) is used to recognize non-linear evolution in
the data—contrary to what was done by the PCA which shows a linear trend—by means of
a regrouping of features sample by sample without having any previous information [45].
This clustering method could be divided in two groups: (i) agglomerative clustering, and
(ii) divisive clustering [46,47]. The first one allows to keep data points separate at first,
unifying them iteratively later until it one cluster with a precise similarity between the data
points is obtained. In the opposite way, divisive clustering creates a separation of data
points in a data cluster on the basis of their differences. The clustering analysis leads to
dendrograms that are diagrams in which the horizontal row represents the linked residues,
whereas the vertical axis describes the correlation between a residue and previous groups.
Figure 3 reports a dendrogram obtained by means of hierarchical cluster analysis performed
on 1H NMR data on the plasma metabolome of 50 patients with early breast cancer [48].
This kind of analysis allowed to discriminate among three different groups: LR-1 (red),
LR-2 (blue) and LR-3 (green). They are characterized by significantly different levels of
some metabolites, such as lactate, pyruvate and glutamin [48]. Furthermore, covariance
analysis of NMR chemical shift changes allows defining functional clusters of coupled
residues [49].

Clustering has been largely applied for metabolomic studies covering fields from
medicine to food science, as is reported in the Applications section (Section 4). Here, we
anticipate that clustering is essentially adopted for samples’ classification by grouping
metabolites without any external bias. This allows entering into the details of the precise
metabolic pathways that may provide a connection between metabolomics and molecular
biology. In such a way, many biomedical applications, including diagnostics and drug
synthesis, would reach important improvements.
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Figure 3. An example of a dendrogram obtained by means of hierarchical cluster analysis performed
on 1H NMR data on the plasma metabolome of 50 patients with early breast cancer. From the analysis,
3 different groups are classified: LR-1 (red), LR-2 (blue) and LR-3 (green). In this case, the Ward
algorithm is adopted for measuring the distance. Figure reprinted from Ref. [48] under the terms of
the CC-BY license.

2.1.3. Self-Organizing Maps (SOMs)

Self-organizing maps (SOMs) were introduced by Kohonen [50] and are widely em-
ployed to cluster a database, reduce its dimension and detect its properties by projecting
the original data in a new discrete organization of smaller dimensions. This is performed
by weighting the data throughout proper vectors in order to achieve the best representation
of the sample. Starting from a randomly selected vector, the algorithm constructs the map
of weight vectors for defining the optimal weights, providing the best similarity to the
chosen random vector. Vectors with weights close to the optimum are linked with each
unit of the map allowing to categorize objects in map units. Then, the relative weight
and the total amount of neighbors reduce over time. Therefore, SOMs have the great
power of reducing the dimensionality of the system while preserving its topology. For that
reason, they are commonly adopted for data clustering and as a visualization tool. Another
great asset of SOMs concerns the shapes of the clusters that do not require being chosen
before applying the algorithm, whereas other clustering techniques usually work well
on specific cluster shapes [51]. However, some limitations are evidenced using SOMs.
In fact, they are normally of low quality, and the algorithm must be run many times before
a satisfactory outcome is reached. Further, it is not easy to furnish information about
the whole data distribution by only observing the raw map. Figure 4 reports the cluster
of subjects involved in the study of renal cell carcinoma (RCC) by (NMR)-based serum
metabolomics that was generated by using SOM (including the weighted maps for the
considered 16 metabolites) [52].

The achieved results clearly separate healthy subjects (left region) and RCC patients
(right region) within the SOM. Moreover, the weighted maps of the individual metabolites
allow to identify a biomarker cluster including the following seven metabolites: alanine,
creatine, choline, isoleucine, lactate, leucine, and valine. These may be considered for an
early diagnosis of renal cell carcinoma [52].
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Figure 4. An example of SOM model for studying renal cell carcinoma (RCC). (A) SOM classification
and discrimination between healthy subjects (left region) and RCC patients (right region) by consider-
ing 16 metabolites extracted by means of NMR spectroscopy on serum samples. (B–Q) Weight maps
of the considered 16 metabolites. Darker colors correspond to higher SOM weights. Figure reprinted
from Ref. [52] under the terms of the CC-BY license.

2.2. Supervised Methods

Problems or datasets having response variables (discrete or continuous) are generally
treated with supervised methods. We distinguish between classification or regression
problems, depending on whether the variables are discrete or continuous, respectively.
The supervised technique is based on the association between the response variable (used
to drive the model training) and the predictors (namely covariates) with the aim to perform
precise predictions [53–55]. In fact, first, a training dataset is used as fitting model, while,
in a second step, a testing dataset is used to estimate the predictive power. The relevant
predictors are chosen by three types of feature selection methods [56] whose merits and
demerits are listed in the scheme drawn in Figure 5 [57]:

1. The filter method marks subgroups of variables by calculate “easy to compute” quan-
tities ahead of the model training.

2. The wrapper method marks subgroups of variables by applying the chosen trained
models on the testing dataset with the aim to determine the achieving the optimal
performance.

3. The embedded method is able to ascertain simultaneously the feature selection and
model structure.
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Figure 5. Scheme about merits and demerits of supervised methods, including filter, wrapper and
embedded feature selection approaches.

Then, to measure the robustness of the fitting model and the predictive power, sta-
tistical approaches are adopted. Among them, we mention the root mean square error
for calculating regression, sensitivity and specificity and the area under the curve for
achieving classification.

For simplicity, let us consider that in binary classification, the test prediction can
provide the following four results: true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). The model sensitivity, which coincides with the TP rate (TPR,
i.e., the probability of classifying a real positive case as positive), is defined as TP/(TP + FN).
On the contrary, the specificity is defined as TN/(FP + TN) and is linked to the ability of
the test to correctly rule out the FP (FP rate, FPR = 1 − specificity). In order to evaluate
the performance of binary classification algorithms, the most used approach is that of the
receiver operating characteristic (ROC) curve, which consists of plotting TPR vs. FPR for
the considered classifier at different threshold values (see Figure 6). The performance of
the classifier is usually indicated by the value of the corresponding area under the ROC
curve (AUC). Figure 6 shows, as an example, the ROC curve and the corresponding AUC
value for a classifier with no predicting power (red dashed line with AUC = 0.5), a perfect
classifier (green dotted line with AUC = 1) and a classifier with some predictive power
(blue solid line with AUC∼0.8).

Furthermore, several resampling methods, including bootstrapping and cross validation,
can be adopted to achieve more reliable outcomes. This is a general description of the super-
vised methods; in the next, we will briefly enter into the details for some of them including
random forest (RF) and k-nearest neighbors (KNN), principal component regression (PCR),
partial least squares (PLS), and support vector machine (SVM).
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Figure 6. ROC curves and corresponding AUC values for three classifiers: no predicting power (red
dashed line with AUC = 0.5), perfect classifier (green dotted line with AUC = 1) and some predictive
power (blue solid line with AUC∼0.8).

2.2.1. Random Forest (RF) and k-Nearest Neighbors (KNN)

Although RF and KNN algorithms can be used for both supervised and unsupervised
statistical analyses, here, we deal with the supervised aspects.

Random forest, as the name itself suggests, is composed by a proper number of
decision trees working as an ensemble but individually depict a class from which the
most representative corresponds to the model’s prediction. Therefore, the idea behind the
random forest algorithm is to correct the error obtained in one selection tree by using the
predictions of many independent trees and by using the average value predicted by all
these trees [58]. RF can deal with categorical features by treating both high dimensional
spaces and a large number of training examples. In detail, the first step in a RF scheme is to
create a selection tree; then, by using the observations {Yj, Xj}1<j<K, where Xj is usually
a vector and Yj is a real number, different sets can be obtained using different splitting
criteria which operate on the considered vectors. Each criterion allows the initial subset to
be divided into two subsets. An example of the selection tree is shown in Figure 7:

Figure 7. Example of decision tree with a different action corresponding to a different conditions set.

Given an observation Xi, and known selection tree, one determines in which final
node the vector Xi is classified in order to predict Y.
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Instead, the k-nearest neighbors (KNN) algorithm considers that similar outcomes lie
near each other. Given again an observation Xi and with the aim to predict Y, the KNN
algorithm selects the k-nearest observations of Xi in {Yj, Xj}1<j<K. Let i1, ..., ik be the k
values which provide the k minimum values of the function: g(j) = d(Xj - Xi). These
minimum values can be equal if there are multiple values of Xj at the same distance from
Xi [59]. There are at least the three possibilities for the distance (Euclidean, Manhattan and
Minkowski). So, the value predicted for Yi is the mean value of the k values Yj for the k
nearest neighbors of Xi:

Ŷi =
1
k

k

∑
1

Yik (3)

2.2.2. Principal Component Regression (PCR) and Partial Least Squares (PLS)

It is well known that a linear model can be written as Y = Xβ + ε, in which Y
represents the response variable (it can be a single variable or even a matrix), and X
represents the design matrix having variables along its columns and observations along its
rows; β corresponds to the coefficients vector (or matrix) and ε represents the random error
vector (or matrix). For a small number of variables and a high number of observations, it is
commonly adopted for β the ordinary least square solution ((XTX)−1 XTY). In the opposite
case, where it is not possible to evaluate the inverse of the singular matrix (XTX), other
solutions have to be considered [60]. One of them is the principal component regression
(PCR) that makes use of the first PCs achieved by running PCA to fit the linear regression
model instead of using all original variables. However, often, there is not a good correlation
between these PCs and the response variables Y. Alternatively, the partial least squares
(PLS) regression method is more efficient [61]. In the latter case, one has to determine
the most suitable number of components to maintain, and then PLS evaluates a linear
regression model by employing the projection of predicted and observed variables to a new
space according to the following relations:

Y = UQ′ + F (4)

X = TP′ + E (5)

where T and U, analogously to PCA, correspond to X and Y scores and are matrices
constituted by latent variables; at the same time, P′ and Q′ correspond to X and Y loadings,
representing the weight matrices of the linear combinations; E and F represent all that
is not possible to explain by using latent variables. Each of them, being expressed as a
linear combination of X and Y, can be rewritten in terms of weight factors as t = Xw and
u = Yc, where t and u are two latent variables and w and c are the corresponding weight
vectors. Indeed, PLS evaluates that set of X variables that is able to explain the majority
of the changes in Y variables. Therefore, PLS, by using orthogonal conditions, evaluates
those latent variables t and u, whose covariance is maximal. Ultimately, there are some
substantial differences between the PCA and PCR-PLS approaches. In fact, as already
mentioned, PCA pertains to unsupervised methods, whereas PCR and PLS pertain to
supervised approaches. Moreover, as already mentioned, PCR takes advantage of the first
PCs obtained from the PCA, using them as predictors for fitting the regression of a latent
variable. Hence, PCA is able to explain just the X variance, whereas PLS allows achieving
a multi-dimensional route in the X space, indicating the maximum variance route in the
Y space. In other words, in PCR, the principal components become the new (unrelated)
variables of the regression, which thus becomes more easily resolvable. Otherwise, in PLS,
the Y variables are decomposed into principal components too, while those of X are rotated
along the direction of maximum correlation with respect to the principal components of
Y. Therefore, the purpose of PLS is to determine latent variables similar to the principal
components that maximize the variance of both matrices.

We also mention the partial least squares discriminant analysis, or PLS-DA, which
is an alternative when the dependent variables are categorical. Discriminant analysis is
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a classification algorithm which adds the dimension reduction part to it. PLS-DA allows
the employment of predictive and descriptive algorithms other than for discriminative
variable choice (see Figure 8a). PLS-DA is executed on NMR spectra for different aims,
including food authentication and diseases classification in medical diagnostics [62–65].
However, a more comprehensive variant of PLS is the orthogonal PLS (OPLS) method.
It is finalized to separate systematic changes in X into two parts; one of them is in linear
relationship with Y and another is irrelevant to Y (generally, perpendicular to it). So, some
changes in X which are perpendicular to Y are eliminated, while uncorrelated changes in X
are separated from correlated ones (see Figure 8b). In this way, the uncorrelated changes
are analyzed separately, favoring the prediction ability and the interpretation of results [66].
This latter is one of the advantage of OPLS with respect to PLS together with the aspect that
the inner repetition is not time consuming, which can accelerate the calculation process.
In fact, OPLS is more appropriate for discriminating the precise differences between two
systems, providing information on the variables with the largest discriminatory power.

Figure 8. (a) Bidimensional PLS-DA score plot of urine samples obtained from different hospitals.
HB—Basurto Hospital, CRC—Cruces Hospital, HD—Donosti Hospital, TX—Txagorritxu Hospital.
Figure reprinted from [67] under the terms of Creative Commons Attribution 4.0 International License.
(b) OPLS scheme.

2.2.3. Support Vector Machine (SVM)

Considering the data organized into a matrix, each subject corresponding to a row
vector can be conceived as a single point in the p-space of the considered variables. Data
can be essentially organized into two main groups, “separated by a gap” whose margins are
defined by support vectors. Instead, the edge located in the gap center separating the data
corresponds to the dividing hyperplane. SVM tries to define the support vectors, and the
prediction will indicate to which hyperplane side the new observations belong. However,
generally, data cannot be linearly separated, and hence it is difficult to determine the
separating hyperplane. Nevertheless, SVM can accurately execute a non-linear classification
throughout the so-called kernel trick. It consists of an implicit mapping of the considered
inputs into high-dimensional feature spaces with the objective to their linear separation
in that space [68]. In detail, the optimal hyperplane is the one that provides the highest
separation between the two classes. With greater definition, by separation, we mean the
maximum amplitude (or width, w) between the lines parallel to the hyperplane without any
data points in between. This optimal hyperplane is called the maximum-margin hyperplane
and the corresponding linear classifier is the maximum-margin classifier (Figure 9).
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Figure 9. Linear SVM model highlighting the classification of two classes (red and blue). Figure
reprinted from Ref. [68] under the terms of the HighWire Press license.

In addition, in the presence of mislabeled data, the SVM can provide inadequate
classifications; therefore, only a few misclassified subjects are found instead by maximiz-
ing the separation between the two classes. Finally, validation methods and diagnostic
measures are analogous to those adopted in PLS methods. Ultimately, SVM is one of the
approaches with the highest accurate prediction, since it is based on statistical learning
frameworks [69,70]. It can also be used within machine learning approaches for anomaly
detection (such as weather) by choosing an anomaly threshold with the aim to establish
whether an observation belongs to the “normal” class or not. Disadvantages of supervised
methods include overfitting problems [71] corresponding to the inclusion of noise inside the
statistical model. These issues can be provoked by excessive learning, so several validation
techniques, such as cross validation [72] or bootstrapping [73], are usually employed to
solve them.

2.3. Pathway Analysis Methods

A powerful method to describe peculiar features of the cell metabolism is pathway
analysis (PA), which provides a graphical representation of the relationships among the
actors (mainly enzymes and metabolites) of precise catalyzed reactions. Therefore, PA is
highly employed for the interpretation of high-dimensional molecular data [74]. In fact,
taking advantage of the already acquired knowledge of biological pathways, proteins,
metabolites and also genes can be mapped onto newly developed pathways with the
objective to draw their collective functions and interactions in that specific biological envi-
ronment [75]. Although PA was initially developed for the interpretation of transcriptomic
data, in the last decades, it has become a common method in metabolomics, being particu-
larly suited to find associations between molecules involved in the same biological function
for a given phenotype [76–78].

PA methods include several tools allowing deep statistical analyses in metabolomics
known as enrichment analysis. They grant the functional interpretation of the achieved
results mainly in terms of statistically significant pathways [79]. These tools can handle het-
erogeneous and hierarchical vocabularies and may be classified into two distinct collections.
The first encompasses “non-topology-based” (non-TB) approaches, which do not consider
the acquired knowledge concerning the character of each metabolite in the considered
pathways [80]. Non-TB approaches include the over-representation analysis (ORA) as the
first generation technique and the functional class scoring (FCS) as the second generation.
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Finally, the second collection includes topology-based methods (see Figure 10) that are
adopted to determine those pathways that are significantly impacted in a given phenotype.

Figure 10. Conceptual map about the topology-based pathway analysis method.

This latter approach can be classified depending on the considered pathways (e.g., sig-
naling or metabolic), inputs (e.g., subset or all metabolites and metabolites p-values), chosen
mathematical models, outputs (e.g., pathway scores and p-values) and the wanted implemen-
tation (e.g., web-based or standalone) [81,82]. Note that PA methods were originally developed
for genes, but they can be successfully applied for every biomolecule/metabolite [83].

2.3.1. Over-Representation Analysis (ORA)

Over-representation analysis (ORA) is among the most used pathway analysis ap-
proaches for the interpretation of metabolomics data needed as input, once the type of
annotations to examine is chosen. One obtains a collection of annotations and their as-
sociated p-value as outputs since a statistical test is applied to determine whether a set
of metabolites is enriched by a specific annotation (e.g., a pathway) in comparison to
a background set. Different statistics can be applied to obtain information about the
studied biological mechanisms and on the specific functionality of a given metabolite
set. Among the most used statistics, we would like to mention the well-known binomial
probability, Fisher’s exact test and the hypergeometric distribution [84,85].

Three are the necessary inputs in ORA analysis: (i) a set of pathways (or metabolite
collections); (ii) a catalog of investigating metabolites and, (iii) a background collection
of compounds. The list of investigating metabolites usually comes from experimental
data after applying a statistical test to determine those metabolites whose signals can be
associated with a precise result by choosing a threshold value usually associated to the
p-values [74]. The background collection includes all metabolites that can be revealed in
the considered measurement. If the p-value corresponding to each pathway is obtained
by means of the right-tailed Fisher’s exact test based on the hypergeometric distribution,
the probability to find k metabolites or more in a pathway can be written as [74]:

P(X ≥ k) = 1−
k−1

∑
i=0

(M
i )(

N−M
n−i )

(N
n )

, (6)
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where N corresponds to the number of background compounds, n is the number of the mea-
sured metabolites, M is the number of background metabolites mapping the ith pathway,
and k represents the overlap between M and n. A scheme of the ORA principle is displayed
in Figure 11 as a 3D Venn diagram. Finally, multiple corrections are usually applied, as cal-
culations are made for many pathways, thus obtaining a collection of significantly enriched
pathways (SEP).

Figure 11. A 3D Venn diagram illustrating the relation between ORA parameters (Equation (6)) in
which N corresponds to the number of background compounds, n is the number of the measured
metabolites, M is the number of background metabolites mapping the ith pathway, and k represents
the overlap between M and n.

Before applying ORA, one has to verify if the metabolomics dataset is sufficiently big
to furnish proper statistical significance. For instance, usually MS-based techniques can
observe more metabolites than NMR-based methods, such as the mono-dimensional NMR
ones commonly used for profiling [86]. Indeed, the choice of the most suitable background
collection is the real challenge and still remains an open subject because it strictly depends
on the situation [74].

2.3.2. Functional Class Scoring (FCS)

Functional class scoring (FCS) methods look for coordinated variations in the metabo-
lites belonging to a specific pathway. In fact, FCS methods take into account those coor-
dinated changes within the individual set of metabolites that, although weak, can have a
significant effect of specific pathways [75,78]. Essentially, all FCS methods comprise three
steps (see Figure 12):

1. A statistical approach is applied to compute differential expression of individual
metabolites (metabolite-level statistics), looking for correlations of molecular mea-
surements with phenotype [87]. Those mostly used consider the analysis of variance
(ANOVA) [88], Q-statistic [89], signal-to-noise ratio [90], t-test [91], and Z-score [92].
The choice of the most suitable statistical approach may depend on the number of
biological replicates and on the effect of the metabolites set on a specific pathway [93].

2. Initial statistics for all metabolites of a given pathway are combined into statistics
on different pathways (pathway-level statistics) that can consider interdependencies
among metabolites (multivariate) [94] or not (univariate) [91]. The pathway-level
statistics usually is performed in terms of the Kolmogorov–Smirnov statistics [90],
mean or median of metabolite-level statistics [93], the Wilcoxon rank sum [95], and the
maxmean statistics [96]. Note that, although multivariate statistics should have more
statistical significance, univariate statistics provide the best results if applied to the
data of biologic systems (p ≤ 0.001) [97].
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3. The last FCS step corresponds to estimating the significance of the so-called pathway-
level statistics. In detail, the null hypothesis can be tested into two different ways:
(i) by permuting metabolite labels for every pathways, so comparing the set of metabo-
lites in that pathway with a set of metabolites not included in that pathway (com-
petitive null hypothesis) [75] and (ii) by permuting class labels for every sample, so
comparing the collection of metabolites in a considered pathway with itself, whereas
the metabolites excluded by that pathway are not considered (self-contained null
hypothesis) [91].

Figure 12. Schematic representation of the three main steps adopted in FCS methods.

2.3.3. Metabolic Pathway Reconstruction and Simulation

The identification of metabolomic biomarkers and their mapping into a neural net-
work is fundamental to further study the cellular mechanisms and its physiology. The goal
is to identify the effects of the metabolites (as a function of their concentration) on the
cellular changes, providing a relationship with the most likely biologically meaningful
sub-networks. Thus, basing on genome annotation and protein homology, reference path-
ways could be mapped into a specific organism. However, this mapping method often
produces incomplete pathways that need the employment of ab initio metabolomic network
construction approaches (such as Bayesian networks), where differential equations describe
the changes in a metabolomic network in terms of chemical amounts [98,99]. Qi et al. [100]
further improved this approach allowing to optimize accuracy in defining metabolomics
features or better the correlation between the substrates whose nature is well known as
well as the species of each individual reactions, so defining the classification of the mapped
metabolic products in a pathway and their modifications under selected perturbations.
Recently, Hu et al. [23] performed a pathway analysis on serum spectra recorded by 1H
NMR with the aim to identify eventual biomarkers characterizing the treatment of hu-
man lung cancer. After a first statistical analysis in terms of PLS-DA, they were able to
identify four metabolic pathways associated with the metabolic perturbation induced
by non-small-cell lung cancer (Figure 13) by means of the MetaboAnalyst package [101].
In detail, the highest pathway impact was shown by the metabolisms of (i) taurine and
hypotaurine, (ii) d-glutamine and d-glutamate, (iii) glycine, serine and threonine, and
(iv) alanine, aspartate and glutamate, thus shedding light on the responsible processes in
this kind of cancer.
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Figure 13. Pathway analysis performed on serum spectra recorded by 1H NMR allowing the identifi-
cation of main metabolic pathways associated with non-small cell lung cancer. The larger the circle,
the higher the impact. The color, from red to yellow, identifies the corresponding significance. Figure
reprinted from [23] under the terms of the Creative Commons Attribution 4.0 International License.

3. Artificial Intelligence toward Learning Techniques

Artificial intelligence (AI) techniques are based on algorithms that try to simulate
both human learning and decision making. Indeed, AI exploits the ability of computer
algorithms to learn from a given dataset containing precise information that then must
be recognized in new dataset in an automatic way. Specifically, the computer algorithms
during learning on the test dataset create models that are able to provide information on
the probability that a specific result may occur. Furthermore, these programs are usually
able to identify the important features associated with the outcome of interest. Artificial
intelligence methods can accurately handle big data for biomarkers prediction, allowing the
determination of relevant characteristics pertaining to a dataset and a deep comprehension
of the significance of such data. Specifically, the integration of metabolic snapshots with
metabolic fluxes and the use of knowledge-informed AI methods allow obtaining a pro-
found comprehension of metabolic pathways at the system level. Hence, the development
of multi-omic techniques integrating both experimental and computational methods, ade-
quate to extract metabolic information at the cellular and subcellular levels, will provide
powerful tools to enter the details of metabolic (dis)regulation, therefore allowing the
exploitation of personalized therapies [102].

Machine Learning, Neural Networks and Deep Learning

All the conventional approaches discussed in the previous sections can be imple-
mented by learning algorithms that let the corresponding network learn by a given dataset
and, after performing a test with a sample dataset, can be used with a known predictive
power. In this section, we get into details of the different machine learning techniques as a
subset of AI methods (Figure 14).
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Figure 14. Venn diagram illustrating that deep learning is the core of machine learning, which in turn
is a technique within AI methods.

In addition, neural networks and deep learning approaches are characterized in terms
of the number of node layers, also named depth. Briefly, a node is the locus in which
the algorithm performs the calculation and would correspond to the action that a neuron
exerts in the human brain when it is subject to a stimulus. As shown in Figure 15b, a node
takes different inputs, each having its own weight, that can be amplified or reduced by
the activation function, thus giving a corresponding significance to the received inputs
with respect to the specific task that the used algorithm is learning. So, a neural network
consisting of two or more hidden layers can be classified as a deep learning technique and
is usually described by the diagram shown in Figure 15a, together with a scheme of how
one node might look (Figure 15b).

Figure 15. (a) Example scheme of a deep neural networks, reprinted from Ref. [103] under the terms
of the CC-BY license; (b) operating principle of a single node.

Deep learning techniques, being able to handle large datasets, thus allowing a high-
level description, are already used to provide the optimal route to solve a lot of issues
in the field of image recognition, speech recognition, and natural language processing.
Furthermore, DL techniques can be divided into three main categories (see Figure 16) that
are deepened in Ref. [104]:

• Supervised learning (discriminative) includes multi-layer perceptron (MLP), convolu-
tional neural network (CNN), long short-term memory (LSTM) and gated recurrent
unit (GRU);

• Unsupervised learning (generative) includes generative adversarial network (GAN),
autoencoder (AE), sparse autoencoder (SAE), denoising autoencoder (DAE), contrac-
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tive autoencoder (CAE), variational autoencoder (VAE), self-organizing map (SOM),
restricted Boltzmann machine (RBM) and deep belief network (DBN);

• Hybrid learning (both discriminative and generative) includes models composed by
both supervised and unsupervised algorithms other than deep transfer learning (DTL)
and deep reinforcement learning (DRL).

Figure 16. A taxonomy of DL techniques. For acronyms, see main text.

Supervised learning can furnish a discriminative function in classification applications
by identifying the different features of those classes that can be extracted by the data.
Among them, multi-layer perceptron (MLP) is a feedforward ANN that involves (i) an input
layer collecting input signals, (ii) an output layer that provides an outcome in consideration
of the processed input and (iii) some hidden layers separating the input and output layers
that correspond to the network computational engine. On the contrary, unsupervised
learning is employed to recognize eventual correlations by analyzing the signals pattern
and to assess the statistical distributions of the achieved results both on original data and
on their corresponding classes. This kind of generative approach can be also used as an
initial step (pre-processing) before applying supervised learning methods. Most common
unsupervised techniques, reported in Figure 16, are listed and briefly described in the next.
Hybrid learning paradigms combining both discriminative and generative methods are
possible. Hybrid deep learning architectures are usually constituted by multiple models
where the basis can indeed be either a supervised or unsupervised deep learning method.
Common hybrid learning algorithms are, for example, semi-supervised learning that
allows to use a supervision for some data points, keeping the others unlabeled, and deep
reinforcement learning (DRL; see Figure 16) that, interacting with an environment, involves
the knowledge of performing with sequential decision-making tasks in order to maximize
cumulative rewards [104,105]. Their advantages lie in the possibility to consider the best
aspects of discriminative and generative models. For instance, a hybrid architecture can
adopt small inputs to avoid the problem of determining the right network size and instead
an increasing number of neurons in receptive-field spaces [106]. At the same time, by a
proper enhancement of the initial weights through suitable algorithms, neural networks in
hybrid architectures can provide higher accuracy and predictive power [107,108].

Most of the techniques in the categories indicated before are feed-forward (working
from input to output) but, as detailed in the last part of the section, the opposite movement
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is also possible. This is called backpropagation and works from output to input, allowing
the evaluation of the individual neuron’s error, allowing to properly modify and fit the
algorithm iteratively. Unlike ML, that usually adopts manual identification and description
of relevant features, DL techniques aim to execute automatically the features extraction,
avoiding almost all human participation. In addition, DL can handle larger datasets,
especially of the unstructured type. In fact, DL methods can have unstructured raw data
as input (such as text or images) and can directly define which characteristics must be
considered to distinguish the original observations. By recognizing similar and/or different
patterns, DL methods can adequately cluster inputs. Therefore, DL approaches would need
a very high number of observations to be as accurate as possible. Generally, and according
to the scheme reported in Figure 16, the most adopted deep learning techniques are the
following [104]:

1. Classic neural networks encompass linear and non-linear functions which, in turn,
include S-shaped functions ranging from 0 to 1 (sigmoid) or from −1 to 1 (hyperbolic
tangent, tanh) and rectified linear unit (ReLU), which gives 0 for input lower than the
set value or evaluates a linear multiple for bigger input.

2. Convolutional neural networks (CNN) take into high consideration the neuron or-
ganization found in the visual cortex of an animal brain. It is particularly suited for
high complexity and allows for optimal pre-processing. Four stages can be considered
for CNN building (see Figure 17):

(a) Deduce feature maps from input after applying a proper function (convolution);
(b) Reveal an image after given changes (max-pooling);
(c) Flatten the data for the CNN analysis (flattening);
(d) Compiling the loss function by a hidden layer (full connection).

3. Recurrent neural networks (RNN) are exploited when the objective is the prediction
of a sequence. They are a subset of ANN for sequential or time series data, usually
applied for language translation, speech recognition, and son on. Their peculiar
feature is that the outcome of the output node is a function of the output of previous
elements within the sequence (see Figure 18a).

4. Generative adversarial networks (GAN) combine generator networks for providing
artificial data and discriminator networks for distinguishing real and fake data.

5. Self-organizing maps (SOMs) have a fixed bi-dimensional output since each synapse
joins its input and output nodes, and usually take advantage of data reduction per-
formed by unsupervised approaches.

6. Boltzmann machine is a stochastic model exploited for yielding proper parameters
defined in the model.

7. Deep reinforcement learning are mainly used to understand and so predict the effect
of every action executed in a defined state of the observation.

8. Autoencoders work directly on the considered inputs, without taking into account
the effect of activation functions. Among the autoencoders, we mention the following:

(a) Sparse autoencoders have more hidden than input layers for reducing overfitting.
(b) Denoising autoencoders are able to reconstruct corrupted data by randomly

assigning 0 to some inputs.
(c) Contractive autoencoders include a penalty factor to the loss function to pre-

vent overfitting and data repetition when the network has more hidden than
input layers.

(d) Stacked autoencoders perform two stages of encoding by the inclusion of an
additional hidden layer.

9. Backpropagation (BP) are neural networks that use the flux of information going
from the output to input for learning about the errors corresponding to the achieved
prediction. An architecture of the BP network is shown in Figure 18b.
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10. Gradient descent are neural networks that identify a slope corresponding to a relation
among variables (for example, the error produced in the neural network and data
parameter: small data changes provoke errors variations).

Figure 17. Example of a convolutional neural network. Figure reprinted from Ref. [109] under the
terms of CC BY-NC-ND 4.0 license.

Figure 18. (a) Scheme of a RNN. (b) Example of a BP network architecture. Figure reprinted from
Ref. [109] under the terms of CC BY-NC-ND 4.0 license.

From the above brief information, it emerges that, even if DL methods can be thought
as black-box solutions, future generation deep learning can provide a great aid for the
analysis of big data and for corresponding reliable results.

4. Applications of Deep Learning Approaches for NMR-Based Metabolomics

In this section, the applications of deep learning on NMR-based metabolic data for
specific different fields are reported and discussed. Here, we briefly introduce the poten-
tiality of the applications of deep learning in metabolomics which today are still relatively
low compared to other omics. This is explained since metabolome-specific deep learn-
ing architectures should be defined, and dimensionality problems and model evaluation
regime should be further evaluated. In any case, data pre-processing using convolutional
neural network architecture appears to be the most efficient approach among the deep
learning ones. The main advantage of CNNs compared to a traditional neural network is
that they automatically detect important features without any human supervision. Specif-
ically, CNNs learn relevant features from image/video at different levels, similar to a
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human brain [110]. This is very relevant to analyze both biomedical and food data, whose
classification in view of safety security actions is extremely important.

The potentiality of the NMR technique within the field of metabolomics is currently
employed for several purposes, including the detection of viable microbes in microbial
food safety [10], the assessment of aquatic living organisms subjected to contaminated
water [111], the identification of novel biomarkers to diagnose cancer diseases [112] and
the monitoring of the plant growth status changing environmental parameters in view of
smart agriculture [113]. In the next sections, we discuss some applications of deep learning
approaches for NMR-based metabolomics in food and biomedical areas, highlighting their
strengths and limitations.

Even before the development of artificial intelligence, statistical analyses were success-
fully applied in food analysis but with some limitations. For example, traditional methods
are usually not very accurate in the classification of similar foods in contrast to modern
deep learning approaches that allow enhancing all small differences. However, traditional
methods usually constitute the first step, providing the input for neural networks with
the aim to achieve a more accurate and automatic output. Furthermore, advanced com-
putational algorithms can be applied not only for statistical analysis, but also to execute
simulations whose predictions depend on the considered conditions [114].

4.1. Food

Foodomics is a term referred to the metabolomic approaches applied to foodstuffs for
investigating topics mainly related with nutrition. Nowadays, DL methods are being pro-
gressively applied in the food field with different purposes, such as fraud detection [115].
Furthermore, another important issue is to guarantee the geographical origin and pro-
duction/processing procedures of food, the precise proportions of ingredients, including
additives and the kind of used raw materials. In this context, machine learning is a power-
ful method for achieving an adequate classification. For example, Greer et al. [116] carried
out NMR measurements using a not-conventional protocol to measure the magnetization
relaxation times (both the longitudinal T1 and transverse T2) and then they efficiently
classified cooking oils, milk, and soy sauces (see Figure 19).

Since the considered datasets are very large (typically about 5 × 106 points each),
the authors first reduced their size by means of the singular value decomposition, thus
allowing a fast classification and also providing little insight into the sample physical
properties. Figure 19 reports different combinations for the obtained classification features.
Figure 19a,b corresponds to the two components used by the Gaussian fit of those peaks
revealed by the inverse 2D Laplace transform [117]. A sharp distinction of the samples is
clearly shown for every adopted combination. The y-axes of Figure 19a,c report the first
component of T1 versus the first and second components of T2, respectively. Contrarily,
the y-axes of Figure 19b,d report the second component of T1 versus the first and second
components of T2, respectively. The authors found that most of the trained models reached
an accuracy up to 100% (see, for example, Figure 20a). Finally, they also pointed out the
effect of the sample temperature on classification accuracy for achieving reliable results
(see Figure 20b).
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Figure 19. T1–T2 correlational maps classifying several kinds of oils: olive (blue), canola (orange),
corn (yellow) and vegetable (purple) by using the two components used by the Gaussian fit of those
peaks revealed by the inverse 2D Laplace transform. (a,c) report the first component of T1 versus
the first and second components of T2, respectively. (b,d) report the second component of T1 versus
the first and second components of T2, respectively. See main text and Ref. [116] for details. Figure
reprinted with permission from Ref. [116]. Copyright 2018 Elsevier.

Figure 20. (a) Comparison of the accuracy for the predictive power of the algorithms applied to
classify cooking oil samples by employing three different classification training; (b) accuracy of
predictive power applied to soy sauce sample highlighting the effect of temperature. Figure adapted
with permission from Ref. [116]. Copyright 2018 Elsevier.

Nowadays, deep neural networks (DNNs) are rarely used for metabolomics studies
because the assignment of metabolites contribution in NMR spectra still lacks highly re-
liable yields due to the complexity of the investigated biological matrix and thus of the
corresponding signals. As described in the previous section, different deep learning meth-
ods were used, but some of them are characterized by some limitations (i.e., low accuracy
in classification). Some efforts were made to overcome this problem. Date et al. [118]
recently developed a DNN method that includes the evaluation of the so-called mean
decrease accuracy (MDA) to estimate every variable. It relies on a permutation algorithm
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that allows the recognition of the sample geographical origins and the identification of
their biomarkers. On the other hand, for food authenticity and nutritional quality, the fast
revelation of viable microbes is still a challenge. Here, we report a multilayer ANN example
(see Figure 21) showing four input neurons, two hidden layers made of three neurons,
and two output neurons.

Figure 21. Multilayer artificial neural network showing 4 input neurons, 2 hidden layers made of
3 neurons, and 2 output neurons of which the one corresponding to “Salmonella” shows the highest
value, associated with the prediction performed by the used ANN. Figure reprinted from Ref. [119]
under the terms of the CC-BY license.

Such a scheme was organized by Wang et al. [119] for the detection, by means of
NMR spectroscopy coupled with deep ANNs, of pathogenic and non-pathogenic microbes.
According to the classification method, each output neuron is associated to one possible
output. Here, “Salmonella” shows the highest value of output, thus corresponding to
the prediction performed by the used ANN. In such a case, the weights of each input
are optimized to reach the wanted outcome throughout backpropagation, thus defining
multiple epochs and training cycles. Figure 22 reports an example referred to an ANN
analysis with two hidden layers of 800 neurons. ANN training is made optimizing a set of
training criteria to avoid shallow local minima. In particular, training continues when the
loss function decreases after an epoch of training (“greedy” algorithm—case a) and even
after a small increase followed by a continuous decrease (case b). On the contrary, training
stops for an increase in the loss function after several constant values (case c) and for steep
increases (case d) [119].

Figure 22. Comparison of the different criteria adopted for the ANN training. (a) “Greedy” learning;
(b) “jumping” out of a local tiny minimum; (c) halt at large minima; (d) halt at sharp growths in loss.
Figure reprinted from Ref. [119] under the terms of the CC-BY license.

Once the network is trained, it is able to perform predictions on new input data.
As already mentioned, the loss and the model accuracy provide a measure of the output
goodness. In fact, the aim is to minimize the disagreement between the prediction and the
reality (loss) and to maximize accuracy (cross-validation method). Thanks to this approach,
Wang et al. [119] found that the used ANNs accurately predict 91.2% of unknown microbes
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and, after repeating the model training by considering just those metabolites whose amount
increased with incubation time, they observed an accuracy up to 99.2%.

Machine learning and neural network approaches are simultaneously adopted to
analyze large amounts of NMR metabolomics data for food safety [109]. This can be
performed also by means of magnetic resonance imaging (MRI), which is an imaging
technique relying on NMR principles. Within the food field, it is mainly used to resolve the
tissue texture of foods [120,121]. On the other hand, Teimouri et al. [122] used PLSR, LDA,
and ANN for the classification of the data collected by CCD images from food portions,
different in color and geometrical aspects. In this way, they were able to classify 2800 food
samples in one hour, with an overall accuracy of 93%. Instead, De Sousa Ribeiro et al. [123]
developed a CNN approach able to reconstruct degraded information on the label of
food packaging. Before applying CNNs, they started with K-means clustering and KNN
classification algorithms for the extraction of suitable centroids.

4.2. Biomedical

Metabolomics-based NMR investigations, coupled with deep learning methods, are
increasingly employed within the biomedical field. More profoundly, the use of complex
DL architectures hardly allows achieving a predictive power with ranking or selection.
As already discussed, DL models use several computational layers to analyze input signals
and establish any eventual preferred direction for signal encoding (forward or backward).
This procedure does not usually allow the interpretation of input signals in terms of the
used model, making it hard to identify biomarkers in a network, where biological and DL
modeling are connected (Figure 23).

Today, it is still necessary to uniform assessment metric for biomedical data classifica-
tion or prediction, also avoiding false negatives in disease diagnosis. Further, deep learning
is a promising methodology to treat data collecting by smart wearable sensors, which is
considered fundamental in epidemic prediction, disease prevention, and clinical decision
making, thus allowing a significant improvement in the quality of life [124,125].

Figure 23. The multiomics method represented connects biological (i.e., signal inhibition, signaling
network and biochemical feedback) with DL modeling (backpropagation, prediction, convolution,
etc.), aiming to maximize the robustness of the approach for the identification of biochemical features
referred to specific phenotypes. Figure reprinted from Ref. [124] under the terms of the Creative
Commons Attribution Noncommercial License.
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With the aim to obtain an accurate metabolites identification from the observation of
the corresponding peaks in complex mixtures, Kim et al. [126] developed a convolutional
neural network (CNN) model, called SMART-Miner, which is trained on 657 chemical
entities collected from HMDB and BMRB databases. After training, the model is able to
automatically carry out the recognition of metabolites from 1H-13C HSQC NMR spectra
of complex metabolite mixtures, showing higher performance in comparison with other
NMR-based metabolomic tools (Figure 24).

Figure 24. Overlay of experimental HSQC spectra from a metabolite mixture (black correlations) and
the outcomes predicted by SMART-Miner (colored correlations). Figure reprinted with permission
from Ref. [126]. Copyright 2021 Wiley Periodicals, Inc.

Brougham et al. [127], by employing ANNs on 1H NMR spectra, performed a suc-
cessful classification of four lung carcinoma cell lines, showing different drug-resistance
patterns. The authors chose human lung carcinoma and adenocarcinoma cell lines together
with specific drug-resistant daughter lines (Figure 25). The ANN architecture was con-
structed at first using three layers and the corresponding weights were determined by
minimizing the root mean square error. Then, the authors analyzed networks with four
layers, two of which are hidden. Their results show that the four-layer structure with
two hidden layers provided a 100% successful classification [127]. These data are very
interesting in terms of the robustness of the used approach: the cell lines were correctly
classified, even though the effects were provoked by the operator and independently from
the spectra chosen for training and validation (Figure 25).
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Figure 25. (A) Example of 1H NMR spectrum for DLKP lung carcinoma cells. Labeled
peak corresponds to (a) CH3, (b) CH2, (c) CH2CH=CH, (d) CH2COO, (e) =CHCH2CH=, and
(f) HC=CH/CHOCOR. The highlighted intervals at 0.60–1.04 and 1.24–3.56 ppm were used for
statistical analysis. (B) PCA score plot including data from all four cell lines. (C) Residual mean
squares error vs. nodes number in the hidden layers, for the 3-layers (full symbols), and in the
second (empty triangles) and third (empty circles) layer for the 4-layers networks. Figure reprinted
from Ref. [127] under the terms of the Creative Commons Attribution License.

Very recently, Di Donato et al. [128] analyzed serum samples from 94 elderly patients
with early stage colorectal cancer and 75 elderly patients with metastatic colorectal cancer.
With the aim to separately observe each different molecular components, these authors
acquired one-dimensional proton NMR spectra by using three different pulse sequences
for each sample: (i) a nuclear Overhauser effect spectroscopy pulse sequence to observe
molecules with both low and high molecular weight; (ii) a common spin echo mono-
dimensional pulse sequence [129] to observe only lighter metabolites and (iii) a common
diffusion-edited pulse sequence to observe only macromolecules [128]. Their results,
taking advantage of Kaplan–Meier curves for prognosis and of a PCA-based kNN analysis,
allowed distinguishing relapse-free and metastatic cancer groups, with the advantage of
obtaining information about the risks in the early stage of the colorectal cancer disease.

Peng et al. [130], by using two-dimensional NMR correlational spectroscopy on the
longitudinal (T1) and transversal components (T2) of the magnetization relaxation time
during its equilibrium recovery, were able to perform a molecular phenotyping of blood
with the employment of supervised learning models, including neural networks. In detail,
by means of a fast two-dimensional Laplace inversion [117], they obtained T1–T2 correlation
spectra on a single drop of blood (<5 µL) in a few minutes (Figure 26) with a benchtop-
sized NMR spectrometer. Then, they converted the NMR correlational maps for deep
image analysis, achieving useful insights for medical decision making by the application
of machine learning techniques. In particular, after an initial dimensionality reduction
by unsupervised analysis, supervised neural network models were applied to train and
predict the data that, at the end, were compared with the diagnostic prediction made by
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humans. The results showed that ML approaches outperformed the human being and
took a much shorter time. Therefore, the authors demonstrated the clinical efficacy of this
technique by analyzing human blood in different physiological and pathological conditions,
such as oxidation states [130]. Concerning the analysis of different physiological conditions,
Figure 26 reports the T1–T2 correlational maps of blood cells at oxygenated (a), oxidized
(b), and deoxygenated (c) states. Three peaks with different relaxation times values were
observed and assigned to the different microenvironments that water experiences in the
considered samples of red blood cells. For the obtained maps, the coordinate for the bulk
water peak (slowest component) is shown at the upper left of the map indicating T2 and
T1 relaxations (in ms) and T1/T2-ratio, respectively. Instead, the coordinates of the fastest
components, due to hydration and bound water molecules [131], are reported close to the
corresponding correlation peak (Figure 26).

Figure 26. T1–T2 correlational maps in false colors of red blood cells at different conditions: oxy-
genated (a), oxidized (b), and deoxygenated (c). Figure reprinted from Ref. [130] under the terms of
the Creative Commons Attribution 4.0 International License.

5. Conclusions and Future Perspective

The role played by each metabolite (in terms of identification and quantification) is
essential to validate NMR spectroscopy potentiality in this field. Overall, NMR-based
metabolomics coupled with machine learning and neural networks improves its power,
especially in the food and biomedical fields, paving the way for innovative and hybrid
approaches for deep insights into the metabolic fingerprinting of complex biological ma-
trices. In fact, the number of identified metabolites is very low, and in some cases, the
metabolites profile analysis is difficult for the high noise level and the multicolinearity
with respect to the genomics case. However, the coupling of genomics and metabolomics
tools is still a goal to be achieved. To this purpose, the deep learning and neural network
approaches are the best methods to use, although the first step may involve the use of
linear discriminant analysis to select a subset of metabolites to be used as input for the
neural network analysis in view of an accurate classification as well as the generalizabil-
ity of the method. Therefore, some efforts are still necessary for applying deep learning
approaches on NMR metabolomics data, strictly related to the specific properties of the
selected/investigated metabolites, evaluating the dimensionality reduction problems and
improving the reliability of the evaluation models.
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Appendix A. Technical Aspects

Nuclear magnetic resonance (NMR) is one of the most employed experimental tech-
niques for investigating the wide composition and structural complexity of biological
samples. The NMR technique is characterized by high reproducibility and ease of sample
preparation and measurement proceedings. NMR is a non-destructive technique able to
perform different measurements on the same sample, providing increasingly accurate and
detailed information. NMR also allows to reach a quantitative analysis and to carry out
in vivo metabolomics studies. Unfortunately, it has a relatively low sensitivity (µM), but,
in combination with chromatography, it shows a great potentiality for targeted analysis.
However, it is a relatively young experimental technique with continuous development
from both the hardware and software point of view (see Ref. [3] for a more details). For in-
stance, cryoprobes [132–134] and magic angle techniques [17,135,136] are today commonly
used for improving the signal-to-noise ratio, while AI methods are used both for signal
pre-processing, such as baseline optimization [137–139], and for data analysis, as discussed
in the main text of this review.

Briefly, the NMR working principle is based on the resonant excitation of the precession
dynamics of the nuclear magnetic moment under the effect of a static magnetic field. Nuclei
characterized by an odd number of protons and/or neutrons show a magnetic moment,
associated to the nuclear spin characterized by the corresponding quantum number (I).
Nuclei with I 6= 0 possess an intrinsic nuclear magnetic moment (µ) so producing a slight
local magnetic field (B0). Once immersed in an external magnetic field (B), these nuclei,
previously randomly orientated, align themselves either in the same or opposite direction
of B. These nuclei, subject to B, move in a precessional motion at a frequency called Larmor
frequency, which takes on values in the range of 50–900 MHz (see Figure A1). Indeed, it
is characteristic for each nucleus and increases with the strength of the external magnetic
field B. In this condition, if the system is irradiated with an electromagnetic radiation at the
corresponding Larmor frequency (resonance condition), nuclei can absorb the radiation
energy, and the nuclear spins can be promoted to a different Zeeman level.
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Figure A1. (A) Spectroscopies and corresponding frequency ranges. Larmor frequency of most used
nuclei for metabolomics analyses with respect to that of the proton when at 600 MHz. (B) Parts per
million intervals for all these nuclei (15N, 13C, 31P, 19F and 1H) at characteristic chemical environments.
Figure reprinted from Ref. [3] under the terms of the Creative Common CC-BY license.

When spins relax toward the fundamental state, they emit a radio frequency (damped
in time, called free induction decay (FID)) that well characterizes each nucleus of the
system, depending on the corresponding chemical environment that essentially exerts a
local magnetic field, causing a shift (chemical shift) from the pure Larmor frequency value.
This is commonly indicated by δ and measured in parts per million since the recorded
frequency is divided by the spectrometer working frequency such that the spectra acquired
with different instruments can be compared. Note that nuclei with I = 0, such as 12C and
16O, are NMR inactive [140,141].

Figure A1B reports the most common NMR active nuclei. Among them, 13C and
15N show a wide chemical shift range, together with a sharp line signal, but their poor
natural abundance and the low sensitivity (compared to other nuclei as 1H or 19F) limit
their employment in the metabolomic investigation. 31P has a good sensitivity (6.6 × 10−2

relative to 1H) and a wide spectral range, but only few metabolites, such as nucleoside
or phospholipids, contain it, restricting its employment to a few compounds. The same
comments can be done about 19F.

The high abundance in nature, high sensitivity and relevant gyromagnetic ratio of
1H makes 1D 1H NMR spectra especially useful in the metabolomic investigation. The 1D
1H NMR spectra are fast to record (few minutes) and just the information contained in
only one spectrum can provide useful data to identify and quantify from 50 to 100 metabo-
lites [142,143]. In this case, if nuclear spins are totally relaxed and no polarization transfer



Appl. Sci. 2022, 12, 2824 30 of 39

sequences are applied, the intensity of each acquired proton signal is correlated with the
corresponding concentration levels in the molecules, and the area under each peak is
directly proportional to the number of 1H constituting the corresponding residue, giving a
real distribution of the individual metabolites in the sample mixture. This quantification is
possible without previous calibration, thanks to the large linear dynamic range and signal
response that characterize proton NMR spectroscopy.

Another important aspect in the analysis of the 1H NMR spectra is the solvent suppres-
sion, and in this way, several protocols can be used. Commonly, the protonated solvent can
be replaced with a deuterated one; this procedure can also require the lyophilization of the
sample and the subsequent dispersion in the deuterated solvent. When this is not possible,
the solvent peak can be suppressed by using proper pulse sequences [144]. Regarding the
identification of metabolites constituting a biological matrix, when they have a unique and
high reproducible fingerprint at specific conditions (pH, solvent, temperature), the non-
target strategy can be adopted [145]. This consists of the employment of multimodal
models, which clarify how the NMR fingerprint of each sample and among the groups
correlate with each other, providing a static analysis. This strategy is very important to give
a first overview about the sample composition; however, it is not sufficient to analyze very
complex samples. In the latter case, it is more common to adopt the target strategy, which
consists in the comparison of the acquired data with available metabolite databases, such as
the Human Metabolome Database, Biological Magnetic Resonance Data Bank, Birmingham
Metabolite Library, Bbiorefcode (Bruker Biospin Ltd., Billerica, MA, USA) and Chenomx
library (Chenomx Inc., Edmonton, AB, USA) [145].

Figure A2 reports a 1H NMR spectrum acquired from human serum at 700 MHz:
55 different metabolites were identified and labeled in the recorded spectrum [3]. In par-
ticular, each proton signal can be attributed to the different components of the biofluid,
thanks to the high sensitivity of 1H nuclei, its natural abundance and the remarkably
narrow line widths, giving a remarkable spectrum resolution. Note that the high intensity
of the lactate peak is due to a conversion of the glucose in lactate during the prepara-
tion of the sample. To reach a certain assignment of the detected metabolic peaks 1D
1H NMR is sometimes not sufficient. This is due to the relevant numbers of resonances
with an ambiguous assignment, and to a peak overlap of the matrix’s components. Thus,
bi-dimensional (2D) NMR techniques, which investigate the spin–spin correlation among
1H-1H nuclei or with heteroatoms, such as 13C, 15N, 31P, are adopted. In metabolomic
studies, typical 2D NMR techniques are 1H-1H correlated spectroscopy (COSY) and total
correlation spectroscopy (TOCSY), 1H-13C heteronuclear single quantum coherence (HSQC)
and heteronuclear multiple bond correlation (HMBC). HSQC is a great experiment for
metabolites identification, which gives information on the direct connectivity between
protons and heteroatoms. In particular, the large chemical shift scale of 13C helps to solve
the tough issue of the overlapped signals in the proton spectrum, and the variety of HSQC
experiments can provide different sets of information on the investigated sample.

For instance, the potentiality of the HSQC technique was proved in the identification of
methyl groups of betaine and trimethylamine-N-oxide (TMAO). The proton resonances of
methyl groups in TMAO and betaine organic compounds are both close to δ = 3.26 ppm, and
thus, the signals are not distinguishable. Instead, the carbon chemical shift of methyl groups
in TMAO is assigned at 62.2 ppm, while that of betaine is at 55.8 ppm. This information can
be easily obtained by the 1H-13C HSQC experiment (see Figure A3), giving an unambiguous
identification of the two organic compounds [145]. HMBC is an appropriate technique
to analyze the correlations using the coupling of protons with heteroatoms, which are
separated up to four bonds, providing complementary information to that given by HSQC
for the structural characterization of metabolites.
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Figure A2. 1H NMR spectrum of ultrafiltered human serum at 700 MHz with the identified com-
pounds labeled above each of the corresponding peaks. Figure reprinted from Ref. [3] under the
terms of the Creative Common CC-BY license.
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Figure A3. 1H-13C 2D HSQC experiment to identify TMAO and betaine organic compounds of
a biological matrix. Figure reprinted from Ref. [145] under the terms of the Creative Common
CC-BY license.

Thus, metabolic identification can be easily reached by the combination of 2D-NMR
techniques with the metabolite databases. However, in some cases, the concentration of
metabolites is very low, and their peaks are often overlapped making their identification
difficult, even when employing 2D NMR techniques. In these cases, if the sharp chemical
shift of the compounds to identify is known, it is recommended to use a standard (reference)
compound, which is added in the concentration range 10–100 µM. For instance, this method
was applied to identify the uridine diphosphate (UDP) conjugates, which are present in
very low concentrations in cellular extracts with overlapped peaks, but their chemical shift
is well known and the signal-to-noise ratio (S/N) has sufficient intensity to be quantified
by 1D/2D NMR experiments [145]. Figure A4 shows in details how the spiking of pure
compounds into a mixture aids the identification of metabolites within the spectrum and
also its quantification by performing peak fitting of the two spectral regions corresponding
to UDP-nacetylglucosamin (UDP-Gluc-NAc). Note that the proton signal on the left side
(δ = 5.50 ppm) of UDP-Gluc-NAc is overlapped to that of galactose-1-phosphate (Gal-1-
P), whereas signals from the uridine group (δ = 5.95 ppm) superimpose with those from
UDP-glucose. In addition, without spiking, it is almost impossible to define the shift of the
methyl group belonging to UDP-Gluc-Nac acetyl (right region) since there is a big overlap
with other signals, such as the multiplets from glutamine and glutamate.

The addition of a standard is also employed to obtain an absolute quantification of
the metabolites contained in the sample. Therefore, the estimation of the metabolites
concentration can be made by comparing the area of the metabolites NMR peaks with that
of the reference sample by the following equation:

M
S

=
Im
Is
× Ns

Nm
(A1)
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in which M and S represent the amounts of the considered metabolite and that of the
reference, while Im and Is indicate the area under the curve of corresponding peaks, and Nm
and Ns represent the number of protons which contribute to these bands, respectively [145].
To quantify a small set of metabolites whose resonances are well-resolved peaks, also the
pulse length-based concentration determination (PULCON) quantitative NMR can be used.
It considers that the signal intensity is inversely proportional to the duration of the 90◦

pulse adopted to excite nuclei [146].

Figure A4. (A): The spiking of UDP-nacetylglucosamine (UDP-Gluc-NAc) allows its identification
and quantitation. (B): The same spectrum of A without the addition of UDP-Gluc-NAc. Figure
reprinted from Ref. [145] under the terms of the Creative Common CC-BY license.

Finally, another possibility for quantitative NMR analysis was reached by using a digi-
tal standard electronic reference to access in vivo concentration (ERETIC) technique [147].
It consists of the generation of a signal via a second channel of the probe and the addition of
it as a pseudo-FID during the acquisition of the proton experiment, resulting in a common
NMR signal [148]. Initially, the ERETIC technique required to be calibrated before running
the quantification measurements and some hardware rearrangements. Improvements of
ERETIC are ERETIC2 (Bruker Biospin, Topspin 3.0) and quantification by artificial signal
(QUANTAS) [149].

Considering the complexity of NMR spectrum of metabolites, often, peak integration
is not a sufficient method for the quantitative estimation, and in these cases, the decon-
volution approach is preferred. It consists in the fit of a target peak of the compound by
using the signal acquired from the reference compound [150]. Different specific software
for NMR, such as TopSpin (Bruker), MNova (Mestrelab Research), Spectrus Processor
(ACD/Labs), Delta (JEOL) and Chenomx NMR Suite (Chenomx Inc.) can be used for this
goal. Among them, JEOL Delta is the only one completely free of charge, while Chenomx
NMR Suite seems to show the best performance because it is based on a sophisticated
targeted profiling technology and on reference libraries containing hundreds of metabolite
spectral data, allowing a user-friendly deconvolution of complex NMR spectra [151]. The
spectral analysis and deconvolution can also be performed with non-specific software, such
as Matlab (The MathWorks, Inc.) or R (The R Foundation).

Several factors (i.e., pulse sequence changes or variation in the repetition time) in-
fluence the deconvolution process and its accuracy, including the variety of standard
compounds present in the library and the need to repeat the NMR data acquisition in the
same experimental conditions. Changes in the pulse sequence and/or the repetition time
result in a less accurate fitting. The performance of the deconvolution is also influenced
by the protons’ bond to nitrogen atoms, also called labile (for instance, the α-protons in
amino acids) [145]. These protons fast exchange with the solvent, and this not only makes
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it difficult to detect them, but also provokes changes in the line shape of the close protons
peaks. The result is an attenuated resonance, which does not precisely match with the
integral corresponding to the other proton peaks in the considered sample. Another error
regards the partial peak saturation of the protons, with a resonance close to the presatura-
tion peak of the solvent (commonly water). This was observed for the anomeric protons of
carbohydrates, which are frequently resonant close to the water signal, or also for the CH
quartet at δ 4.11 ppm in the lactate spectrum. Beyond these disadvantages, the deconvo-
lution approach is a great and widely employed tool for the metabolomic quantification
studies [145].

Generally, successful NMR metabolomics requires statistical analyses, which have
become progressively advanced over the years, and are the focus of this review. Dependent
and independent parameters are correlated by means of conventional approaches on the
basis of the mathematical relationship and, in turn, on model fitting. On the other hand,
machine learning approaches group input data based on a cluster classification without
any statistical assumption, while deep learning is devoted to find statistical inferences from
a large amount of input data. The future of NMR-based metabolomics is to generalize the
learning approaches to optimize predictive ability for specific diseases.
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