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Abstract: Wind energy is one of the most important renewable energy sources in the world. Accurate
wind power prediction is of great significance for achieving reliable and economical power system
operation and control. For this purpose, this paper is focused on wind power prediction based on a
newly proposed shuffle–and–fusion interaction network (SFINet). First, a channel shuffle is employed
to promote the interaction between timing features. Second, an attention block is proposed to fuse the
original features and shuffled features to further increase the model’s sequential modeling capability.
Finally, the developed shuffle–and–fusion interaction network model is tested using real-world wind
power production data. Based on the results verified, it was proven that the proposed SFINet model
can achieve better performance than other baseline methods, and it can be easily implemented in the
field without requiring additional hardware and software.

Keywords: wind power forecasting; attention mechanism; shuffle operation; interactive learning;
shuffle–and–fusion interaction network

1. Introduction

With the increasing global warming threats, the United Nations has called for the
reduction of carbon dioxide emissions and hence set out the goals of reducing greenhouse
gas emissions by 45 percent by 2030 and to net zero emissions by 2050 [1]. In line with the
United Nations’ goals, the developed and most developing countries have started to take
actions to develop realistic plans toward the reduction of carbon dioxide emissions. For
instance, the Chinese government announced their goals to reach the peak of carbon dioxide
emissions before 2030 and strive to achieve carbon neutrality before 2060 at the 75th session
of the United Nations General Assembly (UNGA 75) in September 2020 [2]. In 2019, the
total carbon dioxide emissions in China were estimated at 10.5 billion tons, of which
the carbon emissions from energy consumption were about 9.8 billion tons, accounting
for around 87% of the total emissions [3]. With rapid economic and social development,
the transition to a green and low-carbon society is accelerated, and the transition of the
country’s energy structure brooks no delay. Cleanliness is an important direction for carbon
emission reduction in energy production. The way to accomplish the “dual carbon” task is
to develop green and low-carbon renewable energy. During the 14th Five-Year Plan period,
coal consumption in China will continue to decline. In the plan, it is forecasted that the
installed capacity of renewable energy and nuclear power will reach 1200 GW by 2030, of
which wind power will reach 500 GW in China [4].

As the installed capacity of wind power continues to grow and wind power is con-
nected to the grid on a large scale, the overall grid performance is affected by the output
power from wind farms due to the intermittency of wind [5]. In order to ensure the safety
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and stability of the operation of the power system, the power grid needs to prepare a
sufficient spinning reserve capacity. However, the increase in the reserve capacity will
increase the operating cost of wind power. Therefore, accurate wind power forecasting
(WPF) is required for providing a basis to develop a grid dispatch schedule, and it also
helps to greatly reduce the operating costs of wind farms and improve the competitiveness
of wind energy in the overall energy market [6–8].

Historically, there have been different wind power forecasting (WPF) methods, which
can be divided into four categories: physical, statistical, hybrid, and deep-learning methods.
A summary report of these four categories of methods in terms of their features and
limitations in application is given in [9]. The physical method is based on a mesoscale
weather model or a numerical weather prediction system (NWP). NWP represents a variety
of mathematical expression models of geographic and meteorological information [10,11].
Although this method has a good effect on short or medium-term forecasts of more than
3 h, it is difficult for it to collect all relevant geographic or meteorological data [12–14],
so it has limitations in application. The physical forecasting method is generally used to
select/determine new wind farms, but not for wind turbine power production prediction.

The statistical prediction method is based on the historical data collected by the
SCADA system to establish a linear/non-linear relationship between relevant index data
and power to predict the output power of a wind farm. Statistical prediction methods
can be categorized as conventional statistical methods and those based on artificial neural
networks (ANN). The conventional statistical methods have limitations in forecasting
due to the demand for non-linear expression in wind power forecasting (WPF), while the
methods based on artificial neural networks can effectively represent a large number of
non-linear relationships and complex characteristics among wind speed, temperature, and
other parameters in power generation. Therefore, statistical prediction methods based on
ANN have become widely applied. Ref. [15] proposed a shallow model for wind speed
prediction (WSF) based on artificial neural networks, which is more accurate than physical
or traditional statistical methods.

The hybrid method integrates the physical and statistical models to improve fore-
cast performance by preserving the advantages of each approach [16–18], but the hybrid
models may not have the capability to achieve stable prediction, as their complex learning
architecture may cause low efficiency in training and even underfitting [9].

With the development of deep learning techniques in recent years, and because wind
power prediction possesses a natural time-series feature, some deep neural network (DNN)-
based time series forecast methods have been developed and used for wind power estima-
tion, such as the methods based on recurrent neural networks (RNNs) [19], long short-term
memory (LSTM) [20], Transformer [21], temporal convolutional networks (TCNs) [22],
sample convolution and interaction networks (SCINets) [23], etc. These form the deep
learning-based method for wind power forecast. It is promising in terms of new model
development for time series forecasting; however, none of the existing methods can claim to
be perfect in time series prediction, which depends on the available data and data quality.

SCINet is a novel framework proposed by Liu et al. [23] very recently that has been
applied to time series forecasting problems. It performs sample convolution and interaction
at multiple resolutions for time-series modeling. Although good prediction results can
be achieved by SCINet models, the SCINet framework has some shortcomings that affect
the prediction performance, i.e., the prediction accuracy. One of the shortcomings is the
strict binary tree structure taken in SCINet causing information blockage as the number
of network levels increases. To address this issue, this present paper proposes a novel
framework with a shuffle–and–fusion interaction network, named SFINet, to avoid the
information blocking of SCINet sequence channels and develops an improved algorithm
for wind power forecasting. The developed models based on SFINet have been proven
effective to achieve the economic dispatch of energy production and reliable operation of
the power system, providing an opportunity for reducing the operation costs of wind farms.
The main contributions are as follows: (1) considering the sequence interaction modeling of
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time series tasks, we introduced the shuffle operation to increase the dependence between
sequences; (2) in order to further promote interactive learning, we proposed feature fusion
based on the time series attention mechanism; and (3) the developed models are applied
to wind power forecasting using real wind power production data collected from a wind
farm in China, verifying the outperformance of our models by comparing them with other
baseline approaches.

2. Deep Learning-Based Method for Wind Turbine Operation and Power Forecasting
2.1. Channel Interleave Operation

To the best of our knowledge, the first real use of channel alternate operation was in
IGCNets [24], and channel interleave in the form of shuffle was proposed in shufflenet [25],
which aimed to break the information blockage between group convolutions. Subsequently,
channel shufflenet has been widely utilized as a basic backbone network [26,27], with
applications in semantic segmentation, Multi-Person Pose Estimation, Image Processing,
and other tasks [28–30]. However, channel shufflenet is mostly used on the basis of grouped
convolution and lightweight models. In this paper, we apply it to the construction of the
sequence channels for time series forecasting to improve the interaction capabilities of
different time series features.

2.2. Attention Mechanisms

Attention is essentially a tool to filter and focus important information from a large num-
ber of available processing resources, while ignoring non-important information [31,32]. It is
usually combined with threshold functions, such as softmax and sigmoid, or sequential
techniques [33,34]. In both computer vision and sequence tasks, it has shown superior
performance [35,36]. In these applications, the attention mechanism usually acts on one
or more top layers to further reshape the characteristics of the higher level. Attention
mechanisms have provided a lot of benefits in many applications, e.g., image classifica-
tion [37], object detection [38], multi-modal task [39], few-show learning [40], and machine
translation [21].

The more common attentions are channel attention [37,41], spatial attention [37,42],
temporal attention [43], and branch attention [44]. Channel attention adaptively recalibrates
the weight of each channel and can be viewed as an object selection process, thus determin-
ing what to pay attention to. Hu et al. [41] introduced a lightweight attention operation
with a Squeeze–and–Excitation block to model channel-wise relationships. Spatial attention
can be seen as an adaptive spatial region selection mechanism for determining where to
pay attention to. Dai et al. [42] proposed deformable convolutional networks (deformable
ConvNets) to be invariant to geometric transformations, but they paid attention to the
important regions in a different manner. Self attention [21] is also used as a spatial attention
mechanism to capture global information. Temporal attention is a dynamic time-selection
mechanism. Li et al. [43] proposed a global–local temporal representation (GLTR) to exploit
multi-scale temporal cues in a video sequence. In a multi-branch structure, branch attention
is used for branch selection. Reference [44] proposed an automatic selection operation
called selective kernel (SK) convolution implemented using three operations: split, fuse,
and select.

The above-mentioned attention methods are often combined in application. Chen et al. [45]
dynamically modulated the sentence generation context in multi-layer feature maps using
encoding channel attention and spatial attention. Reference [46] identified spatial saliency
associated with image pixels and executed temporal intensity filtering and predictive
coding to filter spatiotemporal redundancies from images.

On the basis of the above overview, we propose a feature fusion method based on
time series channel attention, aiming to enhance the model’s long-term forecasting ability
in wind power forecasting.
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2.3. Deep Learning-Based Wind Power Forecasting

The wind speed and power indicators collected through the wind turbine SCADA sys-
tem are all time series data. Time series forecasting can estimate their future development
based on indicators or events. At the same time, there are complex nonlinear relationships
among other indicator data related to power. From the previously published research
works, it has been realized that deep learning-based time series forecasting has higher
forecasting accuracy than the traditional methods [47], so the deep learning-based time
series forecasting (TSF) method has been widely utilized.

The recurrent neural network (RNN)-based TSF method given in [48,49] compactly
summarizes the past information in the internal memory used for prediction, where the
memory state is recursively updated with new inputs at each time step, as shown in
Figure 1a below. Ref. [50] proposed a long and short-term memory-based recurrent neural
network (LSTM-RNN) to predict the wind power from 1 to 24 h. Transformer relies on
the attention mechanism to model the global dependency of input and output, and breaks
the non-parallelization problem of RNN-based methods, so it is gradually replacing the
RNN model in almost all sequence modeling tasks. Therefore, various Transformer-based
TSF methods were presented in [51], as shown in Figure 1b. The multi-head self-attention
mechanism is used to extract the spatial correlation between wind farms [52]. Models
based on convolutional neural networks (CNNs), such as temporal convolutional networks
(TCNs), are also used in time series forecasting (TSF) [53,54]. The TCN uses a series of
causal convolutional layers stacked to make full use of convolution. Parallel operation with
efficient modeling of the dependency relationship between multiple sequence features is
shown in Figure 1c. Long-term prediction of wind power with a mean absolute percentage
error of 10% was carried out in [9] by using the temporal convolutional network (TCN).
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Ref. [23] proposed a new neural network structure named SCINet, as shown in
Figure 1d, specifically designed for time series forecasting, which lifts causal convolutional
layers and the forced numbers of network input and output to be the same constraints of
TCNs, and achieved very good performance in TSF tasks. To the best of our knowledge,
however, SCINet has not been applied to the field of wind power forecasting (WPF). At the
same time, the binary tree structure of SCINet causes information blockage as the number
of network levels increases. For this reason, we propose shuffle–and–fusion interaction
networks (SFINet) to overcome this issue.
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3. SFINet: Shuffle–and–Fusion Interaction in Convolution Networks

As mentioned above, SCINet follows the strictly binary tree structure, and the time-
series feature information will no longer have the opportunity for information interaction
after passing through the parent node of the binary tree. Although there is an interactive
learning operation in SCI-Block, it can fuse information between time-series, but this inter-
active process only exists at the node of the parent tree, which means that the subsequent
layers of different depths can only come from the first interactive learning of the parent
node for the most primitive timing input. As the number of tree layers deepens, this
information will be transmitted more insignificantly. We think that this feature is very
unfavorable for capturing the dependencies between long sequences.

We use Figure 2 to illustrate this feature of the original SCINet structure, where the
most basic unit is SCI-Block, as shown in Figure 2a. SCI-Block contains interactive learning
modules responsible for the interaction between two different timing features. The SCINet
is composed of basic SCI-Blocks according to the strictly binary tree structure, as shown
in Figure 2b, and the SCI-Block always averages the split input features in the timing
dimension; finally, SCINet is stacked to form Stacked SCINet. We named the input feature
of an SCI-Block as SSF (split-sequence features), then the input to the k-th SCI-Block of the
l-th layer can be defined as SSF(l, k), where l = 1, 2, . . . , L, and k = 20, 21, . . . , 2L−1. Due to
the average split characteristic in the timing dimension, for a timing sequence whose input
length is known to be S, then L ∈ [1, n], and 2n ≤ S.
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Figure 2. The overall architecture of the Sample Convolution and Interaction Network (SCINet) [23].

Obviously, in the SCINet structure, SSF(l, k) is with l > 1, and k ∈
(
1, 2l−1). Only

part of the output from the upper layer of the module will interact with other outputs in
this layer. As shown in Figure 2b, each of SSF(3, 1), SSF(3, 2), SSF(3, 3), SSF(3, 4) is input into
the corresponding SCI-Block for further reasoning, and they are mutually isolated. Their
interactive learning only exists in the first layer of SCI-Block. Hence, this property blocks
information flow between sequential channels and weakens representation.
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3.1. Shuffle Split-Sequence Features

If SCI-Block is allowed to obtain an input from different split-sequence features, the
split-sequence features that characterize different time dimensions will obtain better inter-
action. Therefore, the shuffle operation was introduced on the basis of SCINet. Specifically,
for the structural characteristics of SCINet, for each layer of input split-sequence features,
the inputs are naturally presented in groups at each level. First, the channels of each group
can be divided into sub-groups, and then different sub-groups can be evenly allocated to
each group as the input to the next layer. This operation is a sequential operation, as shown
in Figure 3a.
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The above operations can be efficiently implemented through a channel shuffle opera-
tion, as shown in Figure 3b. Use 2l groups to form new sequence features, and its output
channel has 22l sub-groups. First, reshape the output channel size to

(
2l, 2l), transposing

and then flatten it back as the input of the next layer. Channel shuffling is also differentiable,
which means that it can be embedded into network structures for end–to–end training.
The shuffle operation makes it possible to build more powerful structures with sequential
interactive learning.

On this basis, the shuffle operation was embedded in the SCINet structure, and
therefore, the SFINet structure was designed as shown in Figure 3c. The shuffle operation
acted on the output of all leaf nodes of all SCI-Blocks in each layer. There was only one
shuffle operation in each layer, which had nothing to do with the number of SCI-Blocks in
that layer.

3.2. Fusion with Channel Attention

Taking into account the natural law of features in timing, this paper does not directly
use the feature SSF after shuffle operation to replace the original SSF, but merges the two.
Here, a simple method of adding corresponding positions was used to realize the fusion of
the two parts; that is, to ensure the sequence relationship of the original SSF in time series
and to ensure the communication of features in different slice groups.

Before feature fusion, the attention operation was further performed on SSF, which
was completed by the attention block shown in Figure 4a.
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First of all, in order to ensure that the features of each dimension on the timing channel
are fully utilized and can participate in subsequent predictions, we propose squeezing
global spatial information into a channel descriptor. Exploiting such information is preva-
lent in feature engineering work. We opted for the simplest. This was achieved by using
global average pooling to generate channel-wise statistics. Formally, a statistic z ∈ Rc was
generated by shrinking SSF through spatial dimensions W, where the c-th element of z is
calculated by:

zc = Fg
(
SSF

)
=

1
W

w

∑
i=1

SSF(i) (1)

To make use of the information aggregated in the squeeze operation, we followed
it with a second operation that aims to fully capture channel-wise dependencies. We
performed one-dimensional convolution again after Z, and the output was E. At the same
time, it was to ensure that the characteristic channel output was the original length, and
we finally used Sigmoid to activate E. Decoupling realizes the release of the dependency
between different channels, and outputs of the final attention coefficient S = [s1, s2, . . . , sc].
The final output X = [x1, x2, . . . , xc] was obtained by rescaling the transformation output
SSF with the activation, such that the c-th element of X was calculated by

xc = Fscale
(
Sc , SSFc

)
= Sc·SSFc (2)

where Fscale
(
Sc , SSFc

)
refers to the channel-wise multiplication between the feature map

SSFc ∈ Rw and the scalar Sc.
Finally, we embedded the Attention Block into SCINet, as shown in Figure 4b; the

output after the Attention Block will be added and fused with the original SSF and sent to
the next layer of inference.

3.3. SFINet Architecture

After each layer of SCINet is the output, it is connected to the shuffle operation
and attention block. Hence, a new network structure SFINet—the shuffle–and–fusion
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interaction network is proposed. This structure represents different timing information
features. After passing through each layer, they will be shuffled and further processed at
the attention block. After the above operations are completed, they will be fused with the
previous features, and then enter the next layer of reasoning, thus breaking the information
blockage in the original structure. After the above operations, not only the capture of
short-term dependencies in timing is guaranteed, but also the ability to build long-term
dependencies in timing is further improved.

It should be noted that, when level = 1, SFINet has the same structure as the original
SCINet. Because the original input is directly connected to the output after a layer of
reasoning, it does not go through the shuffle operation and attention block modules;
however, in actual tasks, most tasks require a structure with larger than 2 levels.

4. Wind Power Forecast

This section provides a test of the proposed SFINet for wind power forecasting.
Section 4.1 introduces the data sets included in this study. There were five data sets
utilized: two of them were the collected real wind power data and three were the published
data sets. Section 4.2 introduces detailed power prediction and other experimental settings.
Section 4.3 shows the performance and usability of the proposed method, as well as the
testing results. The effectiveness of SFINet was verified by comparing it with various other
methods including SCINet.

4.1. Data Set Selection

We empirically perform the test of the established models using five data sets: two of
them were collected from a wind farm and the other three were selected from the published
benchmark data sets.

The data collected from a wind farm represent the operation data of two independent
wind turbines, each with a rated power of 1.5 MW, for one year with a sampling frequency
of once per 10 min, i.e., 10 min data. The two data sets were marked as WPm1 and WPm2,
respectively. The data for each sampling point include 12 variables—see Table 1 below.
These variables were most relevant to wind power generation, including the wind speed,
generator output power, pitch angle, nacelle position (or yaw angle), wind direction (vane
direction), etc. These variables were selected by referring to the previously published
research articles for wind power forecast and through discussions with the wind farm
operation manager and engineers. There were two wind turbine operation modes: Mode 1
was marked as 20 when there was power output to the grid and Mode 2 was marked as
6 when there was no power output or the wind turbine stopped running. Other values
represent the wind turbine running in a transition status between the two operation modes.
The value was calculated based on the time length when it was running in Mode 1 and the
time length when it was running in Mode 2 in a 10 min time step. Similarly, there were two
wind turbine braking modes: Under braking and no braking. When it was under braking,
the variable Turbine Brake Level was assigned a value of 51, whereas it was given 0 if
there was no braking. Other values assigned to this variable represent the braking is in a
transition status between the two braking modes. The value was calculated based on the
time length when it was in braking mode and the time length when there was no braking.
Each value was calculated in average on a 10 min time step.

The ratio of the training data set to the validation set and the test set was 5:2:3. See
Table 2 for detailed information. These two data sets were used to verify the effectiveness
of the proposed method in wind power forecasting.

Electricity Transformer Temperature (ETT) data were collected and used in [55]. The
ETT data cover 2 years’ data collected from two separate counties in China. They were split
into two data sets marked as ETTh1 and ETTh2, respectively, with a sampling frequency
of once per hour. The ETTm1 data set was 15 min data, i.e., the sampling frequency was
once per 15 min. Each data point consisted of the target value of “oil temperature” (◦C)
and six power load features—see Table 3 below. The ratio of the training data set to the



Appl. Sci. 2022, 12, 2253 9 of 16

validation set and the test set was 3:1:1. See Table 2 for detailed information. The ETT data
sets were used to demonstrate the general validity of the proposed method.

Table 1. Illustration of the wind power data set including 12 variables.

Index Name 1 January
2019 14:10

1 January
2019 14:20

1 January
2019 14:30

1 January
2019 14:40

1 January
2019 14:50

1 January
2019 15:00

1 Wind Speed (m/s) 3.37 3.00 * 3.40 3.13 3.46
2 Generator Output Power (KW) 0.0840 3.0268 * 21.6730 56.0637 104.1866
3 Pitch Angle (◦) 75.81 27.10 * 40.70 −0.5 −0.5
4 Nacelle Position (◦) 246.39 165.04 * 162.67 164.58 158.25
5 Vane Direction (◦) −76.09 −1.83 * 0.477 0.564 −2.687
6 Cumulative Power Generation (KWh) 7,856,887 7,856,887 7,856,887 7,856,887.5 7,856,894.0 7,856,904.3
7 Turbine Operation Mode 9.45 13.56 6 13.13 20 20
8 Generator Speed (rpm) 25.06 575.92 * 464.83 1098.54 1099.91
9 Temperature Outside Nacelle (◦C) 21.60 21.60 * 21.60 21.30 20.80

10 Nacelle Y-direction Vibration
Displacement (m) −0.01098 −0.01108 * −0.01330 −0.02163 −0.01448

11 Nacelle Z-direction Vibration
Displacement (m) −0.01098 −0.01108 * −0.01331 −0.02163 −0.01448

12 Turbine Brake Level 27.625 17.085 * 20.57 0 0

Form description: * represents singular values.

Table 2. The overall information of the 5 datasets.

Datasets WPm1 WPm2 ETTh1 ETTh2 ETTm1

Variants 12 12 7 7 7
Total time steps 52,710 52,710 17,420 17,420 69,680
Time increment 10 min 10 min 1 h 1 h 15 min

Start time 1 January 2020 1 January 2020 1 July 2016 1 July 2016 1 July 2016
End time 31 December 2020 31 December 2020 26 June 2018 26 June 2018 26 June 2018
Task type Multi-step Multi-step Multi-step Multi-step Multi-step

Data partition 5:2:3 3:1:1

Table 3. Illustration of the ETT data set including 7 variables.

Index Name 1 April
2018 0:00

1 April
2018 0:15

1 April
2018 0:30

1 April
2018 0:45

1 April
2018 1:00

1 April
2018 1:15

1 High Useful Load 17.281 16.075 16.946 15.606 13.932 17.281
2 High Useless Load 7.301 6.966 8.506 6.765 5.425 7.301
3 Middle Useful Load 12.793 12.153 12.757 11.833 9.559 12.864
4 Middle Useless Load 5.437 4.691 6.148 4.762 3.873 5.472
5 Low Useful Load 4.356 4.264 4.264 4.203 4.295 4.295
6 Low Useless Load 1.127 1.005 1.066 1.005 1.097 1.066
7 Oil Temperature 9.004 9.215 9.286 9.215 9.215 9.075

4.2. Experiment Implementation

In order to evaluate the performance of the proposed method in different aspects, a
variety of tasks were defined based on the wind power data set, including prediction tasks
of different horizons and univariate or multivariate predictions.

In terms of horizon, similar to ETT data, in the case of a fixed sampling time, different
output sequence lengths characterized different prediction times and also showed the
difficulty of the task. The prediction lengths of WPh1 and WPh2 were divided into 6, 12,
24, and 48, and the corresponding prediction times were 1 h, 2 h, 4 h, and 8 h. In terms of
variables, two forms of multivariate and univariate were used for evaluation. Univariate
prediction takes the value of the generated wind power per second (A1gr Gen Power for
Process_1sec), and multivariate prediction takes the values from all variables.
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For ETT data, the prediction lengths of ETTh1 and ETTh2 were 24, 48, 96, 288, and 720,
respectively, and the corresponding prediction time lengths were 24 h, 48 h, 96 h, 288 h, and
720 h. The predicted lengths of ETTm1 were 24, 48, 96, 288, and 672, corresponding to the
predicted times of 6 h, 12 h, 24 h, 72 h, and 168 h, respectively. Univariate prediction takes
the value of oil temperature, and multivariate prediction takes the values from all variables.

(1) Evaluation index

The Mean Absolute Error (MAE) and Weighted Mean Absolute Percentage Error
(WMAPE) were used as evaluation criteria. Because some variables in the task may have
had negative values (the data sets in the format as Tables 1 and 2), the optimized WMAPE
was calculated as follows,

WMAPE =
∑τ

i=0| xi − xi|
∑τ

i=0|xi|
(3)

where τ is the total number of data points and xi is the mean of the data in the sample.
The relative improvement of performance (RIP) with MAE and absolute improvement

of performance (AIP) with WMAPE were used for comparison. They were calculated as
follows:

RIP =
MAEO −MAE

MAEO
, (4)

AIP = WMAPEo −WMAPE, (5)

where MAE = 1
τ

τ

∑
i=0
| xi − xi|, MAEo and WMAPEo are obtained using other competitive

methods for prediction, and MAE and WMAPE are obtained using the newly proposed
method based on the SFINet model.

(2) Data processing

In order to evaluate the performance of our proposed algorithm in wind turbine
power prediction, we conducted experiments based on the proposed WP data sets and
compared the prediction results with those given by the SCINet models. At the same time,
in order to further verify the general applicability of the algorithm, we also verified the
performance of the algorithm using the ETT data sets and compared it with other methods,
including SCINet.

Our task does not specify the look-back windows corresponding to a certain prediction
sequence horizon. In the wind power forecasting task, the original wind power data have
singular values. In order to eliminate the singular values shown in Table 1, we chose to
skip singular values when constructing the training, validation, and testing for different
tasks. If there was a singular value in a pair, this piece of data was discarded. Therefore,
in this way, for different tasks, the number of samples for training, validation, and testing
were be produced, as shown in Table 4. Table 4 also shows the input data time length for
a certain prediction length; for example, if the prediction length is for 6 h, the input data
covers a time length of 128 h.

Table 4. Wind power forecasting task setting and number of samples.

Task WPm1 WPm2

Length Horizon 6 12 24 48 6 12 24 48
look-back 128 256 512 512 128 256 512 512

Number of samples
Training 24,150 22,810 20,248 20,032 24,400 23,418 21,388 21,220

Validation 10,862 10,722 10,442 10,394 10,862 10,722 10,442 10,394
Test 15,033 14,625 13,809 13,713 15,043 14,635 13,819 13,723

The singular value issue did not appear in the ETT data set, and these data could be
used normally. In the ETT task, the settings are shown in Table 5.
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Table 5. ETT task setting and number of samples.

Task ETTh1 ETTh2 ETTm1

Length Horizon 24 48 168 336 720 24 48 168 336 720 24 48 96 288 672
look-back 48 96 336 672 1440 48 96 336 672 1440 96 96 384 672 672

Number of samples
Training 8569 8497 8137 7633 7185 8569 8497 8137 7633 7185 34,441 34,417 34,081 33,601 33,217

validation 2857 2833 2713 2545 2161 2857 2833 2713 2545 2161 11,497 11,473 11,425 11,233 10,849
test 2857 2833 2713 2545 2161 2857 2833 2713 2545 2161 11,497 11,473 11,425 11,233 10,849

All data were normalized. In terms of the loss function and optimizer, we followed
the same settings for the SCINet model given in [23].

(1) Hardware platform linebreak

Training GPU: Single Nvidia 3080Ti 16 GB.
CPU Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHz.
Memory: 256 G.

4.3. Prediction Experiment and Result Analysis

(1) Wind power forecasting

Applying SFINet to the wind power data sets, the forecasting performance obtained
is shown in Table 6. It can be seen from Table 6 that the prediction results of the SFINet
model proposed in this paper were generally better than those of the SCINet model. The
evaluation criteria of MAE using the multivariate and univariate prediction results with
the WPm1 data set were reduced by up to 10.07% and 6.90%, respectively; and up to 9.20
and 6.87%, respectively, for the WPm2 data set.

Table 6. Forecasting results evaluated in MAE on wind power data sets.

Variable Methods
WPm1 WPm2

Horizon Horizon

6 12 24 48 6 12 24 48

Multivariate
SCINet 0.287 0.353 0.4359 0.487 0.277 0.3252 0.4161 0.4978
SFINet 0.276 0.327 0.392 0.452 0.2709 0.3191 0.384 0.452

RIP 3.83% 7.37% 10.07% 7.19% 2.20% 1.88% 7.71% 9.20%

Univariate
SCINet 0.2351 0.3059 0.4032 0.5071 0.2319 0.3028 0.4059 0.4978
SFINet 0.2291 0.2912 0.379 0.4721 0.2241 0.2851 0.378 0.4733

RIP 2.55% 4.81% 6.00% 6.90% 3.36% 5.85% 6.87% 4.92%

The forecast results evaluated using WMAPE are shown in Table 7. From the results
given in Table 7, the superiority of the SFINet model algorithm was verified in univariate
and multivariate wind turbine power prediction. The evaluation indices of WMAPE with
the WPm1 data set were reduced by up to 5.79% using multivariate evaluation and 4.93%
using univariate evaluation, and the WMAPE with the WPm2 data set were reduced by up
to 4.86 and 4.35%, respectively. The performance improvement trend of the SFINet model
under different horizon tasks was similar to the results using MAE metric.

We then performed qualitative analysis of the prediction results using the wind power
data set by selecting a piece of wind turbine power data for a sampling length of 200 in the
WPh1 data set and WPh2 data set, as shown in Figure 5a,b. It can be seen that the forecasted
wind power had the characteristics of large variation, violent fluctuations and no obvious
laws to follow. The prediction result of the SFINet model could better fit the actual power
curve. At the same time, at the peak and valley points of the power change, the prediction
result of the SFINet model was generally better than that of the SCINet model (see also
Figure 5c) by using the published data set.
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Table 7. Forecasting results evaluated in WMAPE on wind power data sets.

Variable Methods
WPm1 WPm2

Horizon Horizon

6 12 24 48 6 12 24 48

Multivariate
SCINet 31.24% 0.3814 49.95% 55.38% 30.06% 39.69% 53.52% 65.83%
SFINet 30.69% 36.44% 44.16% 50.47% 29.08% 37.06% 48.91% 60.97%

AIP 0.55% 1.70% 5.79% 4.91% 0.98% 2.63% 4.61% 4.86%

Univariate
SCINet 29.94% 38.88% 52.74% 66.37% 30.79% 39.16% 52.73% 65.32%
SFINet 28.84% 37.32% 49.58% 61.44% 29.08% 37.06% 48.91% 60.97%

AIP 1.10% 1.56% 3.16% 4.93% 1.71% 2.10% 3.82% 4.35%
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(2) Generalization study

The ETT data set given in [55] were used to evaluate the performance of a time
series forecasting task e.g., [23,55]. In this paper, we used the same dataset to evaluate
the performance of time series forecasting by different approaches, and the results of
multivariate and univariate prediction are shown in Tables 8 and 9.

As shown in Table 8, in multivariate prediction, the prediction effects of Transformer-
based methods other than Reformer [56], such as LogTrans [52] and Informer [55], outper-
formed the RNN-based methods, such as LSTMa [5]; the performance of TCN [22] further
outperformed Transformer-based methods; compared with these methods, SCINet model
achieved better performance, because the downsample–convolve–interact architecture
enabled multi-resolution analysis, which facilitated extracting temporal relation features
with enhanced predictability. Overall, in this paper, as shown in all subtasks with ETT data,
the prediction performance using SFINet was all better than that using SCINet—see the
relative performance improvement given by RIP as shown in green color.

By comparison with the multivariate prediction, the performance of these methods in
discussion for univariate prediction was gradually improved. N-Beats [57] outperforms
the above methods, and it is observed that SCINet is superior to other baseline methods.
However, the performance of SFINet in time series forecasting is even better than that
of SCINet.

Specifically, for the two different tasks using the ETTh1 data set, the evaluation
criterion of MAE was improved by 6.33% and 0.76% or more, respectively, while using the
ETTh2 and ETTm1 data sets, the prediction performance was improved by 6.94% and 1.76%,
and 3.06% and 1.14% or more, respectively. When increasing the horizon, the improvement
in MAE showed an increasing trend. The results further confirmed the effectiveness and
universality of the algorithm proposed in this paper.
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Table 8. Forecasting results evaluated by MAE on ETT datasets. The best results are in bold and the second-best results are underlined. RIP denotes the relative
improvement of performance of the proposed method over the second-best results.

Variable Methods
ETTh1 ETTh2 ETTm1

Horizon Horizon Horizon

24 48 168 336 720 24 48 168 336 720 24 48 96 288 672

Multivariate

Reformer 0.754 0.906 1.138 1.280 1.520 1.613 1.735 1.846 1.688 2.015 0.607 0.777 0.945 1.094 1.232
LSTMa 0.624 0.675 0.867 0.994 1.322 0.813 1.221 1.674 1.549 1.788 0.629 0.939 0.913 1.124 1.555

LogTrans 0.604 0.757 0.846 0.952 1.291 0.750 1.034 1.681 1.763 1.552 0.412 0.583 0.792 1.320 1.461
Informer 0.549 0.625 0.752 0.873 0.896 0.665 1.001 1.515 1.340 1.473 0.369 0.503 0.614 0.786 0.926

TCN 0.549 0.529 0.617 0.682 0.778 0.478 0.615 1.266 1.312 1.276 0.282 0.360 0.363 0.646 1.371
SCINet 0.379 0.395 0.457 0.497 0.560 0.288 0.358 0.504 0.560 0.761 0.229 0.274 0.291 0.415 0.604
SFINet 0.350 0.370 0.424 0.465 0.518 0.268 0.331 0.409 0.503 0.657 0.222 0.256 0.278 0.368 0.461

RIP 7.65% 6.33% 7.22% 6.44% 7.50% 6.94% 7.54% 18.83% 10.18% 13.67% 3.06% 6.57% 4.47% 11.08% 23.68%

Univariate

Reformer 0.389 0.445 1.191 1.124 1.436 0.437 0.545 0.879 1.228 1.721 0.228 0.390 0.767 1.245 1.528
LSTMa 0.275 0.330 0.763 1.820 3.253 0.381 0.462 1.068 2.543 4.664 0.290 0.305 0.396 0.574 1.174

LogTrans 0.259 0.328 0.375 0.398 0.463 0.255 0.348 0.422 0.437 0.493 0.202 0.220 0.386 0.572 0.702
Informer 0.247 0.319 0.346 0.387 0.435 0.240 0.314 0.389 0.417 0.431 0.137 0.203 0.372 0.554 0.644
N-Beats 0.156 0.200 0.255 0.284 0.422 0.210 0.271 0.393 0.418 0.432 0.117 0.168 0.234 0.311 0.370
SCINet 0.132 0.173 0.222 0.242 0.343 0.194 0.242 0.311 0.340 0.403 0.085 0.134 0.198 0.266 0.328
SFINet 0.131 0.163 0.203 0.240 0.306 0.183 0.229 0.297 0.334 0.349 0.088 0.140 0.183 0.250 0.306

RIP 0.76% 5.78% 5.58% 0.83% 10.79% 3.09% 5.37% 4.50% 1.76% 13.40% 1.14% 2.10% 7.58% 6.02% 6.71%

Table 9. Forecasting results evaluated by WMAPE on ETT datasets.

Variable Methods
ETTh1 ETTh2 ETTm1

Horizon Horizon Horizon

24 48 168 336 720 24 48 168 336 720 24 48 96 288 672

Multivariate
SCINet 47.10% 49.92% 57.15% 61.57% 70.97% 20.83% 26.19% 36.79% 41.73% 56.88% 17.51% 19.98% 23.43% 30.45% 43.96%
SFINet 44.22% 46.53% 52.88% 58.67% 64.84% 19.72% 23.82% 30.05% 37.41% 49.12% 16.38% 18.44% 20.48% 27.14% 34.00%

AIP 2.88% 3.39% 4.27% 2.90% 6.13% 1.11% 2.37% 6.74% 4.32% 7.76% 1.13% 1.54% 2.95% 3.31% 9.96%

Univariate
SCINet 10.86% 16.62% 19.36% 22.36% 26.51% 18.66% 22.85% 29.93% 33.64% 45.33% 8.16% 13.20% 18.31% 23.96% 28.82%
SFINet 9.82% 12.34% 15.09% 17.61% 22.18% 17.19% 20.65% 26.64% 32.83% 30.79% 7.73% 12.74% 16.60% 22.54% 27.35%

AIP 1.04% 4.28% 4.27% 4.75% 4.33% 1.47% 2.20% 3.29% 0.81% 14.54% 0.43% 0.46% 1.71% 1.42% 1.47%
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In order to make further comparison between SFINet and SCINet in time series fore-
casting, we performed the prediction using the ETT data set and the prediction performance
was evaluated using the metric of WMAPE—see Table 9. SFINet also achieved better per-
formance than SCINet. More specifically, in the multivariate task and univariate task on the
ETTh1 data set, the WMAPE was improved by at least 2.88% and 1.04%, respectively, while,
on the ETTh2 and ETTm1 data sets, the above-mentioned performance was improved by
1.11% and 1.47%, and 1.13% and 0.43% or more, respectively.

Finally, the prediction results using ETTh1 data set for a horizon of 168 are shown in
Figure 5c as an illustration example. The predicted results could very well fit the actual
values, and the degree of fitting was better than that of the SCINet model.

5. Conclusions

In this paper, we propose a new framework named SFINet: shuffle–and–fusion interac-
tion network. The SFINet model included a shuffle operation and a feature fusion function
based on the attention mechanism. The shuffle operation was succinctly embedded in
between the adjacent layers of SFINet, which increased the interaction of the different time
series features of the model. At the same time, in order to more effectively integrate the
features of different parts, a feature fusion function based on the attention mechanism was
proposed to enhance the feature interaction capabilities of different parts of the model. The
developed SFINet models were tested using real data of wind power generation. It was
verified that the SFINet models provided better performance than the network algorithm
based on SCINet. At the same time, in order to verify the universality of the proposed
framework, we evaluated the performance of SFINet models using the ETT datasets, which
are open and published datasets. The model we proposed presented wind power forecast
performance which was better than that of seven other types of algorithms in comparison.
In future work, we will focus on further improvement of the SFINet structure with more
applications to show the powerfulness of SFINet models in time series forecasting.
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