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Abstract

:

Traditionally, paraplegic patients have relied on a wheelchair to travel. However, new developments in walking assistance technology have led to promising exoskeleton-type wearable robots that can help paraplegic patients walk. Operation of this new robotic device requires that patients have appropriate training to ensure safe and optimal use. Here, we propose an algorithm that can optimize rehabilitation outcomes by comparing posture data generated during the rehabilitation of a paraplegic patient wearing a body-tracking sensor with reference posture data. The proposed algorithm guarantees a certain level of accuracy when comparing rehabilitation and reference posture data. It can also correct for timescale differences between reference and rehabilitation data to ensure a high level of accuracy. Compared with other algorithms that perform similar functions, this algorithm can accommodate different postures, including those associated with walking, and has the advantage of being able to derive the desired results by setting usability features in an intuitive way.
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1. Introduction


With new developments in science and technology, social participation rates among disabled individuals have steadily increased. For example, paraplegic patients now have access to enhanced mobility platforms with advances in exoskeleton robot technology [1,2,3].



Safe and optimal operation of exoskeleton-type wearable robots by paraplegic patients requires that patients receive appropriate training. Here, we present the novel time-scalable posture detection algorithm (TSPDA) that can be used in exoskeleton training for paraplegic patients. TSPDA compares reference posture data (to be imitated by the patient) with posture data (recorded during training by the actual paraplegic patient) and extracts the evaluation target data required to measure the accuracy of the patient’s recorded posture.



Some paraplegic patients may find it difficult to follow the target posture at the beginning of rehabilitation, while some may respond more quickly than expected. Thus, when comparing reference posture data with a paraplegic patient’s posture data, the posture data of a paraplegic patient undergoing rehabilitation training may differ greatly from reference data in terms of movement speed. For example, reference posture data could indicate that it takes 5 s (s) to walk five steps. However, a paraplegic patient following the reference posture data may actually take 10 s to walk five steps. In this case, an accurate comparison between paraplegic patients and reference posture data are only possible when the time scale is doubled. It is necessary to find a way to determine whether the paraplegic patient has performed the correct motion, even if the time scale is different.



A posture comparison algorithm for the rehabilitation of paraplegic patients should flexibly adjust the time scale of reference data. The TSPDA introduced in this paper can overcome time-scale limitations; it can also allow comparison with other postures by changing the reference data.



Here, we use full body motion capture equipment featuring an IMU sensor [4] for postural analysis. In the past, IMU sensors were unreliable. However, the technology has greatly improved—reliability is now assured [5,6,7].



TSPDA compares the start and end frames of reference posture data with the complete data recorded from the paraplegic patient during training, and thereby avoid any time-scale constraints. The algorithm also utilizes the slice count method to reduce computational load: it limits the number of comparison samples between reference posture data and paraplegic patient data.



Considering that the posture accuracy of a paraplegic patient undergoing rehabilitation activities may be relatively low initially, the TSPDA has a function that allows for a minimum target accuracy to be set to accommodate the detection of posture data as it changes with the patient’s range of motion.



The remainder of this paper is organized as follows. Section 2 describes related research. Section 3 presents the definitions of terms used in the algorithm and the algorithm’s structure through diagrams and detailed module descriptions. Section 4 discusses an evaluation of the implemented algorithm and a performance analysis. Section 5 summarizes our findings and provides concluding remarks.




2. Related Work


A recent work [8] used a wearable robot with an exoskeleton to aid rehabilitation of paraplegic patients. The technology is advancing rapidly, but the learning curve is steep. Our TSPDA algorithm is aimed at flattening the curve and may have many applications in rehabilitation.



Traditional gait recognition algorithms only detect walking postures. The TSPDA directly compares complete raw data, which has been difficult for the algorithms proposed in several previous studies.



Existing gait recognition algorithms use a single sensor or several sensing units to extract the feature points of an actual physical posture as a sample, identifying the properties of each sample and applying them to actual data. These algorithms employ different approaches, depending on the sensor position (trunk, shank, foot, etc.), the data used (e.g., acceleration and/or angular velocity), and the number of sensors.



In this study, we used the Perception Neuron Full-body Tracking Sensor Kit (Noitom Ltd., Beijing, China) for posture detection; each sensor has a sampling rate of 120 Hz. Thus, we extracted reference posture data using more sensors and raw data than previous studies.



The types of sensors used in this study and previous studies include inertial measurement unit (IMU) and gyroscope sensors [9,10,11,12,13], in which the walking posture is ana-lysed from estimates of the relative position of the sensor via three-axis acceleration data. Previous studies have demonstrated the ability to recognize gait postures only, such as “heel strike” and “toe off” states, using a small number of sensor data [14].



Some researchers have achieved better accuracy using a footswitch with an IMU sensor [15,16,17,18,19]. However, the footswitch may interfere with the subject’s walking process [19]. In contrast, our proposed algorithm uses several IMU sensors, without a footswitch.



One study found that gait speed can affect the operation of the algorithm when a single or a small number of IMU and gyroscope sensors are used with conventional gait detection algorithms [20]. In our case, however, because our TSPDA uses a full-body tracking sensor kit with many sensors, the gait speed has little effect on the algorithm’s operation via time-scale changes.



Notably, the ability to extract raw posture data is relatively new, given that full-body tracking sensor kits have only recently become available. Thus, to date few studies have addressed this functionality, in which the detection algorithm can accommodate various postures and time scales.




3. Timescale-Scalable Posture Detection Algorithm


The terms used in the TSPDA are listed in Table 1.



The operation sequence of the modules composing the TSPDA is shown in Figure 1 below.



Each module is described in detail in the individual sub-sections that follow; the global variables are italicized in the descriptions.



3.1. TSPDA—Initialiser


The Initializer module defines the global variables (reference graph, target graph, slice count, target minimum accuracy, reference start frame, and reference end frame) required in the algorithm.



The Initializer module also compares the reference start frame and reference end frame with the target graph to calculate the relative accuracy (here, lower values are better). Additionally, it defines the sum start frames and sum end frames, which are accumulated values for each frame. The Initializer module is represented by the Algorithm 1 and Equations (1) and (2).



	Algorithm 1: Pseudo code for the Initializer module of the TSPDA.



	let (referenceGraph) be ([pre-recorded reference pose] composed with [X as time and Y as sensor data])



	let (targetGraph) be ([recorded graph by patient] composed with [X as time and Y as sensor data])



	let (sliceCount) be ([Desired Slice Count] when comparing the similarity between [[targetGraph] and the [candidates]])



	let (targetMinumumAccuracy) be ([minimum target accuracy] between [targetGraph and referenceGraph])



	let (referenceStartFrames) be ([Y values of referenceGraph’s first X value])



	let (referenceEndFrames) be ([Y values of referenceGraph’s last X value])



	let (totalFrameCount) be (Total count of X value for targetGraph)



	let (sumStartFrames) be (empty list)



	let (sumEndFrames) be (empty list)



	for x = 1 to totalFrameCount do



	let sumStart be 0



	let sumEnd be 0



	let graph = targetGraph[x]



	let targetMax = max(graph)



	let targtMin = min(graph)



	let targetDiff = targetMax-targetMin



	let frameCount = (frame count of the graph)



	(equation #1)



	(equation #2)



	sumStartFrames[x] = sumStart



	sumEndFrames[x] = sumEnd



	end










   s u m S t a r t   =    ∑   y = 1   f r a m e C o u n t     [       |    r e f e r e n c e S t a r t F r a m e s  [ y ]    −   g r a p h  [ y ]    t a r g e t D i f f    |       ]    



(1)






               s u m E n d   =    ∑   y = 1   f r a m e C o u n t     [       |    r e f e r e n c e E n d F r a m e s  [ y ]    −   g r a p h  [ y ]    t a r g e t D i f f    |       ]                



(2)







Equation (1) is a formula for calculating sum start (in which a lower number corresponds to higher accuracy), based on the reference start frames and the target graph.



Equation (2) is a formula for calculating the sum end by applying Equation (1) above to the reference end frames.




3.2. TSPDA—Candidate Frame Factory


The Candidate Frame Factory module calculates similarity by comparing the relative values of the sum start frames and the sum end frames calculated through the Initialiser module with the target frames.



The Candidate Frame Factory module is a module that defines start candidate frames and end candidate frames containing values having a similarity greater than or equal to the target accuracy.



The Candidate Frame Factory module is represented by the Algorithm 2 below.



	Algorithm 2: Pseudo code for the Candidate Frame Factory module of the TSPDA.



	let (diffSumStart) be max(sumStartFrames)-min(similarityStart)



	let (diffSumEnd) be max(similarityStart)-min (similarityStart)



	for x = 1 to totalFrameCount do



	let (start) be [sumStartFrames[x]-min(sumStartFrames)]



	let (similarityStart) be [100-{(start/diffSumStart) × 100}]



	let (end) be [sumEndFrames[x]-min(simEndFrames)]



	if (similarityStart >= targetAccuracy) then



	add (x) to (candidateStartFrames)



	end



	if (similarityEnd >= targetAccuracy) then



	add (x) to (candidateEndFrames)



	end



	end









3.3. TSPDA—Graph Comparer, Slice Ratio Generator


The Graph Comparer module calculates an arbitrary graph area using the start candidate frame and end candidate frame calculated through the Candidate Frame Factory module.



After the comparison is performed through the slice ratio values, candidates are defined as a set having similar values (where lower values are more accurate) with candidate start and end frames.



The Graph Comparer module is represented by the Algorithm 3 below.



	Algorithm 3: Pseudo code for the Graph Comparer module of the TSPDA.



	let (candidates) be (new empty list)



	for (startCandidateFrame) in (startCandidateFrames) do



	 for (endCandidateFrame) in (endCandidateFrames) do



	  if (endCandidateFrame) > (startCandidateFrame) then



	    let (sum) be (accumulated accuracy value between a new graph composed by startCandidateFrame and endCandidateFrame and targetValue using Slice Ratio Generator Module)



	    add (sum, startCandidateFrame, endCandidateFrame) to (candidates)



	  end



	 end



	end









3.4. TSPDA—Graph Aligner


The Graph Aligner module aligns the candidates calculated through the Graph Comparer module in ascending order and iterates through such that the item is added to the final result.



Additionally, when adding the item, the Graph Aligner module checks whether the item frame area of the already recorded item overlaps the area of the frame area to be newly registered. If the area overlaps, it is excluded from the results.



Candidates are sorted by ascending order by accuracy, which means an item recorded earlier has a higher accuracy. Thus, checking a previous registered item’s area before adding an item to the result enables extraction of the item with the highest accuracy among the items that overlap the area.



The Graph Aligner module is represented by the Algorithm 4 below.



	Algorithm 4: Pseudo code for the Graph Aligner module of the TSPDA.



	order (candidates) by (sum) in (ascending order)



	let (results) be (new empty list)



	for (startX, endX) in (candidates) do



	  let (isValid) be (true)



	  for (recordedStartX, recordedEndX) in (results) do



	    if (recordedStartX <= endX and startX <= recordedEndX) or (startX <= recordedEndX and recordedStartX <= endX) then



	      set (isValid) to (false)



	      break the loop



	    end



	  end



	  if (isValid) is (true) then



	    add (start, end) to (results)



	  end



	end










4. Experimental Results


The required personal computer specifications and environment used to drive the TSPDA are given Table 2 below.



Figure 2 and Figure 3 present the TSPDA results.



Figure 2 shows the posture of an ordinary person walking two steps, and Figure 3 presents data of a user imitating the posture of Figure 2 three times. Visually, it can be seen that the detected graph and the reference graph are different in length; however, the waveform itself is very similar.



Table 3 lists the data used to derive the results of the two pictures. All areas with the same properties as the reference graph were derived from the recorded posture data using the TSPDA.



Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8 show the TSPDA results when the slice count was nil (the optimal case) and 10, 25, 50, and 100. The results were similar.



Figure 9 and Figure 10 show that slice counting afforded accurate results (both visually and numerically) compared to the use of reference posture data only. Specifically, at a slice count of 10, execution was 7.67-fold faster than when slice counting was absent (the optimal case), but the accuracy was 96.5%. When the slice count was 25, execution was 6.24-fold faster and the accuracy 97.2%. When the slice count was 50, execution was 3.5-fold faster and the accuracy 98.7%. When the slice count was 100, execution was 1.9-fold faster and the accuracy 99.8%.



When slice counting is absent (the optimal case) the accuracy is 100% but execution is slow. The TSPDA slice count method thus facilitates individualized balancing of execution time and accuracy.




5. Conclusions


This paper has introduced an algorithm that can efficiently compare how accurately a patient wearing an exoskeleton-type device performs a set of reference postures during rehabilitation training.



When the slice count method was applied, the accuracy did not differ significantly from the optimal value. However, application of the slice count method greatly enhanced the execution speed. Additionally, with the proposed TSPDA algorithm, the analysis target is not limited to the walking posture in posture analyses; the algorithm can universally accommodate various input postures using a full-body motion capture device.



Mobility solutions for people with physical disabilities continue to advance with new developments in robot technology, and high-performance assistance algorithms are needed to optimize patient rehabilitation and safety. The proposed TSPDA can be used to evaluate the training scale in the rehabilitation process necessary for the social advancement of paraplegic patients who cannot move their lower extremities. Given the broad scope of full-body motion tracking and the price declines in sensor components, we expect more availability and more demand for these devices as existing barriers are overcome. The TSPDA presented in this paper is expected to benefit society.



The TSPDA directly compares the raw data of motion capture equipment, thereby solving the problems associated with the limited postural analyses of the studies cited in Section 2; the TSDPA quickly and accurately defines data-rich areas using the real-time measures described in Section 4. TSPDA accuracy is assured by the fact that the initial settings can be modified. It is possible to obtain the desired results (via adjustment) even if the calculations are inaccurate.
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Figure 1. The operation sequence of the modules composing the TSPDA. 
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Figure 2. Reference graph. 
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Figure 3. Target graph. 






Figure 3. Target graph.
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Figure 4. The result in the absence of slice counting. 
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Figure 5. The result with a slice count of 10. 






Figure 5. The result with a slice count of 10.
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Figure 6. The result with a slice count of 25. 






Figure 6. The result with a slice count of 25.
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Figure 7. The result with a slice count of 50. 






Figure 7. The result with a slice count of 50.
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Figure 8. The result with a slice count of 100. 






Figure 8. The result with a slice count of 100.
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Figure 9. Accuracy compared to result in the absence of slice counting. 
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Figure 10. Execution time of the TSPDA by Slice Count. 
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Table 1. The terms used in the TSPDA.






Table 1. The terms used in the TSPDA.





	Terms
	Description





	Reference graph
	A two-dimensional graph corresponding to motion capture data for standard postures used in the algorithm



	Target graph
	A two-dimensional graph corresponding to motion capture data generated from a patient with lower extremity paralysis



	Target minimum accuracy
	Targeted minimum accuracy value (between 0 and 100)



	Slice count
	The number of the sample when comparing candidate graphs extracted from the reference graph and the target graph



	Reference start/end frames
	A set of Y values corresponding to the first and last X values of the reference graph



	Sum start/end frames
	A set of values obtained by comparing the target graph and reference start/end frames to determine the accuracy (lower is better)



	Start/end candidate frames
	A set of values that meets a condition with an accuracy equal to or greater than the target minimum accuracy when comparing the target graph with reference start/end frames



	Candidates
	A set of values storing all frames composed by the beginning and end of the graph that can be produced from start candidate frames and end candidate frames, and its accuracy when compared with the reference frame.










[image: Table] 





Table 2. The required personal computer specifications and environment used to drive the TSPDA.
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	CPU
	RAM
	OS
	Language
	Compiler





	i7-1165G7@2.8GHz
	16 Gb
	Windows11
	C# (.NET 6.0)
	MS Build
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Table 3. The data used to derive the results of the two pictures.






Table 3. The data used to derive the results of the two pictures.





	Data
	Value





	Target accuracy
	65



	Slice Count
	10



	Reference frame size
	140



	Execution time
	54.89 ms (milliseconds)
















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg





media/file4.png





media/file18.png
100.00%
80.00%
60.00%
40.00%
20.00%

0.00%

Accuracy compared to Slice Count = oo

96.50%

10

(Optimal Case)
97.20%

25

Slice Count

B Accuracy

98.70%

50

99.98%






media/file3.jpg





media/file19.jpg
450
400
350
300
250
200
150
100

50

Execution Time (Milliseconds)

42149
2151
12016
54.89 o2
10 2 50 100 -

= Execution Time





media/file7.jpg





media/file10.png
s Start Candidates
s=mem End Candidates
| i
S I 1 \ ——
\v\ . \ J
\ o e e’ \ ‘. " n \‘ k/‘ -
o o —— /ﬁf"\-'\ A y
S | o % L -
T 74T \'
T~ m——— A
—afll " e e e — / Al S — i A o
—ty e A i ——— 71 - / > @ ™ (7!
= S AN, 9.l 8 i
\ LN ) N\ P / i J v I l I l TR “’;;
\ N ! A | \ Wh\d
\ / \ / 1| o I 1 R Y
\ ' \ / YR, \ I’ 1 AR
\ g \ /S 1“' \ ; ‘ \] \ 1 \ \ |
. / d \ ‘ .
T p S __J/ v J \j vV g
,// e ~ S N N\ 'I‘ J
. > oy ~. / A\
e : Sl P . o\ \ A N ol \,‘—:’ —






media/file14.png
s Start Candidates
s=msm End Candidates






media/file11.jpg





media/file6.png
weeen Start Candidates
mesmem End Candidates

A W N
:—_—_f:f/ N i W(ar Yy
— « ’ x " \}— e~
iy o / ar i

VW At R ALY

\ f 'IIU ; \ , I J J / I‘ ; l'l,l II?

\ \UJ' \1)' \ k, \LI i\j 1‘\.1' \‘V; \J

) - ’f \ N A \ _ ) \ \ :f/}]l /lw”_‘_






media/file15.jpg





nav.xhtml


  applsci-12-02374


  
    		
      applsci-12-02374
    


  




  





media/file16.png
|\ )
\
Pr: Y L.«..
N (S~ ——
— 00 \ € e RN
~— ~\.'\.\ ..l.bu. .|‘|\.
- =
I ? h S ———
e T - —

s Start Candidates
=== End Candidates

_’ 1 -. "\ ./. _4 \
// .‘/.‘_ I \. n J
N i\ /
\ ‘! A IN \\\
\ LY/ I\ /
sl iy
.\. ,\. \y | / ./
{ \ M)\
[ ] ATl |
1 w. M»&u !
| /1 A f J
{ /1% ,\._\ /
I | b
i ! M .\JA\,,
| By / N
@. _/





media/file2.png
S Candidate
Initializer — —>
Frame Factory

Graph
Comparer

Slice Ratio

m=d Graph Aligner

Generator






media/file20.png
450
400
350
300
250
200
150
100

50

Execution Time (Milliseconds)
421.49

221.51
120.16
54.89 67.62
10 25 50 oo

m Execution Time





media/file5.jpg
e Start Candidates
e End Candidates






media/file1.jpg
Initializer h
ctory






media/file12.png
s Start Candidates
s=msw End Candidates

../ = — .\v\\‘
= :
oy ¥
) — K






media/file9.jpg





media/file0.png





media/file8.png
Start Candidates
=== End Candidates

o ol

/“' N
/ b
b e e
: -
> \
- e —

/
s .
» ~
i -——m T
-—-—-—ﬁ—_-,/_-—-" — =

..z:—_’\k-:.;m\,!- ~ o AR 4
- - - — — - :

~\
. ) // \’\‘
~. 7 A R gl
i e s 4 S

e Y —
el 4 - - -
— Y

4 —

e~ e~ — e
D S — P\ i / /
> o S 2
/\ ~ Y \\ '/ /
// N /'. \ < _— £ /
' 4 o g
S—_— > N 3 ’v

I ————

e —

——

A\
AR

.\
A\ A
/

N —





media/file17.jpg
10000%
80.00%
60.00%
40.00%
2000%

000%

Accuracy compared to Slice Count = e

96.50%

10

(Optimal Case)
97.20% 98.70% 99.98%

2 50 100
Slice Count

= Accuracy





