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Abstract: In our previous work, we introduced an empirical model (EM) of arbitrary binary images
and three morphological characteristics: disorder of layer structure (DStr), disorder of layer size
(DSize), and pattern complexity (PCom). The basic concept of the EM is that forms of lines play no
role as a morphological factor in any narrow area of an arbitrary binary image; instead, the basic
factor is the type of line connectivity, i.e., isotropic/anisotropic connections. The goal of the present
work is to justify the possibility of making the EM applicable for the processing of grayscale arbitrary
images. One of the possible ways to reach this goal is to assess the influence of image binarization
on the robustness of DStr and DSize. Images that exhibit high and low edge gradient are used for
this experimental study. The robustness of DStr and DSize against the binarization procedure is
described in absolute (deviation from average) and relative (Pearson’s coefficient correlation) terms.
Images with low edge gradient are converted into binary contour maps by applying the watershed
algorithm, and DStr and DSize are then calculated for these maps. The robustness of DStr and DSize
were assessed against the image threshold for images with high edge gradient and against the grid
size of contour maps and Gaussian blur smoothing for images with low edge gradient. Experiments
with grayscale arbitrary patterns, such as the surface of Earth and Mars, tidal sand ripples, turbulent
flow, a melanoma, and cloud images, are presented to illustrate the spectrum of problems that may be
possible to solve by applying the EM. The majority of our experiments show a high level of robustness
for DStr and DSize.

Keywords: arbitrary grayscale images; image morphology; isotropic/anisotropic vertices; N-partite
graph; Boolean function; robustness; contour map

1. Introduction

In our previous work [1–3], we have justified that though the visual macro differences
between patterns are significantly distinct, they nevertheless share a common feature: they
have layers. A majority of arbitrary patterns could be described as being comprised of a
very short layer system. Even when these short layers are detectable by the naked eye, they
are not a visually dominant feature of an image and thus are not used as building blocks to
assess that image’s morphology.

Studying the growth rates of fish scales [4,5] and lamellar bones [1,6,7] brought to
our attention the fact that short layers could serve as a structural building block of arbi-
trary patterns. This resulted in the development of an empirical model (EM) of arbitrary
binary images and three morphological characteristics: disorder of layer structure (DStr),
disorder of layer size (DSize), and pattern complexity (PCom). The EM is comprised of
an N-partite graph G(N), a Boolean function (BF), and table TM,N, where G(N) and BF
describe the structure of an arbitrary binary image and TM,N describes the image size
along transects R1, . . . , Rj, . . . , RN; EM = {G(N), BF, TM,N}. A property of EM is that
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isotropic and anisotropic edges/vertices (i.e., isotropic/anisotropic connections) of G(N)
serve as building blocks for the calculation of DStr. This means that forms of lines play
no role as a morphological factor for very narrow areas of an image. Instead, types of line
connectivity, i.e., isotropic/anisotropic connections are responsible for the description of an
image’s structure.

This statement is the basic concept of our approach to the morphological analysis
of arbitrary patterns. In addition, DStr, DSize, and PCom are dependent on an image’s
orientation. Thus, DStr, DSize, and PCom represent the morphological characteristics of an
image as a function of its rotation.

The focus of our previous work [1–3,5–7] was binary patterns and their analysis based
on the EM. The goal of the present work is to justify the possibility of making the EM
applicable to the processing of grayscale arbitrary images. One of the possible ways to
reach this goal is to assess the influence of image binarization on the robustness of DStr
and DSize.

Any grayscale image formed in nature and beyond, irrespective of its size and struc-
ture, is called a grayscale arbitrary image (GAI). Both images that exhibit high and low
edge gradients are used for this experimental study. The robustness of the morphological
characteristics of DStr and DSize against GAI binarization is described in both absolute
(deviation from the average) and relative (Pearson’s coefficient [8] linear correlation) terms.
The image global threshold is used to convert a GAI with a high edge gradient into binary
mode and a watershed algorithm [9,10] is applied for the binarization of a GAI with a low
edge gradient. The output of the watershed algorithm is a binary contour map. Various
grid sizes of contour maps and the Gaussian blur radius are used to generate sets of contour
maps in order to estimate the robustness of DStr and DSize against GAI binarization.

The paper is organized as follows. The proposed method is detailed in Section 2.
Experimental results are provided in Section 3. A discussion is provided in Section 4.
Concluding remarks are presented in Section 5.

2. Materials and Methods
2.1. Grayscale Images for Experiments

The image global threshold [11,12] and a watershed algorithm [10] are two distinct
binarization methods that are used to assess the robustness of DStr and DSize. A global
threshold scheme is applied for a GAI with a relatively high edge gradient (Figure 1). The
watershed algorithm is used for the binarization of images with a very low edge gradient
(Figure 2). This results in the presentation image under study, which takes the form of a
binary contour map and can be used to calculate DStr and DSize [3].

2.2. Disorder of Layer Structure (DStr) and Size (DSize)

Let us first review the meaning of the DStr and DSize parameters and the basic
elements of their calculation. The parameters of DStr and DSize are introduced to describe
the morphological features of arbitrary patterns, with respect to the reference image, which
are made up of layers that have an isotropic size and structure. Thus:

• The DStr serves as a measure of deviation of an arbitrary pattern that has an anisotropic
structure from a pattern that has an isotropic structure;

• The DSize serves as a measure of deviation of an arbitrary pattern of an anisotropic
size from a pattern of an isotropic size.

An isotropic structure implies that lines that comprise an image have no breaks and
confluences. An isotropic size suggests that the distance between lines remains constant
along R1, . . . , RN for any angles of an image rotation. Thus, an image with an isotropic
size and structure consists of straight parallel lines that are at a constant distance from any
nearby lines.

The notions of isotropic and anisotropic structure and size come from the formalization
of growth layers (i.e., the growth increments) of living systems such as fish scales [4,5]
and lamellar bone of humans and animals [2,6,7]. If the growth rate remains constant over
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a period of time, then the thickness of the growth increment remains constant across a
2-D area of growth, and growth increments contain no breaks and confluences in a layer’s
structure. Thus, a constant growth rate results in the isotropic size and structure of growth
layers. If the growth rate varies, then the thickness of growth lines also varies, and the
structure usually exhibits breaks and confluences. Consequently, the values of DStr and
DSize signal a deviation of the growth rate from the constant speed of layer formation.
Overall, the EM provides tools to quantify the anisotropic growth rate across 2-D growth
increments [1,5].
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It has been shown [2,3] that breaks and confluences are inherent in various images
formed in nature and beyond. Hence, it is possible to use the EM to create a morphological
description of these images. Moreover, the breaks and confluences within a layer are the
building blocks of any (i.e., arbitrary) binary patterns [3]. This means that the EM can be
used to create a morphological description of an arbitrary binary image.

Let us consider the basic steps of calculating DStr and DSize. First, DStr and DSize are
functions of GAI alignment. This is contrary to commonly used morphological characteris-
tics of images, such as circularity, curvature, perimeter, convexity, and compactness. Thus,
when the image under study rotates, DStr and DSize are calculated for each image position.

Second, the concept of isotropic and anisotropic edges/vertices (i.e., isotropic/anisotropic
connectivity) of G(N) was introduced [2,3] in order to calculate DStr; the measure of DStr
is the ratio between anisotropic vertices and all G(N) vertices. Third, the set of transects
R1, . . . , Rj, . . . , RN is what is used to calculate DStr and DSize. Each transect is a straight
line, and the distance between Rj−1 and Rj remains constant across R1, . . . , RN. The value
of both DStr and DSize depends on the number of transects (i.e., sampling density) used
in calculating them. The general principle used when choosing the number of transects
is based on the fact that we do not know a priori how many transects will best describe
the particular layered pattern. In these circumstances, our method is to examine many
different versions of the transect set. The minimal number of transects is equal to two and
the maximal number is defined by the minimal distance between two nearby transects,
which cannot be less than one pixel. We calculated DStr and DSize for a normalized number
of transects Ni(normalized) = Ni/Nmax in order to present the results of calculating for the
scale [0, 1]. The function YStr = FStr(x), i.e., YStr = FStr (number of transect versions) was
plotted, which describes dynamic changes in DStr when the number of transects tends to
the maximum possible number. If all possible versions of the number of transects are used
to calculate DStr, then YStr contains as many structural details as possible for the pattern
being studied. The area bounded by YStr = FStr(x) and the axis x = 0 is the measure of
DStr. Thus,

DStr =
∫ 1

0
FStr(x)dx

In a similar manner, the function YSize = FSize(x) is calculated, and the area bounded
by YSize = FSize(x) and the axis x = 0 is the measure of DSize. Hence,

DSize =
∫ 1

0
FSize(x)dx

The source code of the program used to calculate these morphological parameters, the
ReadMe file, and examples are available at ZENODO.
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2.3. Absolute Robustness

Robustness (RB) in general terms can be defined as “ . . . the capacity of a system to
maintain a function in the face of perturbation” ([18] p. 169). In the present work, RB is the
measure of the degree of variability for DStr and DSize as a function of GAI binarization. If
RB = 1, then DStr and DSize remain unchanged. This suggests that the highest degree of
robustness, RB = 0, indicates the lowest robustness level for DStr and DSize. Let us now
consider the procedures of RB quantification in these scales.

The set of global thresholds denoted by tr1, . . . ., trk, . . . , trp allow us to convert a
GAI into a set of binary images, BIm1, . . . , BImk, . . . , BImp. The set of angles ϕ1, . . . ,
ϕr, . . . , ϕq is used to calculate the morphological characteristics of a binary image as the
function of its rotation. DStr(trk,ϕr), is the result of calculating DSt for trk and ϕr. The
parameter DStr(trk, ϕr) is averaged over trk, k = 1,p for the angle of rotation ϕr, and is
denoted by AvDStr(ϕr).

AvDStr(ϕr) =
1
p

p

∑
k=1

DStr(trk,ϕr) .

The absolute deviation of DStr from the arithmetical mean is denoted by (∆DStr(trk,ϕr)
for trk and ϕr and is equal to:

∆DStr(trk,ϕr) = |DStr(trk,ϕr) − AvDStr(ϕr)|.

The average deviation of ∆DStr from the arithmetic mean for ϕr is equal to:

Av[∆DStr(ϕr)] =
1
p

p

∑
k=1

∆DStr(trk,ϕr).

Finally, the robustness of DStr with respect to BIm1, BIm2, and BIm3 on an absolute
scale is equal to:

absRB(DStr) = 1− 1
q

q

∑
r=1

Av[∆DStr(ϕr)] (1)

The algorithm for calculating absRB(DSize) is identical to that for calculating absRB(DStr).

2.4. Relative Robustness

The intraclass correlation coefficient (ICC) is used as the measure of reliability [19] and
robustness [20] of the morphological characteristics of images. The ICC has been applied
in the present work as the measure of DStr and DSize’s relative robustness. Let us denote
ICC(tri, trj) as the correlation coefficient between DStr of binary images BImi and BImj. So,
the relative robustness of DStr for two images i and j is equal to:

relRB[DStr(BImi, BImj)] = ICC(BImi, BImj)

If the number of binary images equals p, then:

relRB[DStr(BIm1, . . . , BImp)] =
1
M

M

∑
i, j = 1
i 6= j

∣∣ICC
(
BImi, BImj

)∣∣, where M =
p2 − p

2
(2)

The algorithm for calculating reRB(DSize) is identical to that for calculating reRB(DStr).

2.5. Example

Let us consider examples for calculating the absolute and relative robustness of DStr
based on images and data presented in Figure 3. The result of the image binarization with
thresholds tr1 = 20, tr2 = 110, and tr3 = 200 (Figure 3a) are denoted by BIm1, BIm2, and
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BIm3. All data used to calculate the absolute and relative robustness of DStr for BIm1, BIm2,
and BIm3 are presented in the table shown in Figure 3b.
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(a) Grayscale image of tidal sand ripples and its binarization. (b) Absolute robustness of DStr with
respect to binarization thresholds 20, 110, and 200. (c) Relative robustness of DStr as interclass
correlation coefficient.

Consider the sequence of steps in calculating the absolute robustness. Angles of
rotation ϕr are responsible for the alignment of BIm1, BIm2, and BIm3. Row r of the table is
comprised of data for alignment ϕr which is used for the calculation of absRB(DStr(ϕr)).
The value of the row 1, column 2 cell is equal to DStr(ϕ = 0◦) = 0.866 for BIm1. Consequently,
the row 1, column 3 cell is equal to DStr(ϕ = 0◦) = 0.774 for BIm2 and the row 1, column 4
cell is equal to DStr(ϕ = 0◦) = 0.666 for BIm3. The following steps take place:

Step 1. Calculate the arithmetical mean of DStr(ϕ = 0◦) of BIm1, Bim2, and BIm3. The
result of the calculation is shown in the row 1, column 5 cell.

Step 2. Calculate the deviation of DStr(ϕ = 0◦) from the arithmetical mean, which
is denoted by ∆DStr(ϕ = 0◦). The result of the calculations is shown in the following
cells: row 1, column 6; row 1, column 7; and row 1, column 8 for BIm1, BIm2, and BIm3,
respectively.

Step 3. Deviations of ∆DStr(ϕ = 0◦) for BIm1, BIm2, and BIm3 are averaged and
denoted by Av[∆DStr(ϕ = 0◦)]; row 1, column 9 cell = Av[∆DStr(ϕ = 0◦)] for BIm1, BIm2,
and BIm3.
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Step 4. Steps 1–3 are repeated for ϕ = 10◦, ϕ = 20◦, . . . , ϕ = 180◦. Column 9 comprises
the results of calculating Av[∆DStr(ϕr)].

Step 5. Equation (1) was used to calculate the absolute robustness of DStr with respect to
binarization thresholds tr1 = 20, tr2 = 110, and tr3 = 200; absRB[DStr(Bim1, BIm2, BIm3)] = 0.938.

Figure 3c shows the high level of correspondence (i.e., ICC values) and the conse-
quently high level of relative robustness of DStr with respect to tr1, tr2, and tr3.

3. Results

This section presents the results of the experiments to estimate for the robustness
of DStr and DSize with respect to grayscale image binarization. High and low gradient
grayscale images are used to assess the absolute and relative robustness of DStr and DSize.
Data used in this article are available online at Supplementary Directory.

3.1. Robustness of DStr and DSize of High Edge Gradient Images

Thirteen grayscale images (Figure 1) are used as test samples to explore both the
absolute and relative robustness of DStr and DSize. The experiment was organized as
follows. The global threshold was used to convert the grayscale image into a binary
mode. Eight thresholds, tr1 = 20, tr2 = 50, tr3 = 80, . . . , tr8 = 230, were used to assess the
robustness of DStr and DSize. All images were rotated for ϕ = 0◦, ϕ = 10◦, . . . , ϕ = 180◦.
The parameters of DStr and DSize were calculated for the position of each image rotation.
Equations (1) and (2) were used to calculate the absolute and relative robustness of DStr and
DSize. All images, except the DSize of tidal ripples, have absolute and relative robustness
of more than 0.85 (Figure 4).
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Figure 4. Images with high edge gradient. The absolute and relative robustness of DStr and DSize is
averaged over binarization thresholds.

3.2. From a Low Edge Gradient Image to a Contour Map

Many images formed in nature and beyond have fuzzy edges that are difficult or even
impossible to differentiate visually from one another (Figure 2). One of the potential ways to
present these edges in binary mode is to use the concept of watershed segmentation [9,10,21].
In this case, an image is regarded as a topographical map, where the brightness of each
pixel represents its height. In a 2-D plane, a topographic map exhibits contour lines of
equal brightness. The procedure for converting a grayscale image to a contour map consists
of several basic steps: (a) converting an image into an array Arr(X,Y,Z) in the comma-
separated values format; (b) calculating a grid based on Arr(X,Y,Z); and (c) using the grid
to construct a contour map (Figure 5, blur radius equal to zero).

The first step in constructing the contour map is to calculate Arr(X,Y,Z). This array is
comprised of three columns, X, Y, and Z. The first two columns are the x and y coordinates
of a pixel and the third column is its brightness. Various tools within geographical infor-
mation systems have been developed in order to automate the process of plotting contour
maps. The commercially available program, SURFER [22], is used for this purpose in the
present work.
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3.3. Robustness of DStr and DSize of Low Edge Gradient Images

The robustness of DStr and DSize for contour maps is assessed against grid size and
Gaussian blur radius. The grid size is used due to the fact that it is one of the factors which
substantially influences the shape of map contours [23]. The Gaussian blur is applied due
to its ability to reduce the many negligible details in a grayscale image (Figure 5).

The experiment was organized as follows. The image brightness was normalized
and presented using the relative scale [0, 1]. Wide ranges for grid size and Gaussian blur
radius (Table 1) were used to access the robustness of DStr and DSize for Boeing engine
condensation trails, a melanoma, and a cloud. The identical program settings were used to
calculate DStr and DSize for all experiments: the minimal number of transects is equal to
three, the minimal number of pixels between transects is equal to three, and the differences
in the number of transects for two sets of transects, Sj and Sj+1, is equal to six (ReadMe
file, ZENODO).

Table 1. Binary contour maps. Setting for assessing the robustness of DStr and DSize against grid
size and Gaussian blur radius.

Grids Size (Relative Scale) Gaussian Blur Radius

Aircraft 1, 0.5, 0.25 0, 3, 6, 9, 12, 15

Melanoma 1, 0.5, 0.25 0, 2, 4, 6, 8

Cloud 1, 0.5, 0.25 0, 2, 4, 6, 8, 10, 12, 14

Equations (1) and (2) were used to calculate RB(DStr) and RB(DSize) (Figure 6). The
absolute and relative robustness of DStr and DSize against a different grid size varies from
0.86 to 0.98 (Figure 6a) for all images. This was also true for different Gaussian blur factors,
except for the relRB(DSize) of the melanoma and cloud (Figure 6b).
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4. Discussion

The goal of our study was to estimate the degree of robustness of DStr and DSize
against image binarization without focusing on the specific problem statement of morpho-
logical image analysis. It has transpired that the results of the experiments we performed
do not guarantee that applying the EM to the morphological analysis of any grayscale
images will always result in a high level of robustness for DStr and DSize. Thus, when
the EM is applied, the robustness of DStr and DSize has to be assessed. Moreover, it was
demonstrated that the watershed algorithm and Gaussian blur smoothing are tools that can
be used to create the binarization of a grayscale image with low edge gradient and make it
possible to apply the EM for such image analysis.

Areas of application of EM and its limitations with respect to analysis of binary images
are described in our previous work [1–3], which is also applicable for GAI in addition to
two new limitations. It is also necessary to point out that the robustness of DStr and DSize
depends on various program settings, which have not been included in our experiments.
This is a limitation of the present work. Another limitation is that the contours which make
up the contour map are manually chosen to quantify DStr and DSize, since some contours
have noise and negligible image details. Gaussian blur is one of the possible tools that
allows us to reduce noise in a contour map.

Overall, we consider the results of the present work as the first step toward justifying
the applicability of the EM to the processing of a GAI. Different known and unknown as-
sumptions and limitations still have to be explored with respect to various image categories
and the goals of each category’s morphological analysis.

5. Conclusions

This study shows that the EM is potentially applicable for the morphological analysis
of grayscale arbitrary images. The robustness of DStr and DSize must be assessed against
different parameters, such as the program setting, grid size, and Gaussian blur radius,
in order to improve the consistency and reproductivity of the morphological analysis.
Furthermore, the EM complements methods of the morphological analysis of images based
on pixel manipulation.

6. Patents

Smolyar, I.V. System and Method for Quantification of Size and Anisotropic Structure
of Layered Patterns. U.S. Patent 8,755,578, 17 June 2014.

Smolyar, I.V. System and method for encryption/decryption of 2-D and 3-D arbitrary
images. U.S. Patent 10,819,881, 27 October 2020.
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