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Abstract: Improving quality of life in geriatric patients is related to constant physical activity and fall
prevention. In this paper, we propose a wearable system that takes advantage of sensors embedded
in a smart device to collect data for movement identification (running, walking, falling and daily
activities) of an elderly user in real-time. To provide high efficiency in fall detection, the sensor’s
readings are analysed using a neural network. If a fall is detected, an alert is sent though a smartphone
connected via Bluetooth. We conducted an experimental session using an Arduino Nano 33 BLE
Sense board in inside and outside environments. The results of the experiment have shown that the
system is extremely portable and provides high success rates in fall detection in terms of accuracy
and loss.
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1. Introduction

Among the leading causes of severe harm and death in the elderly, there is the problem
of falls at home. Lack of balance, sudden lurching and confusion after getting out of bed
cause much mortality and bedriddenness. The effect is greatest in patients with dementia,
who often receive harm that limits their mobility, forcing them to spend the rest of their
lives bedridden or in assisted living residences.

According to the best statistics available, in Italy, people over 65 years of age fall at
least once during the year. Of these, 43% fall more than once, and of these falls, over 60%
occur at home. A large portion of those who fall are seniors with dementia. The bedroom
accounts for as many as 25% of total falls. In the United States, falls are the leading cause of
unintentional death and the 7th leading cause of death in persons aged >65 years. In 2018,
there were 32,522 fall-related deaths of people >65 and only 4933 fall-related deaths of
people younger than 65; thus, 85% of fall-related deaths occur in the 13% of the population
who are >65 [1].

How a person falls will dictate the types of injuries that may result. For example,
falling forward or backwards, striking the hand first as an unconditional reflex, usually
causes a wrist fracture. Instead, a rupture of the hip is characteristic of falls to one side or
the other. When an older adult suddenly gets out of bed, their or her body needs time to
restore balance and cope with the new situation.

The main problem is not the fall and the fracture, but its consequences. In fact, in the
elderly, pathologies such as osteoporosis and other physiological changes related to ageing
cause slower healing, additional discomfort and effects from the psychological point of
view. Many elderly patients are reluctant to report falling because they view falling as part
of the ageing process or fear being restricted in their activities or hospitalised.

Falls can impair the independence of older adults and cause a range of personal
and socioeconomic consequences. In fact, falls were responsible for more than 3 million
emergency department visits by older persons. Medical expenditures for nonfatal fall
injuries were approximately $50 billion in 2019 and are sure to increase [2]. However,
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clinicians often underestimate the damage from a fall unless the patient has an obvious
injury, as history and objective examination usually do not include detailed assessments.

Anyone who lives with, helps or works with seniors, particularly those with illnesses,
knows how difficult it is to get them to listen to and follow the suggestions and directions
they are given. Therefore, we designed a wearable emergency recognition device for
elder persons with the aim of detecting dangerous events, such as falls, in order to trigger
assistance. In our case study, we used patients with metabolic disorders, who are more
likely to be prone to falls.

The paper is organised as follows. Section 2 reports a discussion of related works on
the fall detection topic. In Section 3, we describe our fall detection system and its constituent
components. In Section 4, the experimental results and evaluation are presented. Lastly,
conclusions and future work are described in Section 5.

2. Related Works

At present, several solutions have been proposed for elderly fall detection. Such
solutions are categorised into three main types according to the sensor-technology used:
non-wearable systems (NWS), wearable systems (WS) and fusion or hybrid systems (FS).

In particular, NWS systems [3-5] use vision-based sensors strategically distributed
in the home of the elder. They have been proven powerful and robust at detecting falls;
however, these systems have high costs, can be obviously be effective only in indoor
environments and could generate privacy issues for the elders or the people that assist them.

To overcome these limitations, WS systems were proposed. They typically use inertial
sensors, such as an accelerometer or gyroscope, usually attached to the elder for motion
detection. Accelerometers are being increasingly used in WS systems because they offer
advantages: low power consumption; affordability; lightness; ease of use; small size; the
potential to be mounted on various body parts; and most importantly, extreme portability.
Therefore, in some representative papers [6-8] a 3-axis accelerometer with the threshold-
based algorithm was used. In these papers, the authors detected falls when the acceleration
from a 3-axis accelerometer exceeded the threshold. One of the essential advantages of using
the threshold-based method is that it is less complex and less computationally intensive
than the other methods. However, finding suitable thresholds to detect all types of falls
without mislabelling activities of daily living (ADL) has proven to be a complex problem.

A similar approach uses a smartphone’s built-in accelerometer to monitor the move-
ment data of an elderly person continuously. In [9], the collected data were used to test
three different learning classifiers offline: decision trees, k-nearest-neighbours (KNN) and
naive Bayes. The results show that the decision-trees-based algorithm had the best perfor-
mance, with more equilibrated sensitivity and specificity values compared with the other
algorithms. Nevertheless, due to smartphones’ relatively high energy consumption, this
system could only be active for a short period.

Recently, WS systems based on machine learning (ML) approaches have been
proposed [10-14] to address these limitations and improve the accuracy of fall detection.
One study [15] used a nonlinear support vector machine to extract features and gain mean-
ing from body data captured by an accelerometer attached to a smart textile. Two feature
extractions were required to identify the peak to detect the fall direction, requiring more
processing than a single extraction algorithm. The authors of [16] detected and predicted
falls using a method based on the hidden Markov model (HMM), which involved gathering
time series from the movements obtained by a three-axis accelerometer placed on the upper
body. The test results show a perfect success rate of drop detection (100% sensitivity and
100% specificity). However, they used data samples from adolescents’ simulated activities
to train and adjust the HMM and the system’s thresholds.

3. Fall Detection System

Our methodology foresees developing a wearable system for detecting falls of older
people, which takes advantage of low-power smart devices’ capabilities and a neural
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network for movement detection recognition. In this work, we have followed an ML
approach by using a neural network for fall detection, but we differ from related works in
the system’s design.

While other related works exploit multiple sensors that collect movements and send
data to a device that analyse them, in this work, we used a single device for activity
monitoring and recognition through a neural network deployed on an Arduino nano
33 BLE Sense board. The board has a small size of 45 x 18 mm, which makes it suitable
for prototype wearables, and is equipped with several integrated sensors to measure
environmental variables. In Figure 1, one can see the board’s main components and
input/output interfaces. This choice brings versatility and portability advantages, since
the other related works” solutions are constrained to indoor environments that rely on
non-portable infrastructures or require multiple sensors to be worn on the body.

SPI- MISO (Master In Slave Out) [D12]
SPI-MOSI (Master Out Slave In) [D11]
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Figure 1. Arduino 33 Nano BLE Sense pinout.

Another innovation of our work is that the monitoring board interacts with a smart-
phone to collect and manage events. The board can communicate with the smartphone
through a Bluetooth Low Energy (BLE) module: when it detects a fall, it sends a notification
to the smartphone. To avoid false alarms, a mobile application on the smartphone manages
the notifications, asking to the user if there is an emergency. If no response is provided
within 60 s, the smartphone forwards an alert by calling a healthcare professional and
sending information about the location of the older person. Furthermore, the detected
events are stored on the smartphone—one the one hand to give more accurate information
to healthcare professionals and on the other hand to provide an efficient way to enhance the
neural network’s training, together with feedback provided in response to detected events.

3.1. Datasets

The analysis of the recent related literature showed that current studies tend to prefer
the use of already existing public repositories containing falls and ADLs, although no
particular dataset can be considered a globally accepted benchmarking tool. For neural
network training, we used two different datasets.

The first dataset chosen for recognition of falls and daily activities (ADL) [17] includes
11 activities and three trials for each of them. For the dataset collection, 17 different subjects
performed six different activities of daily living (walking, standing, lifting an object, sitting
and lying down) and five different types of falls (falling forward using hands, falling
forward using knees, falling backwards, falling sitting, and falling sideways). Data were
collected with a multi-modal approach using wearable sensors, ambient sensors and vision
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devices. For data consistency, we selected a single subject and chose to refer only to
the data acquired by inertial sensors placed on the right wrist. For each type of activity
(excluding walking), we selected five samples for a total of 50 samples for falls and daily
activities, respectively.

We used Power BI to eliminate redundant data and measurements unrelated to the
right wrist or related to the three axes of acceleration and gyroscope. Therefore, the resulting
dataset was trimmed to be used in the training of the neural network that we show in detail
in the dedicated section.

The Run or Walk dataset [18] contains running and walking data collected from iOS
devices. Initially, the dataset consisted of a single file representing 88,588 data samples
collected by the device’s accelerometer and gyroscope during an interval of 10 s and at
a frequency of approximately 5.4/s. For each row, there is an activity type represented
by “activity” column which acts as label and a “wrist” column which represents the
wrist whereupon the device was placed to collect samples. Specifically, each row of the
dataset contained:

e  acceleration_x;

* acceleration_y;

. acceleration_z;

* gyro_x;

* gyroy;

e gyro_z;

¢ label “0” for walking;

e label “1” for running;

e label “0” for the left wrist;

¢ label “1” for the right wrist.

The original dataset also contained the columns columns "date”, “time” and “user-
name”, which for obvious reasons, have been eliminated by PowerBl. Moreover, we chose
to consider the measurements made only on the right wrist (for consistency with data
collected for the others activities). Then, we collected 50 samples for walking and 50 for
running. Angular velocity values were transformed from rad/s to deg/s to align them
with the fall/adl dataset values. Therefore, all values contained in the gyro axes columns
were multiplied by 57.2958°/rad.

3.2. Data Pre-Processing

When data are transmitted to the designed neural network, the size of each input
datum should be the same as the number of input layer variables (in our model, the input
layer size is 300). However, since the duration of each action, including falling, is different,
we needed to make the sizes of the data the same. Based on this, all data were unified to
have 50 values.

We split complete dataset into four lists of gestures, namely, “adl”, “fall”, “walk” and
“run”; we had 50 samples for each gesture. For each of these files we had to normalise
input data between 0 and 1 in order to create tensors. Each row contained normalised input
data, coming from acceleration and angular velocity values, and the output represented by
an eye matrix encoding the expected activity value. Data pre-processing reported in the
following Listing 1.
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Listing 1. Dataset parsing and pre-processing.

# Set a fixed random seed value, for reproducibility, this will allow us to
get the same random numbers each time the notebook is run

> SEED = 1337

3 np.random.seed (SEED)

. tf.random.set_seed (SEED)

6 # the list of gestures that data is available for
7 GESTURES = ["adl", "fall", "walk", "run",]

s NUM_GESTURES = len(GESTURES)

9 SAMPLES_PER_GESTURE = 50

11 # create a one-hot encoded matrix that is used in the output
2 ONE_HOT_ENCODED_GESTURES = np.eye (NUM_GESTURES)

14 inputs = []
15 outputs = []

17 # read each csv file and push an input and output

18 for gesture_index in range (NUM_GESTURES) :

19 gesture = GESTURES[gesture_index]

20 print (f"Processing index {gesture_index} for gesture ’{gesturel}’.")
2 output = ONE_HOT_ENCODED_GESTURES [gesture_index]

2% df = pd.read_csv("/content/" + gesture + ".csv")

26 # calculate the number of gesture recordings in the file
27 num_recordings = int (df.shape[0] / SAMPLES_PER_GESTURE)

29 print (f"\tThere are {num_recordings} recordings of the {gesturel} gesture.")

31 for i in range(num_recordings):

2 tensor = []
33 for j in range (SAMPLES_PER_GESTURE) :
34 index = i * SAMPLES_PER_GESTURE + j

35 # normalize the input data, between O and 1:
36 tensor += [

37 (df[’aX’] [index] + 4) / 8,

38 (df[’aY’] [index] + 4) / 8,

39 (df [’aZ’] [index] + 4) / 8,

40 (df [’gX’]1[index] + 1000) / 2000,
41 (df [’gY’]1[index] + 1000) / 2000,
42 (df [’gZ’] [index] + 1000) / 2000
13 ]

44

145 inputs.append(tensor)

16 outputs.append (output)

s # convert the list to numpy array
1 inputs = np.array(inputs)
50 outputs = np.array(outputs)

> print ("Data set parsing and preparation complete.")

3.3. Training, Testing and Validation Datasets

For model training we randomly split input and output pairs into a training set (60%),
a testing set (20%) and a validation set (20%), as reported in the following Listing 2.
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Listing 2. Dataset randomisation and splitting.

# Randomise the order of the inputs, so they can be evenly distributed for
training, testing, and validation

num_inputs = len(inputs)

randomise = np.arange (num_inputs)

np.random.shuffle (randomize)

# Swap the consecutive indexes (0, 1, 2, etc) with the randomised indexes
inputs = inputs[randomise]
outputs = outputs[randomise]

# Split the recordings (group of samples) into three sets: training, testing
and validation

TRAIN_SPLIT = int (0.6 * num_inputs)

TEST_SPLIT = int (0.2 * num_inputs + TRAIN_SPLIT)

inputs_train, inputs_test, inputs_validate = np.split(inputs, [TRAIN_SPLIT,
TEST_SPLITI])

5 outputs_train, outputs_test, outputs_validate = np.split (outputs, [

TRAIN_SPLIT, TEST_SPLIT])

print ("Data set randomisation and splitting complete.")

3.4. Model Training

In this work, we used Google TensorFlow for neural network configuration and learning,
since it makes neural network implementation convenient, because it provides functions used
for machine learning, including activation functions and an initialisation function.

To exploit the advantages of neural networks while keeping a simple model, able to
be deployed on the Arduino board, we designed a sequential neural network model for
ADL recognition consisting of:

* A dense layer with 50 neurons and a sigmoid activation function;
* A dense level with 25 neurons and a sigmoid activation function;
* A final level with four neurons and an activation function softmax.

The following Listing 3 shows the implemented model:

Listing 3. Neural network model definition and training.

# build the model and train it
model = tf.keras.Sequential ()

5 model.add (tf.keras.layers.Dense (50, activation=’ReLU’))

s

o

®

model.add (tf.keras.layers.Dense (25, activation=’RelLU’))

# softmax is used, because we only expect one gesture to occur per input

model.add (tf.keras.layers.Dense (NUM_GESTURES, activation=’softmax’))

model.compile (optimizer=’adam’, loss=’mse’, metrics=[’accuracy’])

history = model.fit(inputs_train, outputs_train, epochs=80, batch_size=1,
validation_data=(inputs_validate, outputs_validate))

Since the sample size of the experiment was 50, and we had three components for
acceleration and angular velocity per sample (x, y and z; gx, gy and gz), the number of
variables in the input layer was set to 50 x 6. In the hidden layers, a ReLU function was
used as the activation function, for performance reasons.

The output layer consists of four neurons—I[0, 1]—for the “adl”, “fall”, “walk” and “run”
activities. In the output stage, the activation function is softmax, so the sum of the output
probabilities has to be 1. In our case, having four different classes, we obtained a probability
for each of them. The predicted movement is the one with the highest probability.

7

3.5. Model Deployment

The model was built and trained using the TensorFlow and Keras libraries. The
obtained model was converted to a Tensor Flow Lite version, as reported in Listing 4,
suitable to be loaded into the Arduino IDE and then flashed into the board. Thus we built
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a classifier that prints a prediction on a serial monitor and sends emergency notifications
through Bluetooth messages to a smartphone.
Listing 4. Neural Network conversion into Tensorflow Lite model.

# Convert the model to the TensorFlow Lite format without quantization
converter = tf.lite.TFLiteConverter.from_keras_model (model)

3 tflite_model = converter.convert ()

4

5 # Save the model to disk

6
8
9

10

open("model.tflite", "wb").write(tflite_model)

import os
basic_model_size = os.path.getsize("model.tflite")
print ("Model is %d bytes" ¥ basic_model_size)

The classifier implemented for the Arduino board predicts four possible motions (as
illustrated above). The detection of a movement is signalled by turning on the RGB LED of
the board, as shown in Figure 2, according to the following scheme:

e Red LED, when a fall is detected;

*  Blue LED, for running;

*  Green LED, for walking;

*  LED off, for actions of daily life (ADL).

Figure 2. From the top: falling, running, walking and standing detection.
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4. Results

How to evaluate fall detection systems (FDSs) in realistic conditions is still an unre-
solved experimental problem. The main users of FDSs are supposed to be the elderly. The
current public databases containing actual falls experienced by older adults are certainly
scarce. In our scenario of monitoring older persons’ activities (generally people with limited
mobility), falls could be identified as movements that clearly deviate from the detected
patterns of the samples in the training set. Anyway, in the absence of measurement reposi-
tories with a significant number of actual falls, experiments were conducted to obtain the
acceleration values of falls. We excluded older people from falls simulations because they
could have resulted in severe injuries to such subjects.

For fall simulations, we prepared an experimental environment consisting of a floor
mat capable of absorbing one’s fall on which we put an unstable platform. The subject, to
which the smart device was attached on the right wrist by a strip string, was asked to stand
on the unstable platform. By slightly moving the platform, the subject’s fall was induced.

The model for motion detection (ADL, fall, walk, run) was trained for 80 epochs,
obtaining the results shown in Figure 3.

The parameters shown are:

*  loss, defined as the root mean square error between the actual value and the predicted
value during training;

*  accuracy, as the percentage of correct predictions, compared to the total predictions
during training;

e val_loss, loss on the validation data;

*  wval_accuracy, accuracy on the validation data.

Training and validation loss Training and validation accuracy

09 * Taining Accuracy
= Validation Accuracy

+  Taining loss
+  Validation loss

0 bt 20 EY 40 s0 0 0 & 0 1 ) E) 0 50 &0 0 &
Epochs Epochs

(a) (b)
Figure 3. Training of the movement detection model: (a) loss and val_loss functions for the movement
classifier. (b) accuracy and val_accuracy functions for the movement classifier.

Figure 3a shows the loss and val_loss obtained for the motion classifier. On the valida-
tion data, the loss function was 0.10. Figure 3b shows the accuracy and val_accuracy obtained
for the motion classifier. On the validation data, the accuracy did not get beyond 78%.

For a real-world validation session, we tested an elderly person performing ADLs and
walking, since they are safe experiments. These data are more representative of the posture,
walking speed and other factors typical of older people.

The subject performed ADLs wearing the device for a week and provided feedback on
the alert notifications prompted by the smartphone. The subject also performed a prefixed
set of activities at the end of each day to compare the results. We estimated network
classification performance at the beginning and the end of the experiment by evaluating
samples of data collected during test set of activities performed on day 1 and day 7. We
reported the results in Figure 4.
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Figure 4a shows the confusion matrix obtained by the model during day 1. The
recognition of fall, walk and run activities were good (all five running activities were
recognised, along with the four walking activities and the two falling activities). However,
in the case of the ADLs, due to their variability, only one was recognised adequately, and
the remainder were predicted to be falls. Figure 4b shows the model’s confusion matrix
obtained during day 7, after tuning the network with feedback provided by the subject
through the smartphone. Fall, walk and run recognition were still good; and in ADLs
recognition, 50% of events were correctly recognised.

adl

predicted label
walk fall
redicted label

P

run

adl fall walk run ad fall waalk run
true label True label

(a) (b)
Figure 4. Model’s confusion matrix. (a) Confusion matrix for the movement detection classifier on 1.
(b) Confusion matrix for the movement detection classifier on day 7.

5. Conclusions

In this work we have presented a system for fall detection for elderly people. The
system exploits a smart sensor board on which we use a neural network trained to recognise
and monitor the activity of the patient. The board interacts with a smartphone application,
connected through Bluetooth with the board, which is responsible for getting user feedback
to supposed fall events and forwarding emergency calls if necessary.

In previous fall detection studies, falls have recognised using acceleration sensors on
the waist or the chest, and the recognition rate has been over 95%. However, when an
acceleration sensor on the wrist was used, the recognition rate was about 75%. The artificial
neural network proposed in this work was able to recognise activities with 78% accuracy
using the acceleration of the wrist. This is a relatively small improvement compared to the
conventional fall detection mechanism, which is due to the simple neural network model
that was designed to suit the limited computational capabilities of such devices.

However, with wrist-band type devices, we can cut down the system costs (we may
use existing smart-watches or bands) and provide comfort to the user. Moreover the
proposed system is portable, usable in outdoor environments and upgradeable through the
firmware. Furthermore, the system analyses sensor data with an embedded computational
unit (CU), not having the need for streaming data to an external CU, thereby preventing
draining of the battery of the connected smartphone. The latter is only responsible for
obtaining feedback from the user and forwarding emergency notifications.

In future developments we will provide the ability to classify more activities, so that
the living patterns of older persons can be better recognised. Furthermore, we could also
integrate speech recognition features to recognise help requests, including those not related
to falls [19,20]. Moreover, we foresee the need to apply security and privacy techniques in
order to process the data acquired by the sensors [21,22].
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