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Abstract: Sparse orthonormal transform is based on orthogonal sparse coding, which is relatively fast
and suitable in image compression such as analytic transforms with better performance. However,
because of the constraints on its dictionary, it has performance limitations. This paper proposes an
extension of a sparse orthonormal transform based on unions of orthonormal dictionaries for image
compression. Unlike unions of orthonormal bases (UONB), which implement an overcomplete dictio-
nary with several orthonormal dictionaries, the proposed method allocates patches to an orthonormal
dictionary based on their directions. The dictionaries are constructed into a discrete cosine transform
and an orthonormal matrix. To determine a trade-off parameter between the reconstruction error and
sparsity, which hinders efficient implementation, the proposed method adapts Bayesian optimization.
The framework exhibits an improved performance with fast implementation to determine the optimal
parameter. It is verified that the proposed method performs similar to an overcomplete dictionary
with a faster speed via experiments.

Keywords: sparse coding; orthogonal sparse coding; dictionary learning; image transform; sparse
orthonormal transform

1. Introduction

Sparse coding is a machine-learning technique that represents data as a linear combi-
nation of a few atoms. As an important tool, it has been widely used in many signal and
image processing applications in the past decades [1–3]. However, unlike other applica-
tions, sparse coding has not been practically used in image compression, although many
studies have designed transforms for compression or transform coding schemes to be used
for compression standards [4]. One of the main reasons for its limited use is that existing
analytic transforms such as discrete cosine transform (DCT) or Fourier transform exhibit
adequate performance with fast implementation, whereas sparse coding techniques require
high computational costs for optimizations, although they perform better than analytic
transforms. However, many attempts have been made to formulated transforms via sparse
coding [5–8]. The general formulation of the sparse coding is as follows.

min
D,A

{
‖X− DA‖2

F + λ‖A‖0

}
, (1)

Here, D ∈ Rn×m is an overcomplete dictionary (m > n) and A ∈ Rm×N is the
sparse coefficient.

In [4,9], sparse orthonormal transforms (SOTs) were designed using an orthogonal
sparse coding methodology. Orthogonal sparse coding was formulated with an orthonor-
mal constraint on the dictionary structure. In Equation (1), the dictionary D does not
have any constraints, but it is usually non-square and non-orthogonal. The orthonormal
constraint helps reduce the computational burden of sparse coding in the optimization pro-
cedure. Owing to the orthonormal constraint, the form and properties of the dictionary are
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similar to those of analytic transforms because it represents the input signal with a minimal
basis. Sezer et al. [4,9] formulated a transform with an orthonormal matrix and an L0 norm
constraint on the transform coefficients. The transform is easily invertible by its transpose
matrix and satisfies Parseval’s theorem. They also theoretically proved that the transform is
superior to the existing analytic transform, especially Karhunen–Loeve Transform (KLT). It
is important because KLT is a well-known optimal transform in the Gaussian process. They
show that the SOT is identical to KLT in the Gaussian process and outperforms it in the
non-Gaussian process. This SOT heuristically gives better performance than other image
orthonormal transforms. However, the performance of the orthonormal dictionary was
adequate but not comparable to that of an overcomplete dictionary. The large and wide
dictionary could represent sparser and more redundant data. In addition, the orthogonal
sparse coding is much faster than the overcomplete coding, but the computation is still
slow because of the high number of iterations. In this paper, we extend the SOT to be
applied to an overcomplete dictionarywhile reducing the computational time. We also
propose a method to find a parameter λ in Equation (1) for efficient implementation. Since
the performance of sparse coding is sensitive to λ, the use of an optimal λ is important.

Our method uses multiple dictionaries to outperform the SOT. Ref. [10] first proposed
a sparse coding methodology with multiple dictionaries. The method named union of
orthonormal bases (UONB) implements an overcomplete dictionary with several orthogo-
nal dictionaries, and it can find an overcomplete dictionary faster. In this study, we used
multiple dictionaries in a different way from [10], because the problem in this study is
different from that in [10]. We based our transform on an orthogonal dictionary, such
as the SOT. Instead, we classified the image patches and allocated each group to one or-
thogonal dictionary. Then, we converted the problem into a multiple orthogonal sparse
coding problem.

To classify input patches and create an efficient framework, we exploited a discrete
cosine transform. Before allocating dictionaries, our method requires the construction of
a subdataset. We assumed that a dataset with similar directional patches helps design
suitable dictionaries. In our method, we exploited the edge detection method in the DCT
domain [11]. Then, the DCT matrix is also used to prevent increasing the computational
times of the usage of multiple dictionaries.

In sparse coding, using an appropriate value of λ is also important. This value affects
the performance. However, because the optimal value is not convex and varies for target
sparsity, finding the optimal value is difficult. Thus, efficient implementation requires
finding λ quickly. In our previous work [12], we used an exhaustive method (or greedy
search) to find it for each sparsity level. In [4], the authors proposed a method to gradually
reduce the step size for iterations. In this study, we resolved the problem via Bayesian
optimization [13,14]. As a type of global optimization method, Bayesian optimization can
find a near-optimal value in a non-convex function.

Our contributions can be summarized as follows:

• The SOT provides powerful transform, which outperforms KLT, but it is limited
because of the computation time and dictionary size.

• We propose an extension of the SOT to address the limitation of orthonormal dictionary
learning, which is based on the union of orthonormal bases. However, in contrast
to [10], we formulated an orthogonal sparse coding in several orthogonal sparse
coding problems with subdatasets.

• We classified input data and allocate each orthogonal dictionary and its coefficients to
each classified input data to help to make the input data sparse representation.

• To prevent time and iteration increase by the number of dictionaries, we used a double-
sparsity structure proposed in [15] with a DCT matrix as a fixed base dictionary.

• To find the optimal value of λ, which is non-convex and continuous, we adapted
Bayesian optimization in our proposed method and set the optimal parameter with
fewer iterations.
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Thus, we propose a framework to design transforms that outperform the SOT in a
short time.

2. Related Works
2.1. Sparse Orthonormal Transform

For sparse coding based on an overcomplete dictionary, finding an appropriate dic-
tionary is generally a non-deterministic polynomial time-hard problem. This problem
requires iterative optimization such as the method of optimal directions (MOD), the alter-
nating direction method of multipliers (ADMM) [16], and augmented Lagrange multipliers
(ALM) [17], with greedy algorithms, such as basis pursuit and orthogonal matching pursuit
to estimate the approximate value [1]. These methods help solve the sparse approximation
problem but inevitably require considerable time and memory resources for learning. There-
fore, designing fast and efficient dictionary learning algorithms is one of the main problems
in the field. Compared with overcomplete dictionary-based sparse coding, orthogonal
sparse coding techniques are mathematically simple because they remove iterations in sub-
optimizations, and they use much smaller dictionaries. They can compute the orthogonal
dictionary via singular value decomposition, and the inner products and thresholding eas-
ily compute the coefficients. Of course, the singular value decomposition is not efficient in
the high-dimensional case, but in the case of a general block size for image transformation,
it is efficient enough. Therefore, orthogonal sparse coding is much faster than overcomplete
sparse coding for image transform.

Furthermore, the orthonormal dictionary can be applied as a dictionary form as well
as a transform because the inverse matrix of the orthonormal dictionary is its transpose. In
short, the orthonormal dictionary via sparse coding has the same properties as the analytic
transforms. Therefore, many attempts have been made to develop data-driven transforms
by using sparse coding to achieve better performance than analytic transforms [4,6–8]. In
particular, orthogonal dictionary-based sparse coding not only provides more compact
representations of input data than existing analytic transforms but also decorrelates data
such as analytic transforms. In this section, we introduce recent work based on an SOT.

In [4,9,18], the basic idea of an SOT is simple. Its design was based on an orthogonal
sparse coding methodology. Sezer et al. formulated a transform with an orthonormal
matrix and an L0 norm constraint on the transform coefficients:

min
G,A

{
‖X− GA‖2

F + λ‖A‖0

}
s.t. GTG = GGT = In,

(2)

Here, A is the sparse transform coefficient, G is the SOT matrix, and In is an n× n
identity matrix. Sezer et al. used iterative optimization methods to find two variables: a
dictionary and a coefficient matrix. Using Algorithm 1 solved this problem. As a hard-
operator, T (·, α) zerorizes when the absolute value is smaller than α. U and V are the left
and right singular vector matrix, respectively. Then, the solution is also the local optimal
point as in one of overcomplete sparse coding.

Sezer et al. verified that SOT is a principled extension of Karhunen–Loeve Transform
(KLT) because this transform is theoretically reduced to KLT in Gaussian processes. That
the KLT is optimal in the Gaussian process is well known, and it shows that the optimal
dictionary in Equation (2) has the same structure as KLT in the Gaussian process. In other
words, the SOT is also optimal in the Gaussian process and is superior to KLT in non-
Gaussian processes. Sezer et al. experimentally showed that the transform is superior to
DCT and KLT in image compression.



Appl. Sci. 2022, 12, 2421 4 of 18

Algorithm 1: Orthogonal sparse coding.

Given the dataset X = {x1, x2, . . . , xm} ∈ Rn×N ,
Initialization:

G = G0 .

while Stopping Condition is not met do
Update the coefficients:

A = T (GTX, λ1/2).

Find the optimal dictionary:
(a) Compute the SVD:

XAT = UΣVT .

(b) Update dictionary by the inner product:
end

2.2. Union of Orthonormal Bases

To overcome the drawback of the overcomplete dictionary, Ref. [10] proposed a type
of sparse coding method. To solve a dictionary that is square and orthogonal, simply use
a closed-form with singular value decomposition (SVD). Refs. [10,19] proposed methods
implementing an overcomplete dictionary by using unions of orthonormal bases (UONB).
The basic formulation, first proposed by [10], is formulated as:

min
D,A

{
‖X− [D1|D2| . . . |DL]A‖2

F + λ‖A‖0

}
s.t. DT

i Di = DiDT
i = In,

(3)

in which Di ∈ Rn×n is an orthogonal sub-dictionary and i = 1, . . . , L.
The dictionaries in Equation (3) are solved quickly, but the optimization of the coef-

ficient matrix equals the overcomplete dictionary. Using a pursuit algorithm solves the
optimal coefficient.

2.3. Double Sparsity Model

Rubinstein et al. [15] proposed a double sparsity model that expresses a dictionary as
a multiplication of two other dictionaries: a prespecified base dictionary Φ ∈ Rn×n and an
atom representation matrix A ∈ Rn×m.

D = ΦA (4)

Rubinstein et al. [15] proposed this method to bridge the gap between implicit and
explicit dictionaries. Implicit dictionaries include analytic transforms, such as discrete
cosine transforms, and they have mathematically efficient implementation but limit their
adaptability. In contrast, explicit dictionaries are well adapted for input data but with
highly computational algorithms. This model achieves the advantages of each dictionary.

3. Proposed Algorithm
3.1. Classification via Discrete Cosine Transform

To overcome the limitations of orthogonal sparse coding, we used several orthogonal
dictionaries. In contrast to [10], we divided the input data and allocated them into one
dictionary. To classify the input data, we based our method on the direction of the patches.
Two reasons for classifying data based on direction are that it provides more structured
information than division randomly or evenly in order and that this method is simply
implemented by using a discrete cosine transform.
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Since DCT is popular in image compression fields, analyzing and extracting infor-
mation from images in the compressed domain for fast implementation are important.
In particular, Ref. [11] designed an edge model in the DCT domain based on the DCT’s
characteristics. As mentioned earlier, DCT provides optimal performance for horizontal
and vertical directional data because the bases of the DCT represent the horizontal and
vertical directions or the diagonal directions made by their combinations. The two direc-
tional bases have the same edge complexity according to their order, as shown in Figure 1.
The bases in the red box show the same complex edge information in different directions.
Ref. [11] directly extracted low-level features, such as edge orientation, edge offset, and
edge strength, from DCT compressed images. Ref. [11] also suggested four metrics for
edge orientation, with coefficients based on the 8 × 8 block DCT. We used and introduced
one of the metrics in our study.

Figure 1. The basis of two-dimensional discrete cosine transform. Each basis includes horizontal or
vertical directional information.

For simple and efficient implementation, our proposed method exploits the DCT
matrix in two ways. First, we discerned the patches in the DCT domain with the follow-
ing formulation:

θ =

tan−1(
∣∣∣C01

C10

∣∣∣), where C01C10 ≥ 0

90◦ − tan−1(
∣∣∣C01

C10

∣∣∣), where C01C10 < 0,
(5)

Here, C01 and C10 are the DCT coefficients in (0, 1) and (1, 0), which correspond to the
bases in the red box in Figure 1. We restricted the range of directions from 0◦ to 90◦.

Then, we quantized the θ in the L levels. L is the number of orthogonal dictionaries
used in the proposed method. As in [10], we constructed the dictionary as a set of several
orthonormal dictionaries that is D = [D1|D2| . . . |DL], in which Dis are orthogonal square
matrices. Then, we classified the input data into L groups and assigned each to an orthogo-
nal dictionary. When the value of L increased, the compression performance also improved,
as is generally natural.
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3.2. Union of Orthogonal Sparse Coding in DCT Domain

To improve performance, we expanded the number of orthogonal dictionaries. Since
this leads to an increase in computation time, it significantly impaired the strength of
orthogonal sparse coding. To prevent this, we used the double sparsity model in Section 2.3
with the DCT matrix. We constructed our dictionary by using the product two-dimensional
DCT matrix as a fixed base dictionary and another dictionary.

In a mathematical formulation:

D = TH, (6)

where T is a DCT matrix in Rn×n and H is an orthonormal matrix in Rn×n.
As mentioned above, the objective of using the DCT matrix as the base dictionary

was to reduce the convergence time of the algorithm. Since the DCT matrix achieves
remarkable sparsity in advance, as is well known, it accelerates the algorithm with fewer
iterations than the case, which constructs a dictionary with only a dictionary. Based on
Equations (4) and (5), the proposed method can be formulated in detail:

For input data X = [X1|X2| . . . |XL] ∈ Rn×N , Xi is a subdataset with the patches. It has
a direction between (90◦/L)(i− 1) and (90◦/L)i, the dictionary is D = T[H1|H2| . . . |HL] ∈
Rn×Ln, and the sparse coefficient matrix is A = [AT

1 |AT
2 | . . . |AT

L ]
T ∈ RLn×N .

min
Hi ,Ai

L
∑

i=1

{
‖Xi − THi Ai‖2

F + λ‖Ai‖0

}
s.t. HT

i Hi = Hi HT
i = In,

(7)

where i = 1, . . . , L.
For efficient implementation, all data were processed in the DCT domain during all

procedures. First, the input image patches were transformed in the DCT domain by a
product with a two-dimensional DCT matrix. Second, the patches were classified by using
Equation (4). Since a DCT matrix is an orthonormal matrix, the Frobenius norm of the DCT
matrix, ‖T‖F, is 1.

‖Xi − THi Ai‖2
F =

∥∥TTXi − TTTHi Ai
∥∥2

F
=
∥∥TTXi − Hi Ai

∥∥2
F

(8)

Then, Equation (7) is transformed as follows:

min
Hi ,Ai

L
∑

i=1

{∥∥X̂i − Hi Ai
∥∥2

F + λ‖Ai‖0

}
s.t. HT

i Hi = Hi HT
i = In,

(9)

Here, X̂i = TTXi is the transformed data in the DCT domain.
The optimization for updating dictionaries and their solutions is performed as

min
Hi

L
∑

i=1

{∥∥X̂i − Hi Ai
∥∥2

F

}
s.t. HT

i Hi = Hi HT
i = In

(10)

and its solution is Hi = UiVT
i in which Ui and Vi are singular vectors of X̂i AT .

Furthermore, the equation for the coefficients and the solutions is:

min
Ai

L
∑

i=1

{∥∥X̂i − Hi Ai
∥∥2

F + λ‖Ai‖0

}
Ai = T (HT

i X̂i, λ1/2)
(11)

The detailed proof of Equations (10) and (11) above is written in [4,20]. Since the
solution of each sub-optimization is optimal for each problem, the overall optimization is
converged, but it cannot necessarily guarantee global optimum [4].
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We computed the variables with iterations of the two equations. Since each equation
in the summation is independent, the optimization can be processed in parallel processing
for multi-core hardware.

3.3. Parameter Setting via Bayesian Optimization

It is important to specify λ in our method as well as in other sparse coding method-
ologies. The performance of sparse coding, which is quite sensitive to λ, specified suitable
target sparsity. In other words, we determined the optimal value by target sparsity. Figure 2
shows an example of the performance for different λ. In our previous work [12], we found
the best value in an exhaustive method with a step size of 0.001 yet did not mention how
the optimal λ can be obtained. In this study, to find the optimal value for each target
sparsity, we used a Bayesian optimization method [13,14].

Figure 2. PSNR(dB) for different values of λ. This resulted from the case of three orthonormal
dictionaries and target sparsity 3.

Bayesian optimization is a global optimization method for finding a global optimal
point, even if the objective is not convex. Neural networks highly use Bayesian optimization
for hyperparameter tuning. It requires less time to find optimal values than that required by
grid search and random search. It also assumes that the uncertainty of an objective function
follows a Gaussian process as a prior and then samples the next point with the maximum
value of the acquisition function. The acquisition function determines the location of the
next sampling point. Among several types of acquisition functions, this study exploited
the expected improvement. Further details are beyond the scope of this paper; readers are
referred to [13,14]. Figure 2 shows an example of the performance for different λ ,which
indicates that the performance varies greatly with λ and is not convex.

The objective function for Bayesian optimization is defined as the difference between
the original data and the compressed data. The equation is as follows.

f (λs) =
L
∑

i=1

{∥∥Xi − X̃i
∥∥2

F

}
(12)

Here, s is the target sparsity level and X̃i is the compressed data reconstructed by
s largest elements in Ai and its corresponding atoms of Hi, Ai, and Hi are computed by
Equations (10) and (11) with λs, which is the best parameter for the target sparsity s.
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Figure 3 shows the sampled points and the estimated values of the objective function
via Bayesian optimization and estimates the same variable as in Figure 2. PSNR (dB)
represents the objective function in Equation (12) by multiplication with −1.

In proposed method, the final procedure is follows: (1) Calculate the posterior distri-
bution of the objective function in Equation (12) using the pre-observed λ value. (2) Choose
λ, in which the expected implementation acquisition function points to the maximum.
(3) Conduct the sparse coding optimization algorithm using Equation (9). (4) If the num-
ber of evaluations is not the maximum, go to step (1). Algorithm 2 provides a detailed
description of the overall proposed algorithm.

Algorithm 2: Algorithm of proposed method.

Given the dataset X = {x1, x2, . . . , xm} ∈ Rn×N , the number of dictionaries, L, the
target sparsity, s, and the maximum evaluation number, Nλ.

Initialization:
Xs are transformed into the DCT domain.
Classify the transformed X̂is via Equation (4).
while Nλ iterations do

Calculate the posterior distribution of the objective function via GP regression.
Choose λs using the maximum value of the EI acquisition function:

EI(λ) = E[max( f (λbest)− f (λ), 0)].

λs = arg maxλ EI(λ).

while Stopping Condition is not met do
Update the coefficients:
For i = 1, . . . , L,

Ai = T (HT
i X̂i, λ1/2

s ).

Find the optimal dictionary:
For i = 1, . . . , L,

(a) Compute the SVD:

X̂i AT
i = UiΣiVT

i .

(b) Update dictionary:

Hi = UiVT
i .

end
Observe f (λs)

end
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Figure 3. The objective function of Bayesian optimization for λ in Figure 2.

4. Results
4.1. Experimental Environment

We experimented with our methods by using the images shown in Figure 4. For
equivalent comparison, we resized the images to 256× 256 pixels and segmented them to
4× 4 or 8× 8 patches. To measure the performances of different algorithms, we focused on
image compression, more specifically, reconstruction with a limited number of coefficients,
by comparing PSNR (dB) with the number of used coefficients. Sparse-coding-based
algorithms depend on the value of λ in their formulations, Equations (3) and (11), because
they control the trade-off between the mean square error (MSE) and sparsity. In the
compression sense, the optimal value varied from the number of coefficients or bases used
in the compression scheme. In this study, we found the value for each target sparsity level
via Bayesian optimization with expected implementation and the Màtern 5/2 covariance
kernel function. For Bayesian optimization, we used the ’bayesopt’ library offered by
MATLAB. For equivalent comparisons, all experiments were implemented using MATLAB
R2021a in Windows 10 Education, equipped with an Intel i7-9700 CPU with 32 GB RAM.

All the algorithms used in these experiments are conducted with the same stopping
condition. We set the stopping condition to the difference of objective functions between
the present and 10 past iterations.
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(a) (b)

(c) (d)

Figure 4. Test images. We experiment with and verify the proposed method with four images.
(a) Lena, (b) peppers, (c) Barbara, (d) house.

4.2. Comparison with Sparse Orthonormal Transform

This subsection compares the SOT and the proposed method with different numbers
of dictionaries for energy compaction. Figures 5 and 6 compare the objective qualities
in PSNR (dB) for each number of retained bases. As shown in Figures 5 and 6, our
method outperformed SOT (constructed by one orthonormal dictionary) in PSNR (dB). We
concluded that this result is due to two reasons: (a) Sparse coding algorithms work better
based on the input data classified according to their structure than whole unstructured input
data, and (b) the dictionary from a small dataset is more adaptive and more representative
than that from a large dataset. Furthermore, the difference in reconstruction errors between
the proposed method and the SOT in Figure 6 is less than the difference in Figure 5.
Small patches have simpler and more dominant directional information than large patches,
whereas large patches usually are more complex and have diverse orientations, leading to
the difference. In the next section, we verify whether analysis (a) is correct.

4.3. Effect of Proposed Classification Method

Figures 7 and 8 show that assertion (a) is reasonable. We verified that our proposed
classification method for input data by using Equation (4) works well. Figures 7 and 8
show the difference between the two classification methods for different patch sizes. We
compared our classification method based on Equation (4) with simply grouping the data
evenly in order. In the figures, cls-direction indicates our classification method by using a
direction in patch, whereas cls-order indicates a sequentially grouping way. In all cases, our
method performs better. In both cases, the use of a larger number of dictionaries increases
the PSNR (dB), but for cls-order, the difference is small or negligible. This result indicates
that the dictionaries from data grouped by similar structures are more representative than
those grouped from irregular and unstructured data.
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(a) (b)

(c) (d)

Figure 5. The object quality comparison: PSNR (dB) versus the number of retained coefficients for
4 × 4 patches between SOT and our methods. (a) Lena, (b) peppers, (c) Barbara, (d) house.

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. The object quality comparison: PSNR (dB) versus the number of retained coefficients for
8 × 8 patches between SOT and our methods. (a) Lena, (b) peppers, (c) Barbara, (d) house.

(a) (b)

(c) (d)

Figure 7. The object quality comparison: PSNR (dB) versus the number of retained coefficients for
4 × 4 patches between classification methods with different numbers of orthogonal dictionaries.
(a) Lena, (b) peppers, (c) Barbara, (d) house.
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(a) (b)

(c) (d)

Figure 8. The object quality comparison: PSNR (dB) versus the number of retained coefficients for
8 × 8 patches between classification methods with different numbers of orthogonal dictionaries.
(a) Lena, (b) peppers, (c) Barbara, (d) house.

4.4. Comparison with an Overcomplete Dictionary

For a comparison of the proposed method with the overcomplete dictionary-based
algorithm, we used a UONB with optimization [10] and block coordinate relaxation algo-
rithm, which is faster than the orthogonal matching pursuit. We performed the experiment
using different numbers of dictionaries of the proposed method and UONB, from two
to five. Figures 9 and 10 show the differences between our method and UONB. In these
figures, the proposed method shows a more powerful performance for small patches. In
8× 8 cases, the performance graphs of UONB and the proposed method have crossing
points at approximately four retained coefficients. In contrast to UONB, our method ex-
hibits superior performance with an increasing number of dictionaries. In the 8× 8 case,
our method outperformed UONB with a small number of coefficients, and UONB showed
better performance when using a large number of coefficients. In contrast, the proposed
method generally performed better than UONB in the 4× 4 case. The proposed method also
performed better with a small patch size. The UONB performed better in the case of more
complex patches with large sparsity levels and a large number of dictionaries. For UONB,
a large number of orthonormal dictionaries indicated a wider overcomplete dictionary and
involved more redundant and expressive representations. Figure 10 illustrates the results
at a high sparsity.
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(a) (b)

(c) (d)

Figure 9. The object quality comparison: PSNR (dB) versus the number of retained coefficients for
4× 4 different patch sizes between UONB and our methods with different numbers of orthogonal
dictionaries. (a) Lena, (b) peppers, (c) Barbara, (d) house.

(a) (b)

Figure 10. Cont.
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(c) (d)

Figure 10. The object quality comparison: PSNR (dB) versus the number of retained coefficients for
8× 8 different patch sizes between UONB and our methods with different numbers of orthogonal
dictionaries. (a) Lena, (b) peppers, (c) Barbara, (d) house.

4.5. Processing Time

To reduce the computational time, we attempted to make the best use of the DCT
matrix. Table 1 compares the SOT, UONB, and the proposed method in terms of the number
of iterations and the computational time (seconds) until convergence. We performed
experiments on UONB and the proposed method for three dictionary sizes: L = 2, 3, and 4.
Since the SOT uses only an orthogonal dictionary, it is marked only for L = 1. To design an
equivalent experimental setting, we set λ values that were optimal to two levels of sparsity:
3 and 5. The time to search λ was not considered.

Table 1. The processing time and number of iterations for each method. L indicates the number
of orthogonal dictionaries. We compare each algorithm with the optimal λ value for two different
numbers of retained coefficients. The bold texts indicate minimum results.

L # of Retained Coefficients
SOT UONB Proposed

Iterations Time (s) Iterations Time (s) Iterations Time (s)

1
3 2095 1.4553 - - - -
5 2741 1.9480 - - - -

2
3 - - 622 49.7882 72 0.0498
5 - - 536 82.9780 107 0.0650

3
3 - - 628 343.3251 183 0.1174
5 - - 505 97.5815 157 0.0872

4
3 - - 482 57.8052 195 0.0920
5 - - 754 101.3284 192 0.1007

Table 1 shows that our proposed method performed the best in all cases. SOT works
better than UONB in terms of computational time. Although the number of iterations
required for convergence for SOT was much larger than that required for UONB, SOT
was much faster than UONB, because it did not use greedy algorithms. The number of
iterations for our proposed method was several times smaller than that for UONB. The
degree of reduction varied by approximately two to four times; however, in all cases, our
algorithm required fewer iterations. The differences between the computational times
was larger than that between the number of iterations. Since our method required fewer



Appl. Sci. 2022, 12, 2421 16 of 18

iterations and shorter computation time for each iteration than those of UONB, our method
was, on average, hundreds of times faster than UONB.

One interesting point is the comparison between SOT and the proposed method.
Although the proposed method attempted to find more dictionaries and coefficients than
the SOT did, the number of iterations could be reduced by factorizing a dictionary into the
DCT matrix and an orthonormal matrix, which prevented an increase in time.

4.6. Effects on a Bayesian Optimization

The Bayesian optimization method was compared with an exhaustive method. We
conducted experiments on different image patch sizes and then compared each method
by varying the number of iterations. Table 2 shows the PSNR(dB) for each experiment
and the corresponding λ. We conducted all experiments with λ in the range of 0 to 1. We
also performed the exhaustive methods for two different strides: 1/100 and 1/1000. The
optimal λ values from the two methods were either similar or different, but the PSNR(dB)s
were generally similar. This result indicated that the proposed method with Bayesian
optimization performed similar to the exhaustive method but with a much lower number
of iterations.

Table 2. Comparisons of the PSNR(dB) and best λ between the Bayesian method and exhaus-
tive method.

Methods Bayesian Method Exhaustive Method
Iterations 10 30 100 1000

Barbara
4 × 4

PSNR(dB) 31.7748 31.8543 31.8395 31.8545
λ 0.0396964 0.040544 0.0200 0.0140

8 × 8
PSNR(dB) 27.01254 27.1991 25.1582 27.1911

λ 0.13714 0.063292 0.0070 0.1330

House
4 × 4

PSNR(dB) 35.5931 35.6488 35.6092 35.6709
λ 0.041138 0.026825 0.0200 0.0150

8 × 8
PSNR(dB) 30.3563 30.3577 30.3283 30.3559

λ 0.319391 0.099313 0.1600 0.0980

Lena
4 × 4

PSNR(dB) 32.9539 33.0129 32.9817 33.0218
λ 0.051326 0.034557 0.0400 0.0320

8 × 8
PSNR(dB) 27.7297 27.8073 27.7918 27.8325

λ 0.16529 0.069484 0.1400 0.0940

Peppers
4 × 4

PSNR(dB) 33.1043 33.1161 33.0836 33.1197
λ 0.046513 0.06335 0.0500 0.0350

8 × 8
PSNR(dB) 27.3874 27.4054 27.3951 27.4300

λ 0.2068 0.21706 0.1900 0.2050

5. Conclusions

In this paper, we proposed a novel sparse-coding-based image transform framework
as an extension of the SOT for efficient implementation. Overcomplete-dictionary-based
methods perform well in terms of sparse representation but require a long time and many
resources because of their iterative or greedy optimizations. Moreover, they are suitable
for image compression as compared to analytic transforms. Orthogonal sparse coding
is similar to analytic transforms such as DCT and KLT. Since the dictionary is square
and orthonormal, the transform is invertible and conserves the energy of the data. Thus,
orthogonal sparse coding-based transforms for image compression have been proposed
over the past few decades.

One of these transforms is the SOT. It has been theoretically proven that the SOT
outperforms KLT [4]. We extended the SOT based on the unions of several orthonormal
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dictionaries. Although the number of variables to be computed increased, we prevented
the increase in computational time by making the best use of the DCT matrix for the
classification of input data and factorization of dictionaries. Consequently, the proposed
method outperformed the SOT with a reduction in the computation time. The proposed
method satisfies the object of this study through PSNR graphs and a table of processing time.
For a more practical implementation, we proposed a scheme to search for the optimal λ via
Bayesian optimization. Reconstructing an image using a specified number of coefficients
was important. Since the performance varied with λ, determining the optimal value was
important. The proposed Bayesian-optimization-based method required fewer iterations
than the exhaustive method did.
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