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Abstract: Deterministic lateral displacement (DLD) is a popular technique for separating micro-scale
and nano-scale particles continuously. In this paper, an efficient three-dimensional fictitious domain
method is developed for the direct numerical simulation of the motion of a non-colloidal spherical
particle in the DLD device (i.e., cylinder array), based on substantial modification of our previous
FD method. A combination of the fast Fourier transformation (FFT) and a tri-diagonal solver is
developed to efficiently solve the pressure Poisson equation for a DLD unit with a shifted periodic
boundary condition in the streamwise direction. The lubrication force correction is adopted in the
fictitious domain method to correct the unresolved hydrodynamic force when the particle is close to
the cylinder with the gap distance below one mesh, and the lubrication force is assumed to saturate
at a smaller critical gap distance as a result of the surface roughness effect. The proposed method is
then employed to investigate the effect of the critical gap distance of the lubrication force saturation
on the motion mode (i.e., separation size) of the particle in the DLD device. Our results indicate
that the lubrication force saturation is important to the particle critical separation size, and a smaller
saturation distance generally makes the particle more prone to the zigzag mode.

Keywords: deterministic lateral displacement; fictitious domain method; lubrication force saturation;
spherical particle

1. Introduction

The separation of particles is an important process in the medical laboratories and
biomedical industries. Some traditional separation technologies have been developed
for centuries, such as filtration, centrifugation, chromatography, and electrophoresis [1].
In recent decades, with the rapid development of micro-electromechanical systems (MEMS),
several continuous flow separation methods have been proposed in microfluidic de-
vices. Huang [2] proposed a size-based continuous separation technique, termed as “de-
terministic lateral displacement” (referred to as DLD). A schematic diagram of the DLD
device is shown in Figure 1. The DLD device is mainly composed of an ordered array of ob-
stacles such as cylindrical posts. The array has a fixed lateral shift between the neighboring
columns. Small particles are able to largely follow the undisturbed streamlines through the
array along a zigzag path (referred to as zigzag mode), whereas large particles travel across
the flow lane or the “separation” streamlines which go through the stagnation points of the
flow past the posts due to the interaction with the posts, being laterally displaced (referred
to as lateral-displacement mode), as shown in Figure 1.

The DLD separation technique is attractive due to its advantages of easy implemen-
tation, fast sorting speed, and high size-resolution, and has been widely used to separate
bioparticles [3–5], such as separation of the blood cell components [6,7] and separation of
living parasites [8] and circulating tumor cells [9] from blood.

The critical particle diameter for the separation or two motion modes is a key funda-
mental issue for the DLD separation technique, and has been investigated theoretically,
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numerically, and experimentally. Inglis [10] proposed a theoretical model for the critical
diameter of rigid particles, which was assumed to be equal to twice the width of the first
flow lane above the post surface, as shown in Figure 1. Although the theory generally
underestimates the critical diameters [10], it has been widely used as a convenient tool
to predict the critical separation size by using the single-phase flow field without solving
the particle–fluid interactions [11–13]. The effects of the post shape, the fluid property,
and the particle property on the DLD separation performance have been receiving much
attention. Regarding the post shape, the triangular post [11,12], the diamond and airfoil
post [14], the I-shaped post [15], and the airfoil post with various angle-of-attacks [13] have
been investigated. Regarding the fluid property, D’Avino [16] investigated the effects of
the shear-thinning property of the non-Newtonian fluids on the particle critical diameter
with a distributed-Lagrange-multiplier-based fictitious domain method and observed that
fluid shear-thinning contributed to decrease the critical particle diameter compared to
the Newtonian case by altering the flow field between the posts. Li [17] further demon-
strated experimentally that the critical diameter was affected by not only shear-thinning
but also elastic effects of the viscoelastic medium. The fluid inertial effects on the separation
performance were studied by Lubbersen [18] and Dincau [19]. Regarding the particle
property, Beech [20] experimentally examined the effects of the deformation of erythrocytes
in the DLD device, and found that the motion mode could be changed from the lateral
displacement to the zigzag, as the particle deformability was increased. The effects of the
particle flexibility on the separation has also been investigated by two-dimensional direct
numerical simulations [21–25] and three-dimensional simulations [26,27]. The reader is
referred to McGrath [3], Salafi [4], and Hochstetter [5] for a nice review of the progress in
the DLD field.
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Figure 1. Schematic diagram of the deterministic lateral displacement (DLD) device with the period-
icity of 3, illustrating the particle separation as a result of different motion modes for large and small
particles. There are three flow lanes between vertical neighboring posts separated by the streamlines
through the post-stagnation points for the periodicity of 3. Reproduced from Davis [6].

Despite wide applications of the DLD technique, there are still various fundamental
issues that have not been well resolved [5]. A full understanding of particle mode behavior
remains elusive, even for simple rigid spherical particles with cylindrical posts, as pointed
out by Hochstetter [5]. There exists some discrepancy in the critical particle size between
different experiments for rigid spherical particles with cylindrical posts [5]. The theory
underestimates the critical size measured in the experiments, as mentioned earlier, and the
reason should be related to the short-range interaction between the particle and the post. Al-
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though the particle motion in DLD has been investigated with various numerical methods,
such as the immersed boundary lattice Boltzmann method [24,26,28], immersed bound-
ary (or similarly fictitious domain) finite difference method [21,22], dissipative particle
dynamics [23,27], and boundary integral method [25], the effect of the lubrication force has
not been examined, to the best of our knowledge. In addition, most previous numerical
simulations are two-dimensional, with very limited three-dimensional simulations [26,27].
In the present study, we intend to develop a novel and efficient three-dimensional ficti-
tious domain method specified for the DLD problem and then examine the effect of the
lubrication force saturation on the motion mode of a non-colloidal spherical particle in the
cylindrical post array. Our results show that the lubrication force saturation is important to
the particle critical separation size, and a larger saturation distance generally makes the
particle more prone to the lateral displacement mode. The rest of the paper is organized
as follows. In Section 2, we present the numerical method, and the mesh convergence test
for the single-phase flow in DLD is performed. In Section 3, we report and discuss the
results on the effect of the lubrication force saturation. Finally, we summarize the main
contributions of the present study in Section 4.

2. Numerical Model
2.1. Flow Model

We have developed the direct-forcing fictitious domain (DF/FD) method [29] for the
direct numerical simulation of particle-laden flows, based on the modification of the original
distributed-Lagrange-multiplier-based FD method of Glowinski [30]. The key idea of the
FD method is to fill the interior domain of particles with fictitious fluids, and distribute a
pseudo-body force (i.e., distributed Lagrange multiplier) over the solid region to enforce
the rigid-body constraints [30]. Our FD method has been applied to the motion mode of a
flexible particle in a two-dimensional DLD device [22] and a wide range of particle-laden
flows (e.g., [31–34]). However, it is not possible to apply our FD code to a three-dimensional
DLD geometry with a great many number of posts and inlet–outlet boundaries due to
huge computational costs. Thus, following Krüger [26] and Henry [27], we adopt a DLD
cell with the periodic boundary condition in the lateral (y) direction and a shifted periodic
boundary condition in the streamwise (x) direction, as shown in Figure 2. The no-slip wall
boundary condition is imposed in the spanwise (z) direction, since we plan to examine the
spanwise spatial constraint effect on the motion of the bioparticle in the DLD device [35]
in the future. A pressure gradient is imposed in the streamwise direction to maintain a
constant fluid mean velocity Um. The size of the computational domain (i.e., DLD cell) is
Lx × Ly × Lz. The cylinder with the diameter of D is located at the center of the x− y cell.
In the present study, we set Lz = Lx/2 = D, and Lx = Ly = 2D, so that the gap distance
between vertical neighboring posts (i.e., Lg in Figure 1) is Lg = D. For a row shift of ∆S,
the shifted periodic boundary condition implies that

u(x, y) = u(x + Lx, y + ∆S). (1)

The row shift fraction is defined as ε = ∆S/Ly, and the periodicity of the DLD system
is N = Ly/∆S = 1/ε when Ly/∆S is an integer.

Two significant modifications of our previous FD method are required. One is on the
fast solver for the pressure Poison equation specified for the shifted periodic boundary
condition, and the other is that our previous half-staggered finite-difference scheme was
found unstable for this problem, and so the conventional staggered finite-difference scheme
is then adopted. In the following, we describe our modified FD method for the motion of
one particle in the DLD cell.
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Figure 2. Flow model of a DLD cell containing a stationary cylinder and a moving particle. The peri-
odic boundary condition is imposed in the lateral (y) direction and the streamwise (x) direction with
a shifted distance.

2.2. Fictitious Domain Method

Suppose that the particle density, volume, moment of inertia, translational velocity,
and angular velocity are ρs, Vp, J, U, and ωp, respectively. The viscosity and density of
the fluid are µ and ρ f , respectively. Let P(t) represent the solid domain and Ω the entire
computational domain containing both solid and fluid regions. We introduce the following
characteristic scales for the non-dimensionalization: the cylinder diameter D for length,
the fluid mean velocity Um for velocity, D/Um for time, ρ f U2

m for pressure, and ρ f U2
m/D

for the pseudo-body force. Then, the dimensionless FD formulation for the incompressible
fluid can be written as

∂u
∂t

+ u · ∇u =
∇2u
Re
−∇p + λ in Ω, (2)

u = U + ωp × r in P(t), (3)

∇ · u = 0 in Ω, (4)

(ρr − 1)V∗p (
dU
dt
− Fr

g
g
) = −

∫
P

λdx, (5)

(ρr − 1)
d(J∗ ·ωp)

dt
= −

∫
P

r× λdx. (6)

where u, p, λ, r represent the fluid velocity, pressure, pseudo-body force, and position
vector with respect to the mass center of the particle, respectively. ρr = ρs/ρ f is the particle
to fluid density ratio, Re the Reynolds number defined by Re = ρ f UmD/µ, Fr the Froude
number defined by Fr = gD/U2

m, with g being the gravitational acceleration, V∗p the
dimensionless particle volume define by V∗p = Vp/D3, and J∗ the dimensionless moment
of inertia defined by J∗ = J∗/ρsD5.

A fractional-step temporal scheme is used to decouple the system (2)–(6) into the
following two sub-problems:

Fluid sub-problem for u∗ and p:

u∗ − un

∆t
− 1

2
∇2u∗

Re
= −∇p− 1

2
[3(u · ∇u)n − (u · ∇u)n+1] +

1
2
∇2un

Re
+ λn, (7)

∇ · u∗ = 0. (8)
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We will introduce the solution of the fluid sub-problem later.
Particle sub-problem for Un+1, ωn+1

p , λn+1 and un+1:

ρrV∗p
Un+1

∆t
= (ρr − 1)V∗p (

Un

∆t
− Fr

g
g
) +

∫
P
(

u∗

∆t
− λn)dx, (9)

ρr
J∗ ·ωn+1

p

∆t
= (ρr − 1)[

J∗ ·ωn
p

∆t
−ωn

p × (J∗ ·ωn
p)] +

∫
P

r× (
u∗

∆t
− λn)dx. (10)

Then, the pseudo-body forces λ defined at the Lagrangian nodes are updated from

λn+1 =
Un+1 + ωn+1

p × r− u∗

∆t
+ λn. (11)

Finally, the fluid velocities un+1 at the Eulerian nodes are corrected as follows:

un+1 = u∗ + ∆t(λn+1 − λn). (12)

In the above manipulations, a discrete δ-function in the form of a tri-linear function is
used to transfer quantities between the Eulerian and Lagrangian nodes.

The no-slip boundary condition on the cylinder is enforced by introducing another
pseudo-body force distributed on the cylinder surface.

2.3. Solution of Fluid Sub-Problem

The following projection scheme is used to further decouple (7) and (8) as follows:

1. Velocity Helmholtz equation

u# − un

∆t
− 1

2Re
∇2u# =

1
2Re
∇2un + Hn, (13)

where Hn = −∇pn − 1
2 [3(u · ∇u)n − (u · ∇u)n−1] + λn.

2. Pressure Poison equation

∇2 ϕ =
∇ · u#

∆t
. (14)

3. Velocity and pressure correction

u∗ − u#

∆t
= −∇ϕ. (15)

pn+1 = pn + ϕ. (16)

The velocity Helmholtz Equation (13) is solved with the Douglas Gunn alternating-
direction-implicit (ADI) scheme [36]:

un∗ − un

∆t
− 1

2Re
∇2

xun∗ =
1

2Re
∇2

xun +
1

Re
(∇2

yun +∇2
zun) + Hn, (17)

un∗∗ − un∗

∆t
− 1

2Re
∇2

yun∗∗ = − 1
2Re
∇2

yun, (18)

u# − un∗∗

∆t
− 1

2Re
∇2

zu# = − 1
2Re
∇2

zun. (19)

In the above equations,∇2
x,∇2

y, and∇2
z represent the second-order derivative in the x,

y, and z directions, respectively. In the absence of Hn, the Douglas Gunn scheme above is
second-order accurate and unconditionally stable.

A homogeneous grid is used. For our previous FD method, a half-staggered grid
was employed, which means that the velocity components are collocated but the pressure
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nodes are staggered with the velocity nodes. Somehow this scheme was found unstable
for the present problem, and thus we adopt the fully staggered grid. The velocity deriva-
tives in the convection and diffusion terms are discretized with a second-order central
difference scheme.

The most time-consuming step for the incompressible flow is the solution of the
pressure Poison Equation (14). Here, we develop a combined FFT and tri-diagonal-system
fast solver for the present problem. The pressure is defined at the cell center and the
discretized pressure equation at the pressure node i, j, k can be written as follows:

pi+1,j,k + pi−1,j,k + pi,j+1,k + pi,j−1,k + pi,j,k+1 + pi,j,k−1 − 6pi,j,k = fi,j,k, (20)

for i = 0, M− 1; j = 0, N − 1; k = 0, L− 1. Here M, N, and L represent the cell numbers of
the computational domain in the x, y, and z directions, respectively. Since the pressure is
periodic in the y direction and its normal gradient on the side wall is zero, we perform an
FFT in the y direction and a fast cosine transformation in the spanwise (z) direction, and the
pressure in the physical space pi,j,k can be expanded with its spectrum Pi,n,l :

pi,j,k =
2

NL

N−1

∑
n=0

L−1

∑
l=0

Pi,n,le−
2πi′ jn

N cos
π(k + 1

2 )l
L

, (21)

where i′ denotes the imaginary number i′ =
√
−1.

Expanding all terms in (20) with (21), one can obtain the following equation for the
pressure spectrum:

Pi+1,n,l + Pi−1,n,l + Pi,n,l(2 cos
2πn

N
+ 2 cos

πl
L
− 6) = Fi,n,l , (22)

which is a tri-diagonal system and holds for i = 1, M− 2.
For the shifted periodic boundary condition, the equation for i = 0 and M− 1 needs

to be treated specifically. We assume that the row shift satisfies

∆S = jsh, (23)

where h denotes the mesh size. The pressure equation in the physical space for i = 0 (i.e.,
the first cell center node from the left) is

p1,j,k + pM−1,j+js ,k + p0,j+1,k + p0,j−1,k + p0,j,k+1 + p0,j,k−1 − 6p0,j,k = f0,j,k. (24)

Then, the pressure equation in the spectral space for i = 0 is

P1,n,l + PM−1,n,le
−2πi′ jsn

N
+ P0,n,l(2 cos

2πn
N

+ 2 cos
πl
L
− 6) = F0,n,l . (25)

Similarly, one can derive the pressure equation in the spectral space for i = M− 1:

P0,n,le
2πi′ jsn

N
+ PM−2,n,l + PM−1,n,l(2 cos

2πn
N

+ 2 cos
πl
L
− 6) = FM−1,n,l . (26)

Equations (22), (25), and (26) comprise a cyclic tri-diagonal system, which can be
efficiently solved with the code from [37]. We also employ the codes from [37] for the fast
cosine and Fourier transformations.

2.4. Lubrication Force Correction

Since the fictitious domain method is based on a fixed Cartesian grid, the short-range
lubrication force cannot be resolved when the gap distance between the particle and the
cylinder is smaller than one mesh. Thus, the lubrication force correction is needed. We
denote the particle radius and the cylinder radius as a and R, respectively, and define the
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size ratio as β = R/a, the gap distance between the particle and cylinder surfaces as δ,
and the normalized gap distance ε = δ/a.

The lubrication force correction has the following form:

Flub = −6πµaun[λ(ε)− λ(εc)], (27)

where un is the particle normal relative velocity with respect to the cylinder. εc is the critical
gap below which the lubrication correction is activated, and in the present study we set
εc = h/a, where h is the mesh size. λ(ε) is a function of the normalized gap distance
ε. Since we cannot find the formulation of the lubrication force between a particle and a
cylinder, we adopt the formulation for two spherical particles [38]:

λ(ε) =
β2

(1 + β)2
1
ε

(28)

Note that the lubrication correction is kept constant for δ < hs to account for the
lubrication force saturation due to the effect of the surface roughness. The lubrication force
is solved implicitly. It should be noted that the lubrication force for two spherical particles
is weaker than that for the particle–cylinder at the same gap distance, thus we consider our
computation of the particle motion reasonably accurate, not highly accurate.

2.5. Mesh Convergence Test

The modification of our previous FD code on the solution of the fluid field is substan-
tial, but there are no data on DLD in literature available for rigorously validating our code.
Hence, we perform a mesh convergence test for the solution of the flow in the absence
of the particle, which also helps to choose a suitable mesh resolution. The computational
domain size is 2D× 2D× D, as mentioned earlier. The profiles of the streamwise velocity
normalized with its maximum between vertical neighboring posts for the mesh numbers of
256× 256× 128, 128× 128× 64, 64× 64× 32, and 32× 32× 16 are compared in Figure 3.
One can see that the solution with the mesh 128× 128× 64 is in excellent agreement with
the one with 256× 256× 128.

0.0 0 2 0 4 0 6 0 8 1.0
0.0

0 2

0 4

0 6

0 8

1.0

Figure 3. Profiles of the streamwise velocity normalized with its maximum between vertical neigh-
boring posts for the mesh numbers of 256× 256× 128, 128× 128× 64, 64× 64× 32, and 32× 32× 16.

The mesh 128× 128× 64 is chosen for the simulation of the particle motion in DLD.
The smallest particle diameter we consider is 0.24D, which covers more than 15 meshes.
Our previous works showed that this mesh resolution is sufficient for the prediction of the
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particle motion with reasonable accuracy for various situations [22,29,31–34]. Throughout
this study, the Reynolds number based on the cylinder diameter and the fluid mean velocity
is Re = 0.2, as an approximation to the creep flow. Our test showed that further decrease in
Re does not change the result. The time step is 0.001D/Um, which was found to be small
enough for the time-step-independent particle trajectory. The particle is assumed to be
non-colloidal, and thus the Brownian motion does not need to be considered. The density
ratio is unity.

3. Results and Discussion

In the present study, we only consider the DLD geometries with the periodicity
N = 8, 16, and 32 (i.e., the row shift fraction ε = 0.125, 0.0625, and 0.03125), and the satu-
ration distance of the lubrication force hs ranging from 0.002R to 0.01R; here R being the
cylinder radius.

The particle trajectories for different particle sizes at hs = 0.01R and 0.005R till
t = 30D/Um in the DLD with the periodicity of N = 8 are plotted in Figure 4. We define the
motion mode as “lateral-displacement” (referred to as LD) only if the particle keeps moving
upwards along the same tilted channel, and otherwise as “zigzag mode”. Figure 4 shows
that at hs = 0.01R the motion mode undergoes a transition from zigzag for the particle
of d = 0.48D to LD for the particle of d = 0.5D. By contrast, the transition from zigzag
to LD takes place from d = 0.52D to d = 0.56D for hs = 0.005R, as shown in Figure 4b.
The particle of d = 0.52D moves with the LD mode for hs = 0.01R, but moves with the
zigzag mode for hs = 0.005R.

(b) h_s=0.005
d/D=0.48
d/D=0.52
d/D=0.56

(b) h_s=0.005R

d/D=0.48
d/D=0.50
d/D=0.52

(a) h_s=0.01R

Figure 4. Particle trajectories for different particle sizes at (a) hs = 0.01R and (b) hs = 0.005R till
t = 30D/Um in the DLD with the periodicity of N = 8.

Figure 5 shows the particle trajectories for d = 0.34D,0.4D,0.44D, and 0.48D at different
hs till t = 30D/Um in the DLD with the periodicity of N = 16. We see that the particle of
d = 0.4D experiences a mode transition from zigzag at hs = 0.005R to LD at hs = 0.01R
in Figure 5b, and the particles of d = 0.44D and 0.48D experience such transition from
hs = 0.002R to hs = 0.005R in Figure 5c,d. Therefore, the effect of the lubrication force
saturation on the motion mode is significant. The lubrication force serves as a repulsive
force when the particle approaches the cylinder and as an attractive force when the particle
moves away from the cylinder. From our results, the lubrication force tends to make
the particle more prone to the zigzag mode, consistent with the observation that the
experimental critical particle diameter is larger than the theoretical prediction (i.e., twice
the first flow lane width) [5,10]. As the saturation distance hs increases, the effect of the
lubrication force decreases, resulting in the transition from zigzag to LD, as observed above.
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(c) d/D=0.44

h_s=0.01R
h_s=0.005R
h_s=0.002R

(b) d/D=0.4
h_s=0.005R, 0.002R

(a) d/D=0.34
h_s=0.01R, 0.005R

(d) d/D=0.48

Figure 5. Particle trajectories for (a) d = 0.34D; (b) d = 0.4D; (c) d = 0.44D; and (d) d = 0.48D at
different lubrication force saturation distances hs till t = 30D/Um in the DLD with the periodicity of
N = 16.

We search for the critical particle diameter of two motion modes with the smallest
variation of the particle diameter being 0.02D. For example, for hs = 0.01R and N = 8
(i.e., ε = 0.125), the mode transition takes place from d = 0.48D to d = 0.5D, as shown
in Figure 4a, and then we take the critical diameter as dc = 0.49D for this case. From our
simulations, dc/D = 0.49, 0.35, and 0.27 for N = 8, 16, and 32 at hs = 0.01R, respectively,
and dc/D = 0.55, 0.43, and 0.27 for N = 8, 16, and 32 at hs = 0.005R, respectively. The critical
diameter is commonly normalized with the gap distance between vertical neighboring
posts Lg (see Figure 1). Here, dc/D = dc/Lg, since Lg = D. Our results on the critical
diameter are compared to the experiments of Inglis [10] in Figure 6, and good agreement
between the two results can be observed. hs may be regarded as the surface roughness in
the experiments, and the surface roughness of 0.01R may be reasonable for micro-posts
in lab.

From Figure 6, the critical diameter is higher at a lower hs for N = 8 and 16, as observed
in Figures 4 and 5; however, they are the same at hs = 0.01R and 0.005R for N = 32. Through
inspecting our simulation data for the particle of d = 0.28D (i.e., the smallest particle
moving with the LD mode for both hs) at hs = 0.01R and N = 32, the smallest gap distance
between the particle and the cylinder is around 0.02R, which is beyond the critical distance
(hs = 0.01R) to activate the lubrication force saturation. Thus, the particle motion is not
affected by setting of hs = 0.01R and 0.005R.
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Figure 6. Comparison between our numerical results and the experiments of Inglis [10] on the critical
particle diameter. The experimental fitting is dc/Lg = 1.4ε0.48.

For a larger row shift fraction ε (i.e., smaller periodicity N), the particle critical diameter
is larger, and the short-range hydrodynamic interaction between the particle and the
cylinder is stronger; thus, generally, we expect a stronger effect of the lubrication force
saturation on the particle motion mode, as evidenced by scattered experimental data on
the critical diameter at large row shift fractions [5,10]. The effect of the lubrication force
saturation due to the surface roughness may be an important reason for the discrepancy
between the critical diameters of different groups, as shown in Hochstetter [5].

4. Conclusions

We have developed an efficient three-dimensional FD method for direct numerical
simulation of the particle motion in the DLD device, based on considerable modification of
our previous FD method. A combination of the FFT and a tri-diagonal solver is developed
to efficiently solve the pressure Poisson equation for a DLD unit with a shifted periodic
boundary condition in the streamwise direction. The half-staggered grid is changed to the
fully staggered grid. Our results indicate that the lubrication force saturation is important
to the particle critical separation size, and a smaller saturation distance generally makes
the particle more prone to the zigzag mode.
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