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Abstract: Pipeline transportation is the main method for long-distance gas transportation; however,
ponding in the pipeline can affect transportation efficiency and even cause corrosion to the pipeline
in some cases. A non-destructive method to detect pipeline ponding using percussion acoustic
signals and a convolution neural network (CNN) is proposed in this paper. During the process
of detection, a constant energy spring impact hammer is used to apply an impact on the pipeline,
and the percussive acoustic signals are collected. A Mel spectrogram is used to extract the acoustic
feature of the percussive acoustic signal with different ponding volumes in the pipeline. The Mel
spectrogram is transferred to the input layer of the CNN and the convolutional kernel matrix of
the CNN realizes the recognition of pipeline ponding volume. The recognition results show that
the CNN can identify the amount of pipeline ponding with the percussive acoustic signals, which
use the Mel spectrogram as the acoustic feature. Compared with the support vector machine (SVM)
model and the decision tree model, the CNN model has better recognition performance. Therefore,
the percussion-based pipeline ponding detection using the convolutional neural network method
proposed in this paper has high application potential.

Keywords: pipeline ponding; percussion detection method; Mel spectrogram; convolutional neural
network (CNN)

1. Introduction

As a main method of oil and gas transportation, pipelines play an important role in
transporting supplies [1,2]. During their long-term service life, various types of pipeline
damages are related to pipeline ponding; corrosion, perforation, and leakage are not un-
common, and they usually bring about serious safety hazards to pipeline transportation [3].
Therefore, to ensure the safe and stable operation of pipelines, pipeline ponding detection
has become more important and urgent.

In pipeline ponding detection, changes in the ponding volume will cause changes in
the structural characteristics of the pipeline system composed of pipeline and ponding.
Therefore, some developed methods for the monitoring of structural characteristics may
provide an approach as the reference for pipeline ponding detection. In recent decades, sev-
eral common methods for pipeline structure characteristic detection have been introduced,
including the CCTV (closed-circuit television) inspection method [4], the ultrasonic testing
method [5] and the radiography method [6]. The CCTV inspection method presents very
rich internal information of the pipeline in the form of photos or videos [7] by a robotic
system with a camera [8]. However, the CCTV method is greatly affected by environmen-
tal factors, and its detection accuracy of the pipeline evaluation depends largely on the
quality of the hardware system and the experience of the inspectors [9]. The ultrasonic
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testing method can estimate the health state by analyzing reflection waves [10,11] in the
pipelines. It is sensitive to changes in structural state and can be related to several structural
characteristics [12]. However, the signals collected by the ultrasonic method are usually
accompanied with noise, and effective noise reduction methods are required to obtain
useful information [13,14]. The radiography method detects the pipeline by evaluating the
attenuation of the rays [15] which pass through the pipeline. This method can be used for
pipelines with complex geometric shapes [16]. However, its detection accuracy decreases
when it is employed for vertical angle defect detection [17], and the rays are harmful to
human health [18]. Therefore this method’s practical application is very limited.

Compared with the aforementioned detection approaches, the percussive detection
method [19–21] has the characteristics of deep detection and fast transmission speeds, and is
user-friendly [22]. It is used to determine the pipeline structure characteristic by the sounds
generated through impact on the pipeline under test [23]. Traditional percussive detection
method still requires engineering experience, which can be subjective and inefficient [24].
This is solved by using the powerful computing power of computers or the automatic
prediction and classification properties of machine learning. Furui Wang et al. proposed
a new percussion-based method using analytical modeling and numerical simulation,
whereby a percussion-induced sound pressure level (SPL) could be obtained via the acoustic
radiation mode approach. The corresponding numerical simulation was developed with
a focus on the acoustic–structure coupling, and the acoustic boundary conditions were
satisfied through a perfectly matched layer (PML) [25]. Liqiong Zheng et al. used Mel-
frequency cepstral coefficients (MFCCs) as the features of percussion-induced acoustics, and
support vector machine (SVM)-based machine learning was utilized to classify results [26].
Dongdong Chen et al. used power spectrum density (PSD) to process percussive sound,
and a decision tree machine (DTM) learning approach was used to classify results [27].

CNN, one of the representative algorithms of deep learning, which automatically
predicts and classifies the data [28], can overcome the drawbacks of percussive detection
methods that requires engineering experience, and can therefore obtain superior results
in visual classification tasks [29]. In the classification of audio data, as CNN cannot
process sound directly [30], the sound of digital signals is often converted into spectrogram
images [31] by a Short-time Fourier transform (STFT) or a wavelet transform. In particular,
the STFT is a low-complexity time–frequency method capable of analyzing non-stationary
signals which has a low computational burden [32]. However, the dimension of the
spectrogram after STFT is relatively high, resulting in a large amount of subsequent CNN
calculation, which increases the complexity of CNN learning. Furthermore, a nonlinear
transformation can be applied to the frequency axis after the STFT process, to obtain a Mel
spectrogram with lower dimensions, by compressing the frequency range [33]. This makes
it easier for the CNN to extract and process specific features.

This paper proposes a non-destructive detection method for pipeline ponding by refer-
ring to a pipeline structure characteristic detection method which combines the percussive
detection method and a CNN. During detection, a constant energy spring impact hammer
is first used to impact the pipeline under different ponding volumes to generate sound,
and the collected acoustic signals are converted into the Mel spectrogram. Then, the CNN
is used to perform a two-dimensional convolution operation on the Mel spectrogram and
the convolution kernel matrix, and realize the identification of pipelines with different
ponding volumes according to the output matrix. The rest of this paper is organized as
follows: Section 2 introduces the principle of percussion-based pipeline ponding detection
using CNN and network model evaluation metrics; Section 3 introduces the experimental
equipment and experimental procedures; Section 4 presents the experimental results and
comparative analysis with other recognition models; Section 5 summarizes the advantages
and disadvantages of the method proposed in this paper.
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2. Materials and Methods
2.1. Working Principle

The flowchart of the proposed method is presented in Figure 1. In general, it consists
of three steps: percussion signal acquisition, signal processing, and automatic pattern recog-
nition based on the CNN. In the first step, the acoustic signal generated by the percussion
on the pipeline with different ponding volumes was recorded by a microphone, where six
ponding volumes were considered. The signal processing step included three consecutive
processing stages: preprocessing, STFT method, and Mel filtering. Pre-processing was
applied to the percussion signal to delete any low-frequency interference components in the
sound signal, and to increase the proportion of high-frequency components. Then, using
both overlap and a Hamming window, the STFT was used to obtain the time–frequency
plane of the current signal. Finally, the Mel filtering was applied to the frequency axis
after the STFT to obtain the Mel spectrogram with lower dimensions by compressing the
frequency range, which made the CNN less computationally intensive. In the pattern recog-
nition step, a CNN is proposed to classify the ponding volume case in an automatic way.
It is worth noting that the time–frequency plane obtained through the Mel spectrogram
was treated as an image in order to implement a conventional two-dimensional (2D) CNN.
In the 2D CNN design, learning rates, batch sizes, and dataset split ratios were analyzed.
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Figure 1. Schematic diagram of the working principles.

2.2. Mel Spectrogram

The Mel spectrogram is obtained with the following procedures:
I: Perform pre-processing of the selected signal including pre-emphasis, framing

and windowing;
II: Perform short-time Fourier transform of the pre-processed data;
III: Perform Mel filtering of the data after step II to obtain the Mel spectrogram.

2.3. CNN

The recognition process of the convolutional model can be divided into two parts:
CNN training and CNN recognition. In the training process of CNNs, the model parameters
and training steps are preset; then, the model parameters are continuously corrected
through the data forward propagation process, and error backward propagation process,
until the convolutional model meets the requirements. In the CNN recognition, the high-
dimensional features extracted by convolution and pooling operations are matched with
the trained model to output recognition results.

The structure of the CNN model proposed in this paper is shown in Figure 2. It consists
of four nonlinear trainable convolutional layers, four nonlinear fixed convolutional layers
(Pooling Layer) and one fully connected layer.
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Figure 2. The CNN model.

Among them, the role of the convolutional layer was to perform adaptive feature
extraction on the Mel spectrogram, which was achieved by convolutional operations of the
convolutional kernel matrix [34]. The operation of the convolutional layer is as follows:

Cl =
m

∑
x=1

n

∑
y=1

p

∑
z=1

ax,y,zωl
x,y,z + bl , l = 1, 2, . . . , q (1)

where l is the convolutional kernel number, Cl is the lth layer feature map of CNN, a is
the input of convolutional layer, ω is the weight matrix, b is the bias term of convolutional
kernel, and x, y, z are the different dimensions of the input data.

Adding a pooling layer after the convolution layer allows downsampling of the input
features while preserving the dominant features, which can reduce the model parameters
at the same time as suppressing overfitting [35]. The CNN model proposed in this paper
uses maximum value pooling, and its expression is:

Gl = downsamp(Hl) = maxHl(v1, v2) (2)

where Hl is the pooling layer input feature, Gl is the pooling layer output feature, and
(v1, v2) is the classification element that is pooled for the previous layer.

After the Mel spectrum is propagated through several convolutional and pooling
layers alternately, the fully connected layer network is relied upon to classify the extracted
features, and its expression is:

hl = f (Wl ∗ hl−1 + bl) (3)

where hl−1 is the output of the previous network layer, hl is the output of the current fully
connected layer, Wl is the weight, bl is the bias, and f (*) is the activation function.

2.4. CNN Model Evaluation Metrics

The performance of the final trained CNN model needed to be evaluated by corre-
sponding metrics [36]. Common evaluation metrics for classification tasks are Precision,
Recall, and F1-Measure [37,38], which have the following equations:

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)
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F1 =
2 ∗ P ∗ R

P + R
(6)

where TP indicates a positive sample is correctly identified as a positive sample, TN indicates
a negative sample is correctly identified as a negative sample, FP indicates a false positive
sample (which means a negative sample is incorrectly identified as a positive sample),
and FN indicates a false negative sample (which means a positive sample is incorrectly
identified as a negative sample).

3. Experimental Setup and Procedures

As shown in Figure 3, the pipeline was fixed by a holding device, a spring-loaded
impact hammer applied an impact on the middle position of the pipeline, and a microphone
with a frequency band of 10 Hz~20 kHz was placed about 5 cm away from the impact
position to capture the percussive acoustic signal generated by the impact. During the
experiments, the sampling rate of the data acquisition device was set to 100 kHz.
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In the tests, six pipelines specimens with different dimensions were fabricated; the
dimensions of these specimens are listed in Table 1.

Table 1. Dimensions of the pipeline specimens.

Pipeline Number Outer Diameter/mm Inner Diameter/mm Length/mm

1# Φ32 Φ25 60
2# Φ32 Φ25 100
3# Φ42 Φ35 60
4# Φ42 Φ35 100
5# Φ48 Φ41 60
6# Φ48 Φ41 100

During the test, to simulate different ponding states of the pipelines, the specimens
were filled with different volume percentages of water. There were a total of six experi-
mental cases, which are listed in Table 2. The energy of each impact of the spring-loaded
hammer was constant at 1J. Only the selected signal was filtered with a band-pass filter
matching the microphone frequency, and 100 experiments were performed for each case.

Table 2. Different experimental cases with different volume percentage of water.

Name Value

Case 0 1 2 3 4 5
Water as a percentage of pipeline volume (%) 0 10 20 30 40 50

4. Experimental Results
4.1. Mel-Feature Extraction

The typical percussive sound signals of the pipeline with experimental cases are shown
in Figure 4.
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The filtered signals were then converted into a Mel spectrogram and the parameters [39,40]
were set, as shown in Table 3. The extracted Mel spectrogram features are shown in Figure 5.
The results show that the differences in the Mel spectrogram of the six ponding volumes of
the 1#pipeline are very small and difficult to distinguish with the naked eye.

4.2. Identification of the Amount of Ponding Volume in a Single Pipeline

Before the CNN is trained, a finer selection of other parameters such as learning rate
and batch size can be carried out. The learning rate determines the step size of adjusting
weights and error reduction in the training process. Figure 6 shows the obtained results for
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different learning rates by considering only one epoch. One epoch is a complete pass over
the entire dataset. The results demonstrate that extreme values have a negative impact on
accuracy. Therefore, in this work, a learning rate value of 0.01 was used, as it presented
a higher accuracy and accelerated the error convergence. Table 4 shows the results of
accuracy and computation time obtained using different values of batch size. The batch
size determines the size of the subset of the entire dataset used in each training iteration.
As indicated in Table 4, a small batch size value generates high accuracy, but results in a high
computation time. On the contrary, a high value of batch size reduces the computational
time, but the accuracy is negatively affected. In this regard, we chose a batch size of
30 because it provided high accuracy and a suitable computational time. Additionally,
SGDM was used as the optimizer and ReLU was used as the activation function.

Table 3. Mel spectrogram Parameters.

Name Value

Fs/Hz 100,000
Window Hamming

Window Length 2048
Overlap Length 1024

FFT Length 4096
NumBands 24
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After we selected the above-mentioned parameters, the CNN could be completely
trained and validated. However, before using the dataset to train the model, the whole
dataset needed to be divided into a training set and a validation set. With the dataset well
partitioned, the speed of model applications can be improved. If the partitioning is not
good, it can greatly affect the deployment of the model applications. Table 5 shows the
results of accuracy and computation time obtained using different ratios of dataset split.
This table demonstrates that the CNN model has the highest accuracy and its application
speed is optimal when the dataset splitting ratio is 7:3. Therefore, in the training process
of the convolutional model, 70 sets of data obtained under each experimental case were
randomly selected and converted into the Mel spectrogram, then input into the CNN as the
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training set. The remaining 30 sets were input into the trained CNN model as validation
sets to complete the recognition of the pipeline ponding volume.
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Table 4. Results for different batch size values.

Name Value

Batch size 5 10 15 20 25 30
Accuracy (%) 98.57 97.14 98.32 98.57 99.32 100

Time/s 529 267 170 131 104 94
Batch size 35 40 45 50 55 60

Accuracy (%) 98.73 93.10 91.67 84.76 86.19 83.24
Time/s 84 72 67 65 59 61

Batch size 65 70 75 80 85 90
Accuracy (%) 81.36 92.38 82.14 87.14 87.62 90.00

Time/s 54 55 48 49 41 42
Batch size 95 100

Accuracy (%) 87.62 91.43
Time/s 40 41

Table 5. Results of different splitting datasets.

Name Case

Dataset split ratio 1:1 3:2 7:3 4:1 9:1
Accuracy (%) 98.47 97.83 100 97.50 98.70

Time/s 86 92 81 97 129

The training process of the CNN model for six ponding volume cases in the 1#pipeline
is shown in Figure 7, and the recognition results are shown in Table 6.

Figure 7a shows that, with the increase in training times, the accuracy rate increases
alternately and its fluctuation is large; after the number of training times reaches 146, the
accuracy rate reaches 98.34%. Figure 7b indicates that the value of the loss function de-
creases continuously with the increase in training times, and finally stabilizes at about 0.086.
Table 6 shows the CNN predictions for different case validation sets, and it can be calculated
that the accuracies are 96.67%, 100%, 100%, 96.67%, 100% and 96.67%, respectively. The
results show that the proposed approach can classify different ponding volume cases with
high accuracy.
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Table 6. The CNN identification results of the 1#pipeline.

Target Class

0 1 2 3 4 5

Predicted Class

0 29 0 0 0 0 0
1 1 30 0 0 0 0
2 0 0 30 1 0 0
3 0 0 0 29 0 0
4 0 0 0 0 30 1
5 0 0 0 0 0 29

Total accuracy (%) 98.34

4.3. The CNN Model Evaluation of Ponding Volume in Different Pipelines

Based on the proposed method, the recognition of ponding volume for different
pipelines was also performed. The three common evaluation metrics of Precision (P), Recall
(R), and F1-Measure (F1) in the classification task were chosen to evaluate the final trained
CNN model, as shown in Table 7.

Table 7. Three common evaluation metrics results of six pipeline dimensions.

1#Pipeline 2#Pipeline 3#Pipeline

R P F1 R P F1 R P F1

Case

0 96.7 100 98.3 100 96.8 98.4 100 100 100
1 100 96.8 98.4 100 100 100 100 90.5 95.2
2 100 96.8 98.4 100 100 100 90 100 94.7
3 96.7 100 98.3 100 100 100 100 100 100
4 100 96.8 98.4 96.7 100 98.3 100 100 100
5 96.7 100 98.3 100 100 100 100 100 100

4#Pipeline 5#Pipeline 6#Pipeline

R P F1 R P F1 R P F1

Case

0 100 96.8 98.4 100 100 100 100 100 100
1 100 100 100 100 100 100 100 100 100
2 96.7 100 98.3 100 100 100 100 100 100
3 100 96.8 98.4 100 100 100 96.7 96.7 96.7
4 100 100 100 96.7 100 98.3 96.7 100 98.3
5 96.7 100 98.3 100 96.8 98.4 100 96.8 98.4
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Table 7 demonstrates that the output performance of the six pipeline CNN models is an
accuracy rate of 90.9–100%, a recall rate of 90–100%, and an F1-Measure of 94.7–100%. The
results show the proposed approach is effective and the evaluation results can accurately
classify the ponding volume in different pipelines.

4.4. Comparison of Proposed CNN Model with Other Models

To compare the proposed method with the current common methods, experiments of
identical strategies but using DTM and SVM were conducted, with the Mel spectrogram
as the input image. The SVM process was performed with the LIBSVM toolbox [41], with
RBF as the kernel function and a kernel function with a parameter coefficient g of 2−27,
and a penalty factor coefficient c of 26 [22]. The DTM utilized the TreeBagger function, and
NumTrees is set to 50 [42]. These recognition results are shown in Figure 8.
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In Figure 8, the symbols of 1#, 2#, 3#, 4#, 5#, 6# denote six different pipelines as shown
in Table 1, respectively. This figure highlights that the recognition accuracies of the DTM
with ponding volume of six pipelines are between 88.25% and 94.67%, the recognition
accuracies of the SVM between 90.89% and 96.89%, and the recognition accuracies of the
CNN between 98.33% and 99.44%. This proves that the CNN recognition model is more
stable and has a higher accuracy than the other two models.

5. Conclusions

The paper has proposed a novel approach to identifying pipeline ponding volumes,
by combining the percussive detection method and a CNN. The proposed approach is
low-cost but user-friendly and effective. The experiment was performed based on the
proposed method and the experimental results show the effectivity and high accuracy of
the proposed recognition model. The major findings of the proposed approach can be
summarized as follows:

• The way of processing percussion-caused audio signal by converting to Mel spectro-
gram can be considered as a novel and cost-effective approach in detecting pipeline
ponding volume. It presents a simple but very effective acoustic signal processing
method;

• The actual output of the CNN is basically consistent with the theoretical output during
the proposed approach. The results demonstrate that the CNN recognition accuracy
reaches 98.34% and can be effectively adopted to pipeline ponding detection;



Appl. Sci. 2022, 12, 2127 11 of 13

• The proposed method is suitable for the detection of ponding volume in pipelines of
different specifications, and the output performance of the six pipelines in the CNN
models had an accuracy rate of 90.9–100%, a recall rate of 90–100%, and an F1-Measure
of 94.7–100%;

• The recognition accuracy of CNN falls between 98.33% and 99.44%, which indicates
that this recognition model has a more stable and superior performance than the DTM
recognition model and the SVM recognition model. Therefore, it can be concluded
that the method combining the percussive detection method and the CNN proposed
in this paper has better application prospects in pipeline ponding detection.

The research in this paper demonstrates the feasibility and effectiveness of the pro-
posed pipeline ponding detection method. The essence and mechanism of the proposed
method is identifying underlying dynamical characteristics of percussion-caused audio
signals of pipeline ponding. However, this paper also has its shortcomings: the length and
diameter of the six different pipelines selected were too singular to determine the effective
detection distance of the proposed percussion detection method. In follow-up research,
designing corresponding experiments to detect the effective distance of the percussive
detection method in pipeline health detection will become our research focus.
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