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Abstract: The small strain theory underestimates the self-bearing capacity of rock masses, especially
for a soft rock tunnel under high geostress. To perform an efficient and accurate calculation and
provide a reference for the stiffness design of a tunnel, the finite strain solution for a circular tunnel
in Mohr–Coulomb strain-softening rock masses with a non-associated flow rule was derived as three
sets of differential equations under the Lagrangian coordinate, which are in the residue region, the
softening region, and the elastic region, respectively. Based on the bisection method, an iteration
procedure for solving the finite strain solution was proposed to approximate the boundary condition
at infinity, the values of two adjacent boundaries, and the initial values on the excavation boundary.
This numerical procedure was verified by comparing with self-similar solutions, recursive solutions,
and FLAC simulation results. In the calculation example, the relative error on boundaries can be
decreased to less than 10−8 after only 10 times iteration and the time for each calculation is less than
15 s. Applying this procedure on the sensibility analysis and stiffness reliability design for the Zhongyi
tunnel, a support stiffness of 4.3 MPa/m is recommended to guarantee a tunnel displacement lower
than 0.5 m.

Keywords: finite strain; circular tunnel; strain-softening rock masses; global sensibility analysis;
stiffness design

1. Introduction

With the rapid construction of transportation infrastructure, more and more tunnels
have been built in soft rock under high geostress. Large deformation occurs frequently
in such tunnel engineering and even causes roof collapse, steel ribs’ twisting and break-
ing, shotcrete cracking, lining cracking, the invasion of primary lining into the space of
secondary lining, and other disasters [1]. For instance, the maximum deformation of
the Muzhailing Tunnel located upon the Lanzhou–Haikou National Expressway exceeds
2000 mm, far exceeding the deformation allowance [2]. Similar problems are encountered in
the Muzhailing Railway Tunnel [3], Zhegu Mountain Tunnel [4], Huangjiazhai Tunnel [5],
Minxian Tunnel [6] and have also been predicted to appear during the construction of 43 soft
rock tunnels with high geostress in the Sichuan–Tibet railway [7]. The large deformation
hazard raises significant challenges for the design of the tunnel support system.

In recent years, scholars have been conducting considerable research on the mechanical
calculation of tunnels excavated in strain-softening rock masses. Alonso et al. [8] and Park [9]
derived a similarity solution for the circle tunnel in strain-softening rock mass, which it still
needed to be solved by a numerical method. Guan et al. [10] compared a simplified theoretical
method with a rigorous theoretical method for tunnel excavation in the rock masses exhibiting
strain-softening behavior. Park et al. [11], Lee et al. [12], Wang et al. [13], Zhang et al. [14],
Han et al. [15], Cui et al. [16], Zou et al. [17], Wang et al. [18], Zhang et al. [19], Xia et al. [20],
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and GhorbaniHadi et al. [21] proposed a series of new semi-analytical solutions and numer-
ical procedures for calculating the stress and displacement around a circular tunnel exca-
vated in strain-softening Mohr–Coulomb, generalized Hoek–Brown, or three-dimensional
nonlinear Hoek–Brown rock mass. Although these methods were applied well on the me-
chanical analysis and the tunnel design [16,22–27], they are based on the small deformation
hypothesis and not applicable to analyze a tunnel with a high risk of large deformation.

For the large strain problem, Durban [28], Yu and Rowe [29], and Vrakas [30,31]
derived finite strain closed-form solutions of circular opening issues in the elastic and the
elasto-perfectly-plastic continuous medium based on a geometric equation in Lagrangian
coordinates [32]. Park [33] proposed a large strain similarity solution, expressed as first-
order ordinary differential equations, for a spherical or circular opening in elasto-perfectly-
plastic rock masses. Mo et al. [34] described the confinement-convergence responses
for deep tunnels in linearly elastic, non-associated MC, and brittle Hoek–Brown rock
masses using large-strain solutions of unified spherical and cylindrical cavity contraction.
Zhang et al. [35] derived a large strain differential equations for elasto-brittle-plastic rock
masses and implemented a numerical procedure.

For a tunnel in strain-softening rock masses, Guan et al. [36] analyzed a highly de-
formed circular tunnel in the Lagrangian coordinate by dividing the plastic zone into n
concentric annuli and using analytical solutions for the elastic-brittle-plastic rock mass
within each annulus. Zhang et al. [37] derived the differential equations in the original
coordinate by the stress equilibrium equation and deformation compatibility equation and
proposed one numerical procedure which updated the variables of (i + 1)th annulus in the
softening region by the fifth-order Runge–Kutta method according to the data of the ith
annulus. Then Zhang et al. [38] converted differential equations into integral equations
and implemented a recursive procedure named ‘softening annulus loop’. In a similar
method, Xu et al. [39] developed a numerical solution for strain-softening rock masses
obeying the GZZ strength criterion. The recursion method in [36–39] inevitably leads to an
accumulative error which cannot be evaluated quantitatively and adjusted automatically.
Increasing the number of concentric annuli can reduce the accumulative error only by an
unknown extent and results in a loss of computation efficiency.

This paper aims at an accurate and efficient procedure for numerical finite strain
solutions of circular tunnels excavated in strain-softening rock masses to provide more
practical and applicable design references for soft rock tunnels with high geostress. In
the Lagrangian coordinate, the solutions in the elastic, softening and residue region of
a circular tunnel are derived in the form of the differential equations. A new procedure
for a numerical finite strain solution is implemented based on the iteration and bisection
method. The procedure’s accuracy and efficiency are verified by comparing it with previous
studies. This study performs a global sensitivity analysis of tunnel displacement using this
procedure and recommends the supporting stiffness for the design of the Zhongyi tunnel
based on the stochastic analysis results.

2. Problem Statement
2.1. Model Description

The calculation model is shown in Figure 1. It depicts an axisymmetric plane strain
issue of a circular tunnel excavated in an infinite, continuous, homogeneous, and isotropic
rock mass, subjected to uniform hydrostatic stress P0 at infinity and uniform support
pressure σ0 exerted on the wall. The original radius R and the deformed radius r repre-
sent the initial position and deformed(current) position of a material point, respectively.
Consequently, the radial displacement of the material point u can be defined as:

u = R− r (1)
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Figure 1. Tunnel excavation calculation model based on finite strain theory.

After the excavation, the tunnel radius decreases from its initial value R0 to the
deformed radius r0. For a rock mass following elastic-strain-softening behaviour, the
rock mass within a deformed radius rr reaches the residual state, the region outside a
deformed radius rp stays in the elastic state and the rock mass between rs and rp is in the
strain-softening state.

2.2. Governing Equations

For the finite strain model, the stress equilibrium equation of the rock masses in the
deformed state can be expressed as the differential equation, Equation (2).

dσr

dr
+

σr − σθ
r

= 0 (2)

where σr and σθ denote the radial stress and tangential stress, respectively.
The logarithmic function can accurately describe the geometric relationship between

radial displacement and strains. In the current polar coordinates, the geometric equation
can be expressed as follows:

εθ = ln
(u

r
+ 1
)

(3)

εr = ln
(

du
dr

+ 1
)

(4)

where εθ and εr denote the radial and tangential strains, respectively.
The total strain induced by excavation can be decomposed into the elastic part and the

plastic part as follows:

εr =
1

2G
[(1− v)(σr − P0)− v(σθ − P0)] + ε

p
r (5)

εθ =
1

2G
[(1− v)(σθ − P0)− v(σr − P0)] + ε

p
θ (6)

where the shear modulus G = E/2/(1 + v), E and v are Young’s modulus and Poisson’s
ratio, respectively; ε

p
r = 0 and ε

p
θ = 0 in the elastic rock mass.

2.3. Softening Parameters, Yield Criterion, and Evolutional Law

The plastic shear strain γp is the most widely used softening index governing material
parameters, which is defined as Equation (7).

γp = ε
p
θ − ε

p
r (7)
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According to the non-associated MC potential function, the relation of radial and
tangential plastic strains can be expressed as Equation (8).

ε
p
r + K(γp)ε

p
θ = 0 (8)

where K(γp) =
1+sin ψ(γp)
1−sin ψ(γp)

and ψ is the dilation angle.
The failure of the rock mass is governed by the strain-softening Mohr–Coulomb

yielding a function written as:

σθ = k(γp)σr + σc(γ
p) (9)

where k(γp) =
1+sin ϕ(γp)
1−sin ϕ(γp)

, σc(γp) =
2c(γp) cos ϕ(γp)

1−sin ϕ(γp)
; c and ϕ are the cohesive strength and

the friction angle respectively.
The evolution of material property parameters can be described by the piecewise

linear function [38]. Any strength parameter of the rock mass is linearly decreased from
the peak value ηp to the corresponding residual value ηr as shown in Equation (10).

η(γp) =


ηp γp ≤ 0
ηp −

(
ηp − ηr

)
γp/γp∗ 0 < γp < γp∗

ηr γp ≥ γp∗
(10)

where η denotes any one of the strength parameters such as ψ, c, and ϕ etc.; γp∗ is the
critical plastic shear strain, the subscripts ‘p’ and ‘r’ of η denote the peak and residual
values respectively.

2.4. Boundary Conditions

In the original or deformed state, the excavation disturbance for the rock mass at
infinity is infinitely small. Hence, the stress boundary conditions of the rock mass can be
expressed in the original coordinate as follows:{

σr = σθ = P0 R→ ∞
σr = p R = R0

(11)

3. Solutions for Stress and Displacement of Rock Mass

Using Equations (1), (3), and (4), the differential relation between the original coordi-
nate and the deformed is expressed as:

dr
r

=
dR
R

eεθ−εr (12)

Deriving from the above equations, the stress and displacement solutions are expressed
in the form of differential equations of the radial stress σr, the plastic shear strain γp, and
the tangential stress σθ.

3.1. Solution in the Residue Region

In the residue region, Equations (7)–(9) are simplified as Equations (13)–(15).

ε
p
θ =

(1− sin ψr)γp

2
(13)

ε
p
r +

1 + sin ψr

1− sin ψr
ε

p
θ = 0 (14)

σθ =
1− sin ϕr

1 + sin ϕr
σr +

2cr cos ϕr

1− sin ϕr
(15)
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Using Equations (5), (6), and (9), the differential formula dr/r can be rewritten as:

dr
r

=
dR
R

exp
[

1
2G

(
−2 sin ϕr

1 + sin ϕr
σr +

2cr cos ϕr

1− sin ϕr

)
+ γp

]
(16)

By substituting radial stress and dr/r in Equation (16) into Equation (2), the first
differential equation of the stress equilibrium equation can be obtained, expressed as
Equation (17).

dσr

dR
=

1
R

(
−2 sin ϕr

1 + sin ϕr
σr +

2cr cos ϕr

1− sin ϕr

)
exp

[
1

2G

(
−2 sin ϕr

1 + sin ϕr
σr +

2cr cos ϕr

1− sin ϕr

)
+ γp

]
(17)

The differential form of the tangential strain can be derived as Equation (18) by differ-
entiating the tangential strain regarding the initial radius in Equation (3) and substituting it
into Equation (16).

dεθ
dR

=
1
R
− dr

rdR
=

1
R

{
1− exp

[
1

2G

(
−2 sin ϕr

1 + sin ϕr
σr +

2cr cos ϕr

1− sin ϕr

)
+ γp

]}
(18)

Seeking the derivative of each term in Equation (6) regarding the initial radius r, and
another partial differential of the tangential strain can be expressed as Equation (19).

dεθ
dR

=
1

2G

[
(1− v)

1− sin ϕr

1 + sin ϕr
− v
]

dσr

dR
+

1− sin ψr

2
dγp

dR
(19)

From Equations (18) and (19), the second differential equation for the plastic shear
strain regarding the initial radius is as follows:

dγp

dR
=

k1

G

(
v− (1− v)

1
k

)
dσr

dR
+

2k1

R

{
1− exp

[
1

2G

(
−2 sin ϕr

1 + sin ϕr
σr + σc

)
+ γp

]}
(20)

where k1 = 1/(1− sin ψr).
The tangential stress can be easily obtained by substituting the radial stress into

Equation (7) and the displacement of rock mass material point can be calculated using
Equations (1), (3), (6), and (13).

u = R
{

1− exp
[
−(1− v)(σr − P0) + v(σθ − P0)

2G
− (1− sin ψr)γp

2

]}
(21)

3.2. Solution in the Softening Region

The derivation method of two differential equations for the radial stress and the plastic
shear strain in the softening region is like that in the residue region. Because the rock mass
strength properties vary with the plastic shear strain, the differential equations become
more complex.

Using Equations (5)–(7) and (9), the differential formula dr/r is rewritten as follows:

dr
r

=
dR
R

exp
{

1
2G

[(k(γp)− 1)σr + σc(γ
p)] + γp

}
(22)

Substituting the tangential stress in Equation (7) and dr/r in Equation (22) into the
stress equilibrium equation, the first differential equation of the radial stress regarding the
original radius is obtained as follows:

dσr

dR
=

(k(γp)− 1)σr + σc(γp)

R
exp

{
1

2G
[(

kp(γ
p)− 1

)
σr + σc(γ

p)
]
+ γp

}
(23)
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Like Equations (18) and (19), the differential form of the tangential strain to the original
radius can be written as Equations (24) and (25) respectively.

dεθ
dR

=
1
R
− 1

R
exp

[(
kp(γp)− 1

)
σr + σc(γp)

2G
+ γp

]
(24)

dεθ
dR

=
1

2G

[
(1− v)

dσθ
dR
− v

dσr

dR

]
+

dε
p
θ

dR
(25)

where dσθ
dR =

[
σr

∂k(γp)
∂γp + ∂σc(γp)

∂γp

]
dγp

dR + k(γp)dσr
dR and dε

p
θ

dR =
∂

[
γp

1+K(γp)

]
∂γp

dγp

dR .
Hence, the differential equation for the plastic shear strain in the softening region is

derived as Equation (26).

dγp

dR
=

1
R −

1
R exp

[
(k(γp)−1)σr+σc(γp)

2G + γp
]
− (1−v)k(γp)−v

2G
dσr
dR

1−v
2G

[
σr

∂k(γp)
∂γp + ∂σc(γp)

∂γp

]
+

∂

[
γp

1+K(γp)

]
∂γp

(26)

After solving Equations (23) and (26), the tangential stress can be obtained easily
by substituting the radial stress into Equation (7) and the displacement of the rock mass
material point in the softening region can be calculated by Equation (27).

u = R
{

1− exp
[
(vk(γp)− (1− v))σr + (1− 2v)P0 + vσc(γp)

2G
− (1− sin ψ(γp))γp

2

]}
(27)

3.3. Solution in the Elastic Region

In the elastic region, there is no plasticity. Hence, the radial stress and tangential stress
are taken as basic variables. The stress equilibrium equation and the compatibility equation
can be easily rewritten into differential equations of the radial stress and the tangential
stress, as Equations (28) and (29).

dσr

dR
+

σr − σθ
R

exp
(

σθ − σr

2G

)
= 0 (28)

dσθ
dR

=
1

1− v

{
2G
R

[
1− exp

(
σθ − σr

2G

)]
+ v

σθ − σr

R
exp

(
σθ − σr

2G

)}
(29)

The displacement of the rock mass material point in the elastic region is calculated
using Equation (30).

u = R
{

1− exp
[
−(1− v)(σr − P0) + v(σθ − P0)

2G

]}
(30)

4. Numerical Implementation Procedure

According to Equations (28)–(30), the stress and displacement of the rock mass in the
elastic region are determined by the initial values of the radial stress and tangential stress
on the boundary between the elastic region and the plastic region (Rp). In the softening
region, the tangential stress can be calculated by the radial stress and the plastic shear strain
by the yielding function. Accordingly, the radial stress and tangential stress on Rp can
be obtained by solving Equations (23) and (26), once the initial values of the radial stress
and the plastic shear strain on the boundary between the softening region and the residue
region (Rr) are known. Similarly, the initial values of the radial stress and the plastic shear
strain on the tunnel inner boundary (R0) determine the stress, the plastic shear strain, and
the displacement of any point in the residue region according to Equations (17), (20), and
(21). Hence, there are strict one-to-one correspondences between the rock mass stress P0
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at infinity and the plastic shear strain which decrease monotonously in the residue and
softening regions with R increasing when the support pressure is given.

4.1. Numerical Procedures for Calculating Limit Support Pressure

When the support pressure equals the softening limit value p∗rp, the plastic shear
strain on the tunnel inner boundary R0 exactly equals the critical plastic shear strain
γp∗. Comparatively, the plastic shear strain is equivalent to zero and the tangential stress
and radial stress on the tunnel inner boundary R0 just meet the yield criteria when the
support pressure equals the elastic limit value p∗pe. There are three states of the surrounding
rock, the residue-softening-elastic state, the softening-elastic state, and the elastic state,
with the support pressure being less than p∗rp, between p∗rp and p∗pe and greater than p∗pe
respectively. The flowcharts depicting the calculation procedures of p∗rp and p∗pe are shown
in Figures 2 and 3, respectively.
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The error tolerances of α and γ
Rp
p and the value of k∞ have an important influence on

the precision and accuracy of the calculation results. Ordinarily, greater k∞ and smaller

Tol
(

γ
Rp
p

)
and Tol(α) lead to better precision and higher accuracy of the results. In this

paper, Tol
(

γ
Rp
p

)
, Tol(α), and k∞ are taken as to 10−11, 10−8, and 105 respectively, of which

the rationality is verified in Section 5.
In Figure 2, the first values of Rp1 and Rp2 in the loop can be determined by the

following method: (1) set Rp(k) = R0 + δ1 + (k− 1)δ2 and calculate the plastic shear strain

γ
Rp
p (k) when R = Rp(k) by solving Equations (17) and (20); (2) repeat the above calculation

from k = 1 until γ
Rp
p (k) > 0 and γ

Rp
p (k + 1) < 0 and take Rp(k) and Rp(k + 1) as Rp1 and

Rp2 respectively. The value of δ1 and δ2 can be adjusted according to the accuracy and
computational efficiency. For the stability of solutions, take δ1 and δ2 equal to 10−5R0 and
10−4R0, respectively, in this paper.

4.2. Numerical Procedures for Three States

On the condition that the support pressure and other tunnel parameters are given, the
stress and displacement calculation can be divided into three scenarios when the support
pressure p is between p∗pe and P0, between p∗pe and P0, and smaller than p∗pe. The following
sections elaborate the numerical procedures for the calculation of stress and displacement
in the above three states.

4.2.1. Numerical Procedure for Elastic State

When the support pressure is greater than p∗pe and smaller than the geostress P0, the
rock mass stays elastic and the stress and displacement of the rock masses can be obtained
by the procedure coded as the flowchart in Figure 4.
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In Figure 4, the selecting method of the first values of σR0
θ1 and σR0

θ2 is like that of Rp1

and Rp2 in Section 3. At first, calculate σR∞
r when R = k∞R0.and σR0

θ (k) = 0.1(k− 1)P0 by
solving Equations (28) and (29) and repeat this calculation from k = 1 until σR∞

r (k) > P0

and σR∞
r (k + 1) < P0. Then take σR∞

r (k) and σR∞
r (k + 1) as the initial values of σR0

θ1 and σR0
θ2

in the loop respectively.

4.2.2. Numerical Procedure for Softening-Elastic State

There are the softening region and the elastic region in the rock masses when the
support pressure p is between p∗rp and p∗pe. The calculation for stress and displacement is
implemented as the flowchart in Figure 5.

In Figure 5, the selecting method of the first values of Rp1 and Rp2 is the same as
that in Figure 3. In order to get the first values of γR0

p1 and γR0
p2 , calculate α(k) when

γR0
p (k) = δ3 + (k− 1)δ4 and repeat this calculation from k = 1 until the signs of α(k) and

α(k + 1) are contrary. Then take γR0
p (k) and γR0

p (k + 1) as the initial values of γR0
p1 and γR0

p2

in the cycle computation. The value of δ3 and δ4 can be taken as 10−6γp∗ and 10−2γp∗

respectively, or smaller.

4.2.3. Numerical Procedure for Elastic-Softening-Residue State

The numerical procedure for the elastic-softening-residue state shown in Figure 6 adds
the searching procedure for the radius of the residue region Rr by the bisection method,
compared with the procedure in Figure 5. Once the initial value of the plastic shear strain on
the position R0 and the radii of the residue region and the plastic region are approximated
adequately accurately by the method of bisection while the other initial value of the radial
stress equals the support pressure, the stress and displacement of any point in the rock
masses can be calculated by solving Equations (17), (20), (21), (23), and (26)–(30).
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Figure 5. Calculation flowchart for softening-elastic state.

In Figure 6., the searching process for the first values of Rr1 and Rr2 is like the above
selecting process. Similarly, calculate iteratively the plastic shear strain γRr

p (k) when
R = Rr(k) = R0 + δ1 + (k− 1)δ2 from k = 1 until γRr

p (k) > γp∗ and γRr
p (k + 1) < γp∗ and

then take Rr(k) and Rr(k + 1) as the initial values.
The above five numerical procedures are integrated into the finite strain procedure.
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Figure 6. Calculation flowchart for elastic-softening-residue state.

5. Verification, Comparison, and Discussion
5.1. Verification for Finite Strain Procedure

For the verification, this study compares the proposed solution with the numerical
solutions in [37,38]. The parameters of the MC rock mass listed in Table 1 are the same
as those in ‘Figure 6’ provided by Ref. [37]. The relations between the dimensionless
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displacement u0/R0, Rp/R0, Rr/R0 and the dimensionless supporting pressure p/P0
are visualized by the scattered diagrams in Figure 7 with two sets of data calculated
by the procedure in this paper and former studies. Ref. [37] presents the results solved
by the recursive program (Zhang’s solution) and obtained by the finite finite-difference
method (FDM).

Table 1. Geometry and material property parameters.

MC Rock Value

Radius of opening, R0 (m) 3
Initial stress, P0 (MPa) 1

Young’s modulus, E (MPa) 30
Poisson ratio, v (-) 0.3

Critical plastic shear strain, γp∗ (-) 0.15
cp (MPa) 0.2
cr (MPa) 0.02
ϕp (Deg) 40
ϕr (Deg) 20
ψp (Deg) 10
ψr (Deg) 5
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Figure 7. Comparison between the results of this paper and Zhang’s: (a) Ground response curve
(GRC); (b) radii of residue region and softening region.

By the proposed procedure in this paper, the calculated limit support pressures p∗rp
and p∗pe are equal to 0.0945 MPa and 0.2006 MPa respectively. As shown in Figure 7,
the GRC and the evolutions of the softening region radius and residual region radius
calculated by the proposed procedure are virtually identical with those of Zhang’s solution,
which verifies the accuracy of the proposed numerical finite strain procedure. Without the
supporting pressure, u0/R0, Rp/R0, and Rr/R0 are 0.3196, 1.884, and 2.260 respectively,
slightly different with 0.3235, 1.87 and 2.25 in Zhang’s study. This difference is caused
mainly by the approximant treatment of the infinity.

In Zhang’s study, k∞ is taken as 50 to approximate the infinite boundary, whereas
k∞ equals 105 in this section. As shown in Figure 8, the value of k∞ obviously affects
the computational accuracy of u0/R0, Rp/R0 and Rr/R0. When k∞ reaches 1000, the
calculation results stabilize. In addition, the iteration times n have a decisive influence
on the accuracy as well. As shown in Figure 9, with the number of iterations increasing,
the values of u0/R0, Rp/R0 and Rr/R0 gradually converge and the magnitude of the
calculation error |α| decreases to about 10−14 which reaches the highest accuracy when
k∞ = 107. After iterating only 10 times, u0/R0, Rp/R0 and Rr/R0 become rather stable.
When the tolerances of the calculation relative error Tol(α) are 10−6, 10−8, 10−10, 10−12,
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and 10−14, the time for one whole calculation is 0.89 s, 1.18 s, 1.72 s, 1.98 s, and 2.82 s in this
numerical example. It shows that for the proposed procedure the significant improvement
of the precision does not affect the calculation efficiency excessively.
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Figure 8. Influence of k∞: (a) u0/R0 varying with k∞; (b) plastic radii varying with k∞.
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5.2. Comparison for Small Strain Procedure

Likewise, this iteration method can be applied to solve the excavating problem in
strain-softening rock masses under the small deformation hypothesis. The differential
equations and the calculation formula for the displacement in the elastic region, the soft-
ening region, and the residue region are derived and listed in Appendix A. Following
the procedures in Figures 2–6, the numerical procedure for circular tunnels excavated in
strain-softening rock masses is programmed based on the small deformation hypothesis.

In Figure 10, solutions obtained by finite strain procedure and small strain procedure
are compared with the authoritative Alonso’s self-similar solution [8], which is based on
the small deformation hypothesis. The small strain solution is consistent with Alonso’s
result, verifying the correctness and strong applicability of this iteration method. The
finite strain solutions, u0, Rp and Rr, are smaller than the small strain solutions. That
the gap between the two solutions decreases with the supporting pressure increasing,
illustrates that the small strain hypothesis underestimates the self-bearing capacity of the
surrounding rock and the finite deformation theory is more appropriate for the analysis of
large deformation tunnels.
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6. Application for Tunnel Design

During the construction of the Zhongyi tunnel in the Yunnan province of China, over
44% of the tunnel encountered large deformation and the maximum deformation was
larger than 600 mm. The main reason for this problem was the mismatch between the
support stiffness and the weak surrounding rock conditions [37,40]. This section adopts
the finite strain procedure to calculate the needed stiffness of the whole supporting system.
The three-cantered arch section is equivalent to a circular tunnel with a radius of 4.25 m.
The in-situ stress and rock mass parameters are as follows: P0 = 12 MPa, E = 0.95 GPa,
v = 0.3, γp∗ = 0.035, cp = 0.48 MPa, cr = 0.25 MPa, ϕp = 26

◦
, ϕr = 20

◦
, ψp = 16

◦
,

ψr = 12
◦

[37].
First, the finite strain procedure is integrated into one MATLAB toolbox called SAFE

(Sensitivity Analysis For Everybody) [41] to perform the sensitivity analysis of tunnel
deformation. The boundary of rock mass parameters is (µ− 3σ, µ + 3σ), where µ and σ
denote the mean value and the standard deviation of each parameter. The distribution
type of the rock mass parameters is normal distribution [42]. It is supposed that the
coefficient of variations (COVs) of the in-situ stress and of other parameters are 0.1 and
0.05, respectively. The support pressure is sampled randomly and uniformly between 0 and
0.25P0. According to the global sensitivity indices (Sobol indices) of each parameter in
Figure 11, tunnel deformation is most sensitive to the support pressure p compared to other
factors except for the inexorable geostress P0. Therefore, improving the support stiffness is
the most direct and effective means to control the tunnel deformation.

Furthermore, the stochastic analysis is performed by the Monte Carlo method to
optimize the stiffness of the support structure for the Zhongyi tunnel. All distribution
parameters are the same as the above but the range of the support pressure is [0, 0.5P0].
The sampling number is 20,000 and the time for each calculation is between 0.9 s and
15 s in a computer with Intel Core I 7-6700 CPU. The tunnel displacement and support
pressure are scattered in Figure 12a and the upper and lower envelope curves are depicted.
As the support pressure increases, the variation range of u0 becomes smaller. When the
deformation limit is 0.5 m, the range of the support pressure is between 0.72 MPa and
1.63 MPa.
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In the specific design process for the tunnel, calculating the needed stiffness is more
practical than predicting the tunnel displacement. Hence, the combined stiffness of the
primary support and the secondary lining is obtained by taking the displacement release
coefficient as 0.25 before installing the support structure [43]. As shown in Figure 12b, the
discrete degree of the displacement u0 significantly decreases with the stiffness k increasing.
When the combined stiffness is larger than 4.3 MPa/m, it can be guaranteed that the tunnel
displacement u0 will not exceed 0.5 m, smaller than the limit deformation. As for the
detail design, references [44–53] can be used to calculate the support stiffness, optimize the
support parameters, analyze the tunnel stability and perform the whole stiffness design for
the tunnel-support system.

7. Conclusions

This paper proposes a new numerical finite strain procedure for a circular tunnel in
MC strain-softening rock masses with a non-associated flow rule. First, the explicit form of
the differential relation between the original coordinate and the deformed coordinate is
established in the Lagrangian coordinate. Using the governing equations, yield criterion,
evolutional law, the solutions in the residue region, and the softening region are derived as
two sets of differential equations of radial stress and plastic shear strain and the solutions in
the elastic region are expressed as the differential equations of radial stress and tangential
stress. By directly solving the differential equations using the Runge–Kutta method, the
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problem of solving for the finite strain solution transforms into the problem of searching
for two adjacent boundaries of three regions (Rs and Rp) and the initial values on the
excavation boundary (R0).

Then the bisection method is adopted to approximate the true value based on the
characteristics that the dependent variables (radial stress, plastic shear strain and tangential
stress) in each region increase or decrease monotonously with the deformed radius. Two
numerical procedures of calculating p∗rp and p∗pe and three procedures for the solutions in the
residue-softening-elastic state, the softening-elastic state, and the elastic state respectively
are programmed and integrated into the finite strain numerical procedure. The proposed
finite strain procedure is validated by comparing with recursive solutions and FLAC
simulation results. By increasing k∞ and n, the calculation relative error |α| decreases to
about 10−14. When k∞ and n are greater than 1000 and 10 respectively for this numerical
example, u0/R0, Rp/R0 and Rr/R0 become rather stable. The proposed procedure directly
solves three sets of differential equations and uses the bisection method to approximate
the boundary conditions, realizing quantitative control for the calculation error. More
meaningfully, the highly efficient computing performance of the proposed procedure
creates conditions for its engineering application in the global sensitivity analysis and the
reliability design of the Zhongyi tunnel, which requires large sample data.

Moreover, this paper develops a numerical procedure for circular tunnels excavated
in strain-softening rock masses based on the small deformation hypothesis still using
the iteration method. The correctness of this iteration method was verified again by
comparing with a self-similar solution. However, this solution underestimates the self-
bearing capacity of the surrounding rock and is inappropriate to be used to analyze a large
deformation tunnel.

In the end, the finite strain procedure was adopted for the sensitivity analysis and
the reliability design of Zhongyi tunnel. The sensitivity indices of tunnel deformation
to support pressure and geostress are much higher than others. This study recommends
4.3 MPa/m as the designed support stiffness to guarantee a tunnel displacement lower
than 0.5 m.
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Appendix A

With the small deformation hypothesis, the formulas for stress and displacement of
rock mass in three regions are derived and listed as follows. All formula symbols are
consistent with the above formulas.

(1) Solutions in residue region
The solution of the radial stress and the tangential stress in residue region can be

expressed as Equations (A1) and (A2).

σr =
σ0(kr − 1) + σc

kr − 1

(
r

R0

)kr−1
− σc

kr − 1
(A1)

σθ =
kr[σ0(kr − 1) + σc]

kr − 1

(
r

R0

)kr−1
− σc

kr − 1
(A2)

where kr =
1+sin ϕr
1−sin ϕr

and σc(γp) =
2cr cos ϕr
1−sin ϕr

. The solution of the displacement in the residue
region is expressed as Equation (A3).

u = C
rkr − r−KR0

kr+K

K + kr
+ D

r− r−KR0
K+1

K + 1
+ r−KR0

Ku0 (A3)

where C = 1
2G

σ0(kr−1)+σc
(kr−1)R0

kr−1 [1− v− Kv + kr(K− Kv− v)], D = − (K+1)(1−2v)
2G

(
σc

kr−1 + P0

)
and K = 1+sin ψr

1−sin ψr
.

(2) Solutions in softening region
The differential equations of the radial stress and of the plastic shear strain with respect

to the original radius are derived as Equations (A4) and (A5).

dσr

dr
=

1
r
[(

kp(γ
p)− 1

)
σr + σc(γ

p)
]

(A4)

dγp

dr
=
− 1

2G
[
(1− v)kp(γp)− v

]dσr
dr −

1
r

1
2G
{[

kp(γp)− 1
]
σr + σc(γp)

}
− γp

r

1
2G

[
(1− v)σr

∂kp(γp)
∂γp + (1− v) ∂σc(γp)

∂γp

]
+

∂

[
γp

1+K(γp)

]
∂γp

(A5)

The displacement of rock mass material points in the softening region can be calculated
by Equation (A6).

u =
r

2G
[(1− v)(σθ − P0)− v(σr − P0)] + r

γp

1 + K(γp)
(A6)

(3) Solutions in elastic region
The solution of the radial stress and the tangential stress in the elastic region can be

expressed as Equations (A7) and (A8).

σr =
σ

Rp
θ + σ

Rp
r

2
−

σ
Rp
θ − σ

Rp
r

2
Rp

2

r2 (A7)

σθ =
σ

Rp
θ + σ

Rp
r

2
+

σ
Rp
θ − σ

Rp
r

2
Rp

2

r2 (A8)

where σ
Rp
θ and σ

Rp
r are the radial stress and tangential stress on the boundary between the

elastic region and the plastic region (Rp).
The displacement of rock mass in the elastic region can be calculated by Equation (A9).

u =
r

2G
[(1− v)(σθ − P0)− v(σr − P0)] (A9)
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