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Abstract: Traditional video object segmentation often has low detection speed and inaccurate results
due to the jitter caused by the pan-and-tilt or hand-held devices. Deep neural network (DNN) has
been widely adopted to address these problems; however, it relies on a large number of annotated data
and high-performance computing units. Therefore, DNN is not suitable for some special scenarios
(e.g., no prior knowledge or powerful computing ability). In this paper, we propose RoiSeg, an
effective moving object segmentation approach based on Region-of-Interest (ROI), which utilizes
unsupervised learning method to achieve automatic segmentation of moving objects. Specifically,
we first hypothesize that the central n × n pixels of images act as the ROI to represent the features
of the segmented moving object. Second, we pool the ROI to a central point of the foreground to
simplify the segmentation problem into a classification problem based on ROI. Third but not the
least, we implement a trajectory-based classifier and an online updating mechanism to address the
classification problem and the compensation of class imbalance, respectively. We conduct extensive
experiments to evaluate the performance of RoiSeg and the experimental results demonstrate that
RoiSeg is more accurate and faster compared with other segmentation algorithms. Moreover, RoiSeg
not only effectively handles ambient lighting changes, fog, salt and pepper noise, but also has a good
ability to deal with camera jitter and windy scenes.

Keywords: Region-of-Interest; moving object segmentation; unsupervised learning; classification
compensation

1. Introduction

Many researchers have proposed efficient solutions to solve foreground detection in
video object segmentation problems. Among these solutions, deep neural network (DNN)
methods have impressive performance with high accuracy. However, DNN architectures
need enough datasets and time to train the network for improving the accuracy, which
makes it not suitable for some special scenarios without enough training samples (e.g., de-
tection of air-dropped objects in military operations) or with strict time requirements
(e.g., the interception of a cannon against a shell). Moreover, these DNN-based methods
also require high-performance computing units to complete all the tasks, which is too
expensive for ordinary people. Background subtraction and frame difference are commonly
adopted in solving the video object segmentation problems [1,2]. There are several chal-
lenges existing in background subtraction and frame difference, such as including various
illumination changes, camera jitter, dynamic background, camouflage, shadows, bootstrap-
ping and video noise [3,4]. Although many useful algorithms for background modeling
have been designed, their performance is limited due to the complexity of algorithms, for
example, background subtraction and the modeling of a scene based on each pixel of each
frame [5]. Moreover, the accuracy of these algorithms is to some extent effected by wind
noise or camera jitter [6].

Appl. Sci. 2022, 12, 2674. https://doi.org/10.3390/app12052674 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12052674
https://doi.org/10.3390/app12052674
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2712-1959
https://orcid.org/0000-0003-3974-1271
https://orcid.org/0000-0002-5647-5369
https://doi.org/10.3390/app12052674
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12052674?type=check_update&version=1


Appl. Sci. 2022, 12, 2674 2 of 19

To deal with these challenges, we propose RoiSeg, an effective object segmentation
approach based on Region-of-interest (ROI), which utilizes unsupervised learning method
to achieve automatic segmentation of moving objects. RoiSeg hypothesizes the central
n∗n pixels of images as the ROI to reflect the features of moving object, then the classifi-
cation of all pixels is turned into that of ROI central points. In the field of classification,
the supervised learning methods usually provide a better accuracy compared with the
unsupervised learning methods, however, they inevitably need more annotated datasets,
hence increasing the workload of computing units [7]. To address this problem, RoiSeg
adopts an automatic generation method based on ROI to produce the training samples with
the unsupervised learning method. Moreover, RoiSeg also implements an online sample
classifier to compensate the imbalance of different classes.

We highlight our main contributions as follows:

• We propose RoiSeg, an effective object segmentation approach based on ROI, which
utilizes unsupervised learning method to achieve automatic segmentation of moving
objects. RoiSeg not only effectively handles ambient lighting changes, fog, salt and
pepper noise, but also has a good ability to deal with camera jitter and windy scenes.

• We hypothesize the central n∗n pixels as the ROI and simplify the foreground seg-
mentation into a classification problem based on ROI. In addition, we propose an
automatic generation method to produce the training samples and implement an
online sample classifier to compensate the imbalance of different classes, respectively.

• We also conduct extensive experiments to evaluate the performance of RoiSeg and the
experimental results demonstrate that RoiSeg is more accurate and faster compared
with other segmentation algorithms.

The rest of this paper is organized as follows. Section 2 presents a review of related
works. The description of RoiSeg is demonstrated in Section 3. The comparison experiments
are given in Section 4. Finally, the conclusion is drawn in Section 5.

2. Related Work

Video segmentation has attracted great attention and many researchers have proposed
to use DNN methods to solve this problem due to its impressive performance in this field.
However, DNN is obviously not suitable for scenarios with a small/no training samples.
Background subtraction, a crucial step in video object segmentation has attracted great
attention in the last two decades. The main idea of background subtraction is to build
a background model with a fixed number of frames. This model can be designed by
different methods, such as statistical, fuzzy, neuro-inspired, and so forth. Among these
methods, statistical methods have been intensively studied and widely used in various
applications [8–11]. For example, Xue et al. developed a message passing algorithm termed
offline denoising-based turbo message passing subtracting the background successfully
with a lower mean squared error and better visual quality for both offline and online
compressed video background subtraction [12]. Stauffer and Grimson implemented a
parametric probabilistic background model [13]. In this model, distributions of each pixel
color updated through an online expectation-minimization algorithm, were represented
by a sum of weighted Gaussian distributions defined in a given color space: the Gaussian
Mixture Model (GMM). Culibrk et al. adopted a neural network to determine whether each
pixel of the image belongs to the foreground or the background [14]. Yu et al. established a
spatio-color model based on both foreground and background, which used Expectation
Maximization (EM) to track the parameters of GMM [15]. Gallego et al. used EM in the
same way but modeled foreground and background at the region level and pixel level,
respectively [16]. Cuevas and Garcia proposed an algorithm for foreground extraction and
background updating using fuzzy functions and modeled both foreground and background
in a non-parametric way [17].

These algorithms mainly implemented foreground detection on each pixel of a frame
and may not be able to segment some parts of the background into foreground, resulting
in a lower accuracy than DNN methods. However, these algorithms can provide some
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real-time results to meet some time-sensitive tasks. In addition, it is useful to first segment
an ROI by frame difference before clustering and classification. In this paper, we propose
RoiSeg, an effective object segmentation method based on ROI, which utilizes unsupervised
learning to improve the accuracy of foreground segmentation and ensure the real-time
performance. RoiSeg includes two crucial designing methods, namely clustering and
classification methods.

Cluster analysis is a statistical multivariate analysis technique which is a common
method of unsupervised machine learning [18]. It divides a set of data points into several
classes, with the data points in each cluster being very similar but the data points in
different clusters being very different [19]. K-means is an excellent clustering method based
on segmentation. It iteratively calculates the distance from each point to the K-cluster
center, so that K clusters can be found in a given data set [20]. Seiffert et al. presented
an efficient initial seed selection method, RDBI, to improve the performance of the K-
means filtering method by locating the seed points at dense, well-separated areas of the
dataset [21]. Nidheesh et al. presented an improved, density-based version of K-Means,
the key idea of which is to select as the initial centroids data points which belong to dense
regions and which are adequately separated in feature space [22]. The Gaussian mixed
model (GMM) is a classic statistical model, in which samples are generated by a Gaussian
mixture distribution and the expectation maximization (EM) algorithm is used to update
the parameters of the model [23]. Unlike traditional methods of cluster analysis based on
heuristic or distance-based procedures, finite mixture modeling provides a formal statistical
framework on which to base the clustering procedure [24]. Theoretically, all the data points
can fit as long as the GMM has enough components, but the relationship between the
number of modes and the number of components in the mixture is very complex so it is
particularly important to determine the number of components. In this paper, we only use
two unsupervised clustering algorithms: the GMM and K-Means.

The popular Naive Bayesian classifier performs well in dealing with discrete data [25].
Naive Bayes can perform surprisingly well in classification tasks where the probability, itself
calculated by the Naive Bayes classifier, is not important. In recent years, many scholars
have studied Naive Bayesian classifiers and suggested several algorithms to improve
their predictive accuracy [26–28]. However, classifiers trained with imbalanced data tend
to generate results with a high true negative rate and low true positive rate. In data
mining and machine learning, it is difficult to establish an effective classifier for imbalanced
data [29]. Therefore, many scholars have proposed various methods to compensate for
it [30]. The common methods are as follows: algorithmic-level methods, data-level methods,
cost-sensitive methods, and ensembles of classifiers [31].

The threshold method and one-class learning method are the most efficient algorithm-
level solutions; the former sets different thresholds at different learning stages for different
types of data, whereas the latter uses specific data to train the classifier. Data-level so-
lutions are based on preprocessing the collected imbalanced training data set by either
downsampling or oversampling strategies. Gustavo showed that resampling solutions can
effectively solve the class imbalance problem and optimize classifier performance [32]. In
particular, preprocessing the imbalanced data before constructing the classier is simple
and efficient because the advantage of the data-level solution is to make the sampling and
classifier training processes independent [33]. The data preprocessing method is based on
the resampling of imbalanced data. Oversampling approaches are used to increase the
number of data samples in the minority class and downsampling approaches are used
to reduce the number of data samples in the majority class, respectively [34]. Common
resampling methods include the synthetic minority oversampling technique (SMOTE)
and random undersampling (RUS). RUS [21] performs similarly to SMOTE, but is based
on a downsampling process where some examples are removed from the majority class.
Lin et al. presented a clustering-based undersampling, which uses the K-nearest to cluster
the minority class into the class subset which consists of the difference between the majority
class and the minority class, resulting in a balanced training set [33].
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3. Design of RoiSeg

In this section, we will describe the designing process of RoiSeg. As shown in Figure 1,
RoiSeg consists of three modules, namely, ROI-central-point generation and feature extrac-
tion, automatic training-sample generation, and an online sample classifier. The purpose of
RoiSeg is to classify the foreground through the ROI central points. In the first module, the
frame difference and canny edge detection are used to transform the background modeling
of each pixel into an ROI-central-point-based classification problem, which greatly reduces
the amount of data operation. We then extract the features of the ROI central points and
provide them to the automatic training-sample generation. In the second module, the
characteristics extracted from the ROI central points are made into training samples using
ROI-central-point-based sample clustering and a proposed trajectory-based class classifier.
In the third module, we explore the training samples and find that they are class imbalanced.
A K-means oversampling method is proposed to solve the class imbalance problem and a
means to update training samples online is employed to compensate for the weaknesses of
the Bayesian classifier.
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Figure 1. The framework of RoiSeg.

3.1. ROI-Central-Point Generation

We use an imbalance degree η proposed in [35] to demonstrate the imbalance between
the foreground and background, as shown in Table 1.

Table 1. Imbalance Degree of BMC Database And Self-captured Sequences.

Dataset 112 122 212 222 312 322 412 422 512 522 My_video1 My_video2

η ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.0489 0.144 0.342 0.314

η =
sum(F)
sum(B)

, (1)

where sum(F) and sum(B) are the sums of foreground and background pixels. We compute
η on several subsets of the BMC database plus two self-captured sequences (“My_video1”,
“My_video2”). The result reveals that the foreground and background are relatively imbal-
anced. ∞ means the number of foreground is far greater than the number of background.

As shown in Figure 2, the moving targets often include the foreground and the
background [13]. The frame difference is intended to compute the difference between
the current frame and the previous frame in the video sequence and then segment the
moving targets. Suppose we have obtained the foreground frame shown in Figure 2c.
There is a significant change in the pixel value between the current and previous frames
at the position of the moving target. The moving target in the current frame is copied to
the corresponding position in the previous frame, and a new previous frame is obtained.
The moving target will not appear again if the new previous frame is subtracted from the
current frame, as shown in Figure 3.
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Background

Foreground

Background

Foreground

a b c

Figure 2. Frame difference. (a) Current frame. (b) Previous frame. (c) Binary frame.

a b c

d e f

g h i
Figure 3. Copy all ROI in current frame to previous frame. (a,d,g) are current frame; (b,e) are previous
frame; (c,f,h,i) are binary frame. (a–c) show the Process that copy all ROI in current frame to previous
frame. (d–f) show the Process that selectively copy ROI of current frame to previous frame. (g–i) The
moving target detected by the frame difference.

Following this principle, suppose we have classified the foreground and background.
The background of the current frame is copied to the corresponding position in the previous
frame, and a new previous frame is obtained. Foreground detection is then done if the
new previous frame is subtracted from the current frame, as shown in Figure 3. When the
moving target is detected by the frame difference (shown in Figure 3b), the Canny algorithm
is used to detect the contours of the moving target and then the bounding boxes of the
contours are obtained (as shown in Figure 3c). We call the region of the bounding boxes the
Region of Interest (ROI). Therefore, the classification of foreground and background can be
regarded as the classification of the bounding boxes. Furthermore, we use the center of the
bounding box (the ROI central point) to represent the bounding box so that foreground
detection is transformed into an ROI-central-point-based classification problem.
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3.2. ROI-Based Noise Filter

Figure 3c shows that the areas of the bounding boxes for noise are much smaller than
those of the foreground, because the bounding boxes for the vehicles and pedestrians
that we pay attention to are often larger than those of other moving targets [36,37]. Based
on this assumption, a bounding-box-area-based noise filter is proposed to remove the
bounding boxes whose area is below a preset threshold. Here, the threshold is set to 0.1%.
In this paper, we use 12 frame sequences as the experimental test set. Ten of them are
from the BMC dataset [38], and two are hand-captured high-resolution crowd walking
videos taken with a top-view camera, in which jitter was generated by shaking the camera.
The description of the experimental test set is shown in Table 2. The filtering thresholds
of the 12 videos are shown in Table 3. For the video test sets “112”, “122”, “212”, “222”,
“312”, “322”, “412”, and “422”, we find that after filtering with the preset threshold, all the
foregrounds are recognized, as shown in Figure 4.

Table 2. The description of the experimental test set.

Sequences Description Size

112 Cloudy, without acquisition noise, as normal mode 640 × 480
122 640 × 480

212 Cloudy, with salt and pepper noise during the whole sequence 640 × 480
222 640 × 480

312 Sunny, with noise, generating moving cast shadows 640 × 480
322 640 × 480

412 Foggy, with noise, making both background and foreground hard to analyze 640 × 480
422 640 × 480

512 Wind, with noise, producing a moving background 640 × 480
522 640 × 480

My_video1 Camera jitter 1280 × 720
My_video2 1280 × 720

Table 3. Threshold of the bounding box areas to classify foreground.

Video Sequences 112 122 212 222 312 322 412 422 512 522 My_video1 My_video2

Number of Video clips 1502 1503 1499 1499 1499 1501 1499 1499 1499 1499 390 390

number of pixels in a bounding box 304 218 304 218 304 218 304 218 304 218 1000 1000

Total area of frame covered by bounding boxes for noise (%) 0.1 0.07 0.1 0.07 0.1 0.07 0.1 0.07 0.1 0.07 0.1 0.1

There are two reasons for this phenomenon: first, the frame difference has good
suppression on ambient lighting changes, so the moving cast shadows and fog cannot be
detected. Second, the areas of the bounding boxes caused by salt and pepper noise, and so
forth, are usually far smaller than those of the foreground, such as cars and pedestrians.
However, for the video test sets “512”, “522”, “My_video1”, and “My_video2”, noise
produced by the wind or the camera jitter and by other dynamic background factors
dominates. The areas of the bounding boxes of such noise are random, usually varying
with the strength of the wind and the magnitude of the jitter. When the area of a bounding
box is larger than the threshold, noise is not be removed by area-based filtering. The
filtering result is shown in Figure 4. It is important to achieve high classification accuracy in
the Performance Comparison for the experiment (shown in Table 4) because a lot of noise
is removed. For the test sets “112”, “122”, “212”, “222”, “312”, “322”, “412”, and “422”, we
successfully obtain the foreground after filtering, so we do not need to use the second and
third modules to classify the foreground and the background. This is why we do not use
test sets “112”, “122”, “212”, “222”, “312”, “322”, “412”, and “422” in the experiment to
classify the foreground- and background-based ROI central points and instead only use the
test sets “512”, “522”, “My_video1”, and “My_video2”.
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Table 4. Performance evaluation of the five algorithm and proposed RoiSeg.

BMC
Sequences

DPWren GABGS Mixture Of Gaussian V1BGS MultiLayer BGS Pixel Based Adaptive Segmenter LBAdaptive SOM Proposed RoiSeg

P R F FPS P R F FPS P R F FPS P R F FPS P R F FPS P R F FPS

112 0.87 0.87 0.87 70.2 0.96 0.74 0.84 89.3 0.92 0.95 0.93 5 0.88 0.9 0.89 15.6 0.86 0.92 0.89 20.6 0.89 0.93 0.91 115

122 0.91 0.87 0.89 77.6 0.96 0.7 0.8 70.5 0.91 0.94 0.93 2.2 0.9 0.88 0.89 13.2 0.88 0.93 0.9 22.3 0.91 0.94 0.92 120.6

212 0.92 0.86 0.89 58.3 0.97 0.74 0.84 70.3 0.94 0.94 0.94 2.5 0.89 0.89 0.89 8.2 0.79 0.77 0.78 15.5 0.89 0.93 0.91 70.6

222 0.93 0.86 0.9 59.2 0.96 0.7 0.81 70.6 0.94 0.93 0.93 3.5 0.9 0.87 0.89 7.6 0.89 0.92 0.91 14.2 0.91 0.94 0.92 85.1

312 0.65 0.78 0.71 70.4 0.98 0.68 0.8 73.8 0.96 0.87 0.91 2.4 0.88 0.87 0.87 11.2 0.52 0.84 0.64 19.2 0.89 0.93 0.91 103.2

322 0.89 0.78 0.83 63.2 0.95 0.65 0.77 65.9 0.94 0.85 0.89 4.3 0.9 0.8 0.85 12.3 0.54 0.85 0.66 15.1 0.91 0.94 0.92 88.3

412 0.53 0.76 0.62 62.1 0.98 0.69 0.81 87.7 0.71 0.84 0.77 3.1 0.85 0.82 0.84 11.5 0.51 0.78 0.61 13.3 0.89 0.93 0.91 98.1

422 0.53 0.75 0.62 69.3 0.97 0.64 0.77 75.8 0.77 0.79 0.78 3.9 0.85 0.77 0.81 10.4 0.51 0.78 0.62 15.1 0.91 0.94 0.92 85.8

512 0.63 0.86 0.73 73.4 0.82 0.74 0.78 76.8 0.65 0.93 0.76 4.1 0.82 0.89 0.86 14.1 0.52 0.88 0.66 18.3 0.81 0.91 0.86 102.3

522 0.8 0.86 0.83 70.3 0.91 0.69 0.79 72.2 0.88 0.93 0.9 3.3 0.89 0.87 0.88 12.4 0.67 0.92 0.78 21.6 0.89 0.93 0.91 99.1

My_video1 0.38 0.84 0.54 12.1 0.68 0.52 0.59 16.3 0.76 0.89 0.83 0.5 0.82 0.89 0.85 5.1 0.42 0.8 0.55 6.5 0.9 0.91 0.86 42.23

My_video1 0.3 0.83 0.44 11.3 0.8 0.48 0.6 13.5 0.75 0.84 0.79 0.45 0.75 0.85 0.8 4.5 0.23 0.87 0.36 3.2 0.86 0.86 0.86 39.62

Figure 4. Experimental results with filtering. Left to right: “112”, “122”, “212”, “222”, “312”, “322”,
“412”, “422”,“512”, “522”, “My_video1”, “My_video2”. Top to bottom: Original frame, Binary frame
without filtering, Binary frame with filtering.

3.3. Automatic Training-Sample Generation

In Section 3.2, we get input samples, but these samples are unlabeled original samples
and cannot be used as training samples for the classifier. In order to obtain labeled training
samples, we propose an ROI-central-point-clustering method and a class detector.

3.3.1. ROI Pooling and Feature Extraction

For those videos not classified with the aforementioned noise filter, we are required to
develop further feature extraction methods to enable noise reduction.

Let Zt =
{

zt
i
}

be a frame at time t, zt
i represent each pixel in Zt, and i generally refers

to the i-th element in the set. We choose the (ri, gi, bi) color feature and the coordinate
(xi, yi) of zt

i as the spatio-color feature space zt
i =

(
rt

i , gt
i , bt

i , xt
i , yt

i
)
. For the ROI central point,

a 5-tuple vector in the spatio-color feature space is selected as the zt
i =

(
rt

i , gt
i , bt

t, xt
i , yt

t
)

classification-learning feature. In Section 3.1, we used the center of the bounding box
to represent the ROI central point. We also process the ROI central point with mean-
pooling. Experiments show that using the pooled ROI central point zt

i =
(
rt

i , gt
i , bt

t, xt
i , yt

t
)

as
a learning feature can provide good foreground detection results, as shown in Table 4 in
the columns for the proposed method. The advantage of this method is that it reduces the
computation load and guarantees good classification accuracy.

3.3.2. ROI Central Point Based Sample Clustering

We noticed that the background noise is often bound to a specific area. In adjacent
frames, however, a moving target’s coordinates are also similar. Regardless of the fore-
ground or background, the same type of target has more similar color features R, G, and
B. In this section, we cluster ROI central points with similar characteristics. A GMM is a
function to estimate the probability density of the exact polymorphism. It has excellent
performance in clustering and its general form is as follows:

P(xi) =
k

∑
j=1

αjG

(
xi; µj; ∑

j

)
. (2)
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The weighted coefficient αj is satisfied as follows:

k

∑
j=1

αj = 1, 0 ≤ αj ≤ 1. (3)

The j-th component (j = 1, . . . , k) is shown below:

G

(
xi; µj; ∑

j

)
=

∣∣∣∑j

∣∣∣− 1
2

(2π)
d
2

e−
1
2 (xj−µj)

r
∑−1

j (xj−µj), (4)

where µj and ∑j represent the i−t1 mean vector and covariance matrices, respectively.
We choose zt

i =
(
rt

i , gt
i , bt

t, xt
i , yt

t
)

as xi, which is the input of the GMM. All ROI central
points in the first l frames (here we set l = 5) are used as input samples for the GMM.
For example, we use the 3-Component GMM, so the ROI central points are clustered into
3 similar clusters, red, blue and yellow sets, as shown in Figure 5. However, the number of
components determines the clustering accuracy of GMM. We choose precision (P), recall
(R), and F-Measure (F) for performance evaluation:

precision =
TP

TP + FN
, recall =

TP
TP + FP

, (5)

F =
2× precision× recall

precision + recall
. (6)

TP, FN and FP are the number of true positive, false negative, and false positive
pixels, respectively. Figure 6 shows that F increases with the number of components
increases. However, when this number reaches 6, the growth of F tends to be slow. Figure 7
shows that FPS drops with the increase of the number of components. The reasons are as
follows: with the number of GMM components increasing, the data-fitting ability of the
GMM is gradually enhanced, so the F value increases; meanwhile, the computation load
is also increasing, which leads to the reduction of FPS; finally, the number of components
increasing makes it easy for the GMM to over-fit the data. As such, we set the number of
components to 6. Figure 6 demonstrated that F is between 0.87 and 0.91, which means that
we can use the pooled ROI center point as the input of the GMM.

Figure 5. The clustering result with the 3-Component GMM of the 7-th, 8-th, 9-th, 10-th frames in
My_video1.
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3.3.3. Trajectory Based Class Classifier

Figure 5 shows that in the 1st, 2nd, and 4th clips, the red set represents the foreground,
and the blue and yellow sets represent the background. In the 3rd clip, pedestrians were
incorrectly detected as another cluster, unlike in the 1st, 2nd, 4th clip. The reason for this is
that it is difficult to classify the foreground and background using a GMM because it is a
clustering method.

Therefore, we propose a trajectory-based-classifier method to foreground and back-
ground. Suppose Gt−s+1 · · ·Gtare the clustering results for the first s frames:

Gt =
{

gt
1, gt

2, · · · , gt
m
}

, m = 1, 2, · · · , k, (7)

where Gt means the tth frame clustering result and m = k means there are k cluster
in Gt. gt

m =
{

xt
m1, xt

m2, · · · xt
mn
}

, n = 1, 2, · · · , num, where gt
m represents the mth cluster,

xt
nn =

(
rt

i , gt
i , bt

i , xt
i , yt

i
)

represents the pooled ROI central point, and num is the total number
of ROI central points in gt

m. Clusters in Gt the current frame are matched one-by-one with
clusters in of Gt−1 the previous frame and if the matching is successful, they are considered
the same type of target. Our proposed trajectory-based-classifier method is as follows:
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(1) Calculate the mean-feature ḡt
m of each cluster

ḡt
m =

1
num

mon

∑
n=1

xt
mn =

1
num

(
mm

∑
n=1

rt
n,

mm

∑
n=1

gt
n,

mun

∑
n=1

bt
n,

mon

∑
n=1

xt
n

mon

∑
n=1

yt
n

)
. (8)

The mean-feature of all clusters in each frame is:

Ḡt =
{

ḡt
1, ḡt

2, · · · , ḡt
m
}

, m = 1, 2, · · · , k. (9)

(2) Find the same class in adjacent frames
In adjacent frames, if a cluster gt−1 in the previous frame is the same type of target as

a cluster gt in the current frame, they have similar ḡt. If they are not the same target type,
they often have significant differences. The ḡt of each cluster in the previous and current
frames is ordered accordingly, from small to large. The ḡt of the same sequence location
is the same type of target because ḡt of the same type of target is very similar in adjacent
frames. In this way, we can compare two ascending-order clusters in adjacent frames to get
the same classes of foreground objects, thus reducing the cost of computation. Then we use
this method to match the same type of target in the first s frames. For example, the first
4 frames matched the result shown in Figure 8. As a result, we changed the classification
in Figure 5 and classified the pedestrians as red, the chairs in the middle as blue, and the
chairs on the right as yellow, as shown in Figure 8.

Figure 8. The first 4 frames matched this result.

(3) Label Positive and Negative Samples with Trajectories
We need to identify each class as foreground or background. When we obtain a class

of targets in the first s frames, its displacement can be calculated. The proposed principle is
as follows: The position coordinates of the mean-feature of the same cluster in the first s
frames are denoted as [(x̄t−s+1, ȳt−s+1), (x̄t−s+2, ȳt−s+2), · · · , (x̄t, ȳt)]. Then, we compute
the moving distance of the clusters in t− 1, . . . , t− s + 2, t− s + 1 and t. We assume that
the foreground displacements are increasing in a certain direction in adjacent frames, while
the background often remains still or exhibits jitter with uncertain directions. If the moving
distance of one cluster is increasing in the first s frames, it is classified as foreground;
otherwise it is classified as background.

X =


0,
√
(x̄t−1 − x̄t)

2
+ (ȳt−1 − ȳt)

2,< · · · ,

<
√
(x̄t−s+2 − x̄t)

2 + (ȳt−s+2 − ȳt)
2,<√

(x̄t−s+1 − x̄t)
2
+ (ȳt−s+1 − ȳt)

2

1, else

(10)

where X = 0 means foreground, marked as XF, andX = 1 means background, marked as
XB. After the foreground and background classes are categorized, the original samples
can be used as a labeled training sample, represented as X =

{
XF, XB

}
, v =

{
0, 1
}

. In
Figure 9, the red and yellow sets represent foreground and background, respectively. In
this method, the correct selection of the value s has a great impact on the accuracy of the
foreground and background detection. If s is too small, it is easy to misjudge a background
element as foreground. If s is too large, the method may misjudge part of the foreground as
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background. Therefore, we experiment on video test sets to decide s. We define precision
for foreground and background detection as c:

c =
sum(True)

sum(Frame)
, (11)

where sum(Frame) is the sum of the test frame sequences, and sum(True) is the sum of the
correctly judged test frame sequences. In Table 5, we find that when s = 6, c has the highest
value in most cases, and can almost reach 0.9.

Table 5. The precision for classify the foreground and background.

Dataset Video Clips 2 3 4 5 6 7 8 9 10

512 1499 0.528 0.683 0.856 0.914 0.924 0.919 0.903 0.839 0.789

522 1499 0.579 0.654 0.887 0.912 0.908 0.878 0.854 0.803 0.776

My_video1 390 0.471 0.589 0.718 0.842 0.903 0.879 0.803 0.753 0.684

My_video2 390 0.521 0.571 0.733 0.883 0.899 0.857 0.794 0.709 0.649

Figure 9. Result of detecting foreground and background: the red sets represent foreground and the
yellow sets represent background.

3.4. Online Sample Classifier
3.4.1. Imbalance Compensation

The training samples are class imbalanced, as shown in Table 6. To better train the
online classifier, we need to resample the training set to obtain balanced data. A K-means
oversampling method is adopted to compensate for this imbalance. The methods are
as follows:

(1) Calculate the total number of samples in the foreground, NF, and in the background,
NB, respectively. Then, calculate the difference between them: K = |NB− NF|.

(2) Use the K-means method to preprocess minority classes to get K clusters, calculate
the mean of each cluster, then use the means as new minority-class samples. The new
samples are added to each training sample so we get a set of balanced training samples.

Table 6. Imbalance degrees of training sets.

Imbalance Degree 512 522 Video1 Video2

η 0.184 0.538 0.421 0.523

The imbalance degrees are different in Tables 1 and 6, because we use ROI-based area
filtering, mentioned in Section 3.2.

3.4.2. Online Sample Updating

We use the new balanced training samples as training sets for the Naive Bayesian
classifier. We use the ROI center points of the latest frame as the test set. After the Naive
Bayesian classifies the test set, we get foreground and background represented as follows:

X = {
[
(r1, g1, b1, x1, y1), · · ·

(
rNF , gNF , bNF , xNF , yNF

)]
,[

(r1, g1, b1, x1, y1), · · ·
(
rNB , gNB , bNB , xNB , yNB

)]
}.
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Thus, we can get background bounding boxes and copy the pixels in the bounding
boxes to the previous frame. Using the frame difference algorithm to process the new
previous frame and the current frame, the foreground can then be segmented. To update
the trained samples online, the newly classified foreground and background are added
to the training samples. Then, we train the Naive Bayesian classifier with the updated
training samples so that we can detect the foreground online.

The experimental results of the training classifier with imbalanced training sets are
shown in Figure 10, and the precision results are shown in Figure 11a. The experimental
results of training the classifier with the balanced and updated training sets are shown in
Figure 12, and the precision is shown in Figure 11b. Red represents the background and
yellow represents the foreground, respectively. Figure 11a,b demonstrated that P increased
by 22.7%, R increased by 2.1%, and F increased by 23.4%. This means using the proposed
K-means oversampling method and online updating training samples to compensate for
the weaknesses of the classifier is effective, especially for P and F.

Figure 10. Experimental results from the Naive Bayes with imbalanced training sets. Top to bottom:
results for “My_video1”, “My_video2”, “512”, “522”.

Figure 11. (Left) Performance evaluation for classifier with imbalanced training sets. (Right) Perfor-
mance evaluation for classifier with the balanced and updated training sets.
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Figure 12. Experimental results from the Naive Bayes with the balanced and updated training sets.
Top to bottom: results for “My_video1”, “My_video2”, “512”, “522”.

4. Evaluation

In this section, we compared RoiSeg with the traditional foreground segmentation
algorithms. Because the CNN foreground segmentation algorithms are not suitable for
these scenarios due to their strict real-time requirements. Sobral tested and compared
29 background subtraction algorithms and recommended five of the best, namely DP-
WrenGABGS, MixtureOfGaussianV1BGS, MultiLayerBGS, PixelBasedAdaptiveSegmenter
and LBAdaptiveSOM [38]. In this paper, we used these five algorithms to compare with
our proposed method and the hardware of our experiment is a Lenovo desktop with
Intel(R) Core(TM) i5-4590 CPU @ 3.3 GHz, 8 GB RAM, Win 10 64bit system. Because the
foreground detected by frame difference has an aperture, we manually filled some aperture
in the foreground in order to evaluate our algorithm using P, R and F. As the size of the
self-captured sequences “My_video1” and “My_video2” were 1280 × 720 and that of the
sequences provided by the BMC database was 640 × 480, the FPS we give was the average
for all test sequences.

In Section 3.2, for the video sequences “112”, “122”, “212”, “222”, “312”, “322”, “412”,
and “422”, we found that after filtering with the preset threshold, all foregrounds were
recognized. Thus, we did not need a classifier to distinguish foreground and background.
The results of running these five algorithms and the proposed RoiSeg on these eight
sequences are shown in Table 4 and Figure 13. The average P, R and F of the five algorithms
and proposed RoiSeg were computed, as shown in Table 4. We could see that the proposed
RoiSeg had the best R and the best F on some sequences. For video sequences “112” and
“122”, which were without noise, and “212” and “222”, which had salt and pepper noise,
the proposed noise filter method did not function best; however, the R and F still reached
over 0.9. For video sequences “312” and “322”, which having moving cast shadows, and
“412” and “422”, which were foggy, the proposed noise filter method functions best. A non-
optimal P indicated that our method produced more false positives than other algorithms.
The reason for this was that the foreground detected by frame difference has ghosts, and the
increased false positives were mainly located at the boundaries of moving objects, which
was not harmful for visual observation. From Table 4, we found the proposed noise filter
method had the highest FPS. This is due to the effectiveness of the proposed ROI-based
noise filter, which mainly focuses on the ROI instead of the full frame.

For the video sequences “My_video1”, “My_video2”, “512”, and “522”, with wind
and camera jitter, the noise could not be removed by filtering. Thus, we needed a classifier
to distinguish foreground and background. The results of applying these five algorithms
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and the proposed RoiSeg algorithm are shown in Table 4 and Figure 14. From Figure 14,
we could observe that the proposed RoiSeg algorithm produced better visual results than
the five algorithms. Furthermore, Table 4 shows that the RoiSeg algorithm had the best
F, which proved that our method had the best overall performance. After the proposed
clustering and online classification work in Sections 3.3 and 3.4, the FPS of our method
decreases. However, Table 4 shows that the FPS of our method still outperformed those of
the other approaches.

Figure 13. Experimental results on eight sequences. Left to right: original images, DPWrenGABGS,
MixtureOfGaussianV1BGS, MultiLayerBGS, PixelBasedAdaptiveSegmenter, LBAdaptiveSOM, pro-
posed method. Top to bottom: “112”, “122”, “212”, “222”, “312”, “322”, “412”, “422”.

We also evaluated the performance of RoiSeg on different datasets with the metrics of
the average pixel error rate (APFPER) and the joint intersection overlap (IoU) [39]. APF-
PER measured the number of misclassified pixels and IoU was to calculate the combined
intersection of the estimated and true split plots for evaluating the split performance. We
compared RoiSeg with state-of-the-art unsupervised learning methods on FBMS dataset,
as shown in Figure 15 and Table 7. It is observed that the image saliency methods ren-
dering of information within frames can produce unsatisfactory results, and even some
images miss foreground objects, mainly because the time correlation in the image sequence
to convey the target information was not taken into consideration [40]. However, these
foreground segmentation methods based on motion perform better than the image saliency
methods [41–43]. RoiSeg estimated the target object in a more cluttered background with
higher real-time boundary and splits video objects in a completely unsupervised man-
ner. We also conducted experiments to compare the performance of RoiSeg and other
segmentation methods on a different dateset (SegTrack), as shown in Tables 8 and 9.
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Figure 14. Experimental results on four sequences. Left to right: original images, DPWrenGABGS,
MixtureOfGaussianV1BGS, MultiLayerBGS, PixelBasedAdaptiveSegmenter, LBAdaptiveSOM, pro-
posed method. Top to bottom: ”512”, “522”, “My_video1”, “My_video2”.

 

Ground truth MR TS SAVOSCS FCNRoiSeg

Figure 15. Comparison between RoiSeg and state-of-the-art unsupervised learning methods on FBMS.

Table 7. Comparison based on IoU between RoiSeg and other methods on FBMS dataset.

Video RoiSeg [42] [44] [45] [41] [46]

Bear2 63.51 87.52 21.14 86.81 70.11 88.92

Cars5 15.62 10.71 38.73 17.38 38.52 60.11

Cars9 30.17 19.55 28.92 52.44 60.08 77.82

Cats1 78.83 19.75 81.49 83.11 85.72 70.13

People1 58.63 56.06 64.82 53.33 68.12 77.07

People5 55.82 10.71 84.43 51.81 56.41 73.31

Rabbits2 56.01 20.41 47.81 28.32 71.06 79.12

Avg. 51.23 32.10 52.48 53.31 64.29 75.21

In Table 8, References [41–43,45,47–50] are unsupervised learning methods, while [39,51]
are the supervised learning methods. The results demonstrated that RoiSeg could meet the
requirements of most tasks, although its performance was not as good as state-of-the-art
segmentation methods. In Table 9, References [41,44,45,48,52] are unsupervised learning
methods, while [46,50,51] are supervised learning methods. Among them, ref [46] utilized
the CNN methods and VOC 2011 [53] for pre-training and testing, respectively. Table 9
shows that the result of IoU evaluation on RoiSeg was similar to that of APFPER and the
CNN-based approaches had an absolute advantage in supervised segmentation tasks, but it
relied on too much data. We also conducted extensive experiments to evaluate the real-time
performance as shown in Table 10 and RoiSeg achieved a better performance in terms of
real-time operations. In summary, RoiSeg outputted the expected results on some video
sequences compared to the best performing unsupervised learning methods. There is a
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gap compared to the supervised method and the CNN method, and RoiSeg is better in
real-time operations with the average processing time of 45 ms.

Table 8. Comparison based on APFPER between RoiSeg and other methods on SegTrack dataset.

Video Frames
Unsupervised Supervised

RoiSeg [47] [44] [45] [48] [49] [50] [41] [39] [51]

Birdfall 30 352 217 155 189 144 199 468 140 252 454

Cheetah 29 776 890 633 806 617 599 1968 622 1142 1217

Girl 21 1253 3859 1488 1698 1195 1164 7595 991 1304 1755

Monkeydog 71 557 284 365 472 354 322 1434 350 563 683

Parachute 51 412 855 220 221 200 242 1113 195 235 502

Avg. 670 1221 572 677 502 505 2516 459 699 922

Table 9. Comparison based on IoU between RoiSeg and other methods on SegTrack dataset.

Video Frames
Unsupervised Supervised

RoiSeg [44] [45] [52] [48] [41] [50] [51] [46]

Birdfall 30 60.91 71.43 37.39 72.52 73.21 74.51 78.71 57.41 78.83

Cheetah 29 50.12 58.75 40.91 61.21 64.22 64.34 66.12 33.82 75.31

Girl 21 70.94 81.91 71.21 86.37 86.67 88.72 84.64 87.85 88.84

Monkeydog 71 65.21 74.24 73.58 74.07 76.12 78.04 82.15 54.35 85.65

Parachute 51 90.12 93.93 88.08 95.92 94.62 94.8 94.42 94.52 95.61

Avg. 67.46 76.05 62.23 78.02 78.97 80.08 81.21 65.59 84.85

Table 10. Realtime comparison between RoiSeg and other methods.

Method RoiSeg [44] [45] [50] [51] [41] [46]

Value 0.05 35.12 0.53 1.82 0.84 3.26 0.38

5. Conclusions and Future Work

In this paper, we propose RoiSeg, an effective object segmentation method, which
consists of three modules, ROI-central-point generation and feature extraction, automatic
training-sample generation, and an online sample classifier. RoiSeg can be applied to
a number of scenarios where datasets are difficult to obtain and require high real-time
performance. We also conduct extensive experiments and the results demonstrate that
the frames per second of RoiSeg is 95.84, which is better than other algorithms, and the
classification accuracy is 92.4%. Future work may fall into two categories. First, to find
better algorithms to detect stopped objects, we plan to introduce Kalman filtering to predict
the state of the stopping target the next time. Second, we will try to design a deep neural
network algorithm to study the segmentation of the foreground in long-term scenarios.
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