
����������
�������

Citation: Choi, E.-t.; Kim, T.-H.; Jun,

Y.-K.; Lee, S.; Han, M. On-the-Fly

Repairing of Atomicity Violations in

ARINC 653 Software. Appl. Sci. 2022,

12, 2014. https://doi.org/10.3390/

app12042014

Academic Editors: Cheng-Wei Fei,

Zhixin Zhan, Behrooz Keshtegar,

Yunwen Feng

Received: 7 December 2021

Accepted: 11 February 2022

Published: 15 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

On-the-Fly Repairing of Atomicity Violations in ARINC
653 Software
Eu-teum Choi 1 , Tae-hyung Kim 1, Yong-Kee Jun 2,* , Seongjin Lee 3,* and Mingyun Han 2

1 Department of Informatics, Gyeongsang National University, Jinju-daero 501, Jinjusi 52828, Korea;
etchoi@gnu.ac.kr (E.-t.C.); miewcs2@gnu.ac.kr (T.-h.K.)

2 Department of Aerospace and Software Engineering, Gyeongsang National University, Jinju-daero 501,
Jinjusi 52828, Korea; wanye@gnu.ac.kr

3 Department of AI Convergence Engineering, Gyeongsang National University, Jinju-daero 501,
Jinjusi 52828, Korea

* Correspondence: jun@gnu.ac.kr (Y.-K.J.); insight@gnu.ac.kr (S.L.); Tel.: +82-055-772-1378 (S.L.)

Abstract: Airborne health management systems prevent functional failure caused by errors or faults
in airborne software. The on-the-fly repairing of atomicity violations in ARINC 653 concurrent
software is critical for guaranteeing the correctness of software execution. This paper introduces
RAV (Repairing Atomicity Violation), which efficiently treats atomicity violations. RAV diagnoses
an error on the fly by utilizing the training results of software and treats to control access to the
shared variable of the thread where the error has occurred. The evaluation of RAV measured the
time overhead by applying methods found in previous works and RAV to five synthesis programs
containing an atomicity violation.

Keywords: airborne software; health management; on-the-fly repairing; atomicity violations

1. Introduction

As the technology of avionics is advancing, the number of software components for
an aircraft is also rapidly increasing. In 1960, there were only 8% of software components
on F-4. In 2007, however, about 90% of the features on F-35 were enabled by software [1].
As the number of software components increases on an aircraft, the complexity of airborne
software system increases and extends the scope of software. As a result, the probability of
latent errors in airborne software is significantly increased.

The concurrency error is one of the well-known errors of software [2–8] and it is
famous for its irreproducibility, which makes it very difficult to debug the error [4–8].
In a real-world application, about 70% of all concurrency errors are caused by atomicity
violations [3]; it is a concurrent execution of a specific code region, i.e., critical section, that
unexpectedly violates that region’s atomicity. Not only it is a time-consuming trial-and-
error process to find the atomicity violation of a program, but it is also almost impossible
to test all the probable execution scenarios of a program. Thus, any concurrent code may
violate atomicity at some point during the lifetime of software.

Health management systems (HMSs) handle the errors on airborne software [9–15].
The role of HMSs is to diagnose, isolate and treat the errors, so that the side effect of the
error can be contained and airborne software can continue serving its purpose [14]. There
are two notable works [16,17] reporting methods for the on-the-fly repairing of atomicity
violations in airborne software. They both monitor access events in ARINC 653 software
to diagnose the lock-usage violations of threads. Once an atomicity violation is detected,
the error is treated either by inserting a lock [16] or stalling the execution of a critical
section [17].

Ha et al. [16] and Tchamgoue et al. [17] exploited a diagnosis protocol [4] that com-
pared real-time access information with access history created and maintained at every

Appl. Sci. 2022, 12, 2014. https://doi.org/10.3390/app12042014 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12042014
https://doi.org/10.3390/app12042014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9957-2938
https://orcid.org/0000-0002-4753-3651
https://orcid.org/0000-0003-0760-1880
https://doi.org/10.3390/app12042014
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12042014?type=check_update&version=3

Appl. Sci. 2022, 12, 2014 2 of 22

access event to diagnose atomicity violations. However, the protocol they used has a time
complexity of O(T) on each test of atomicity violation, where T denotes the maximum
number of threads that can be executed on a program. Because the complexity of airborne
software is increasing, their approach is practically inefficient in real-time systems operating
on an aircraft.

This paper introduces Repairing Atomicity Violation (RAV) that repairs atomicity
violations on the fly based on the correct order of execution acquired from the pre-execution
of the program. RAV monitors the share of the resources of each thread to diagnose
the atomicity violations and treats the violation by exploiting the condition variable on
code segments. RAV inserts wait() to delay the conflicting code segment and invokes
signal() after the correct order of execution is restored. Section 2 describes the avionic
health management system and atomicity violations as background. Section 3 introduces
approaches for on-the-fly repairing of atomicity violations in general-purpose platforms
and avionics. Section 4 explains the structure and the design of the proposed RAV. Section 5
describes and analyzes the experimental environment and the results from the evaluation.
Section 7 concludes the paper.

2. Background

This section describes the avionic health management system and atomicity violations,
a type of concurrency error. In addition, this section describes the on-the-fly repairing of
atomicity violations.

2.1. Avionic Health Management System

Airborne software is embedded software that monitors, controls and manages the
state of an airborne system. Since the early 1980s, the number of airborne software types to
use software on aircrafts and in equipment used on aircrafts and their engines has been
rapidly increasing. As the importance of airborne software grows in the development of
aircraft functions, the complexity of software increases. As a side effect, the probability of
potential errors also increases. Potential errors can lead to the failure of aircraft systems
during the operation of the aircraft. As a representative example, the first test flight of the
F-22 Raptor in 1992 caused a crash due to a control software error that failed to prevent
pilot-induced oscillation [10]. There were two crashes, on a Boeing 737 MAX in October
2018 and March 2019, due to an error in which flight control software pushed the nose
down with an incorrect value read from one sensor. The incident led to the death of a total
of 345 people [18].

It is vital to prevent software errors in aircraft because accidents caused by airborne
software cause loss of life and property. When developing safe airborne software, it is
common practice to make software comply with RTCA’s DO-178C, which is a standard
of airborne software development [19]. The DO-178C strives to eliminate software faults
by making about 60% of its objectives defined in the verification and validation (V&V)
process to identify and minimize software faults. However, even if software strictly follows
through a rigorous V&V process, potential faults can still exist in airborne software [20].

Software fault tolerance [20] is applied to prevent accidents from occurring due to
software faults because no one can eliminate all faults during the development process due
to the developer’s mistakes or functional limitations of the error detection tools. Software
fault tolerance makes it possible for software to partially or fully function normally even
if errors or failures occur in some of the software components that make up the system.
Representative techniques for software fault tolerance are redundancy and voting. It has
to be noted that these techniques do not provide adequate coverage for problems such as
common-mode faults and latent design bugs. Therefore, errors or failures must be resolved
during aircraft operation to provide resilience for faults [9].

The purpose of avionic health management systems (HMSs) [9–15] is to prevent
airborne software systems from failing. An HMS monitors, diagnoses and treats errors
while the system operates. In the monitoring stage, it makes a log of any errors and related

Appl. Sci. 2022, 12, 2014 3 of 22

events. In the diagnosis stage, it exploits the acquired information to categorize error types
and predict probable errors in the system [14]. Finally, the treatment stage treats errors using
online approaches to resolve faults raised during program execution or offline approaches
that modify the source code by analyzing the log saved after correct execution.

HMSs are currently applied to ARINC 653 [14] and Future Airborne Capability Envi-
ronment (FACE) [21]. ARINC 653 is an integrated modular avionic (IMA)-based real-time
operating system (RTOS). It is an avionic system that integrates and operates an environ-
ment where multiple computer systems are operated in a distributed manner. Therefore,
if an error occurs in an airborne system without an HMS, the entire system may fail due
to one error. ARINC 653 provides health monitoring to detect and recover hardware and
software errors at the process, partition and module levels. It isolates errors and prevents
failures from propagating to other systems within the IMA. ARINC 653 provides a health
monitor configuration table and error handler process for managing errors. In the health
monitor configuration table, the level of error is defined as a process, partition and module
and the recovery method for each error is specified to enable action appropriate to the
situation. In the case of a process-level error, the HMS can call an error handler defined by
a user.

The FACE [21] is an open architecture for the development of portable airborne
software components targeting general-purpose, safety and security-purpose usages. The
FACE consists of five local segments, such as operating system segment (OSS), input/out
services segment (IOSS), platform-specific services segment (PSSS), transport services
segment (TSS), portable components segment (PCS). The FACE provides OS-level health
monitoring and fault management (HMFM) and system-level HMFM for HMSs. The The
OS-level HMFM offers a standardized method for detecting, reporting and handling errors
and failures within the scope of a single system or a platform. The OS-level HMFM detects
and handles errors and faults during run-time at the process (i.e., thread), partition and
module (i.e., platform) levels. The role of the system-level HMFM is to monitor faults
and failures in systems and applications and report them. It can also support a repair
option that allows the system-level HMFM to repair a failed or defective resource. The
system-level HMFM can monitor or manage instantiation and termination of components.
The system-level HMFM may generate alarm and notification to indicate internal state
transitions of components.

2.2. Atomicity Violations

An atomicity violation is an error in parallel programming that fails to execute the
atomic region atomically and runs in an unexpected order. It commonly occurs when two
or more threads race against performing a write operation on the same shared variables
without a proper synchronization mechanism protecting the variable [2,3,22]. Figure 1
shows the source code of an atomicity violation in the I2C (inter-integrated circuit) commu-
nication of Ardupilot. It shows the I2C device driver implemented in the hardware abstract
layer to support the Pixhawk board in the Ardupilot. If two Pixhawk devices with the same
name call init, the init_ok variable can be falsely assigned. Falsely assigned variables may
cause the SMBus battery to fail to initialize. Even if the developer has sufficient knowledge
and understanding of the development of a concurrency program, there may be potential
atomicity violations in the code because one cannot consider all the program’s execution
paths. Additionally, even if a phenomenon of atomicity violations is discovered during an
execution of a program, it is not easy to reproduce it again because there are numerous
different types of interleaving [2].

Appl. Sci. 2022, 12, 2014 4 of 22

thread1 thread2
uint8_t PX4:: PX4_I2C :: instance;
...

bool PX_I2C :: do_transfer (...)
{
...
if(! init_done) {
...
if(init_ok) {
instance ++;
}
...
}
...
}

uint8_t PX4:: PX4_I2C :: instance;
...

bool PX_I2C :: do_transfer (...)
{
...
if(! init_done) {
...
if(init_ok) {
instance ++;
}
...
}
...
}

Figure 1. An example of atomicity violations (Issue #7129) in Ardupilot.

One may carefully write a code to prevent all the errors one might think of; however,
even in such a case, there is a high probability of unexpected errors in the code. For
example, both the first shuttle flight and the 44th flight of NASA’s Advanced Fighter
Technology Integration (AFTI) F-16 software exhibited issues associated with redundancy
management [23]. The first shuttle flight was stopped 20 min before the scheduled launch
because of a race condition between the two software versions. Open-source programs
such as Apache, which has about 2500 committers and authors [24] in total, working on the
project monthly, still have unresolved atomicity violations in the code [3].

Even experienced programmers with sufficient background in parallel and concurrent
programming cannot write a code considering all the facets of exceptions. Thus, there is an
atomicity violation in the code with a very high probability. There are two approaches in
the field of atomicity violations. The first focuses on the use of a detection tool to identify
the error and its cause before the system is deployed. The second focuses on repairing the
software error on the fly to prevent the system from failing.

Detection tools can be categorized into static and dynamic analysis tools. Static analysis
tools [25–27] inspect for all the possible thread interleaving types within the source code of
software to identify the atomicity violation. Since static analyses do not have the knowledge
of how software would operate, it counts improbable interleaving. As a result, static
analysis tools have high false alarm rates and have low reliability. Dynamic analysis
tools [4–7,28–31] detect atomicity violations by tracking, replaying and watching software;
however, their overhead is large and false alarm is also present. It is not possible to identify
and fix all the atomicity violations in software. There are some debugging tools to detect
and debug atomicity violations and concurrency errors; however, there are few to choose
from. The high learning curve of the tools makes it even more challenging to adopt the
program to detect the bugs in the code. Lu et al. [3] claimed that debugging concurrency
errors on a multi-threaded program is about 17% more time-consuming than debugging
errors such as memory leaks in a sequential program. They also showed that 46% more
files were related to concurrency errors than a sequential program and 72% more patches
were generated to fix the bug. However, after going through such tedious endeavors, about
39% of the patches to fix the concurrency errors were incorrect.

It is most crucial to prevent software from experiencing atomicity-violation-related
failures that have survived the inspection of detection tools and manifest themselves in the
operation. There are two types of repairing approaches, backward recovery and forward
recovery [15]. Backward recovery makes use of checkpoints to recover to the last known
correct state. Although it can fix all unexpected errors, it suffers from large time and space
overheads. There are many different ways to achieve forward recovery of failures. In terms
of time and space overheads, forward recovery is efficient. Since backward recovery may
not meet the real-time constraints because of its protocol, it is necessary to apply forward

Appl. Sci. 2022, 12, 2014 5 of 22

recovery in mission-critical real-time applications such as airborne software. However, the
forward recovery approach depends on the execution scenario. Thus, it has to be tailored
to each program. Even in such scenarios, it can handle only the predictable errors in the
system. Making use of software version redundancy and voting can also be a solution to the
problem; however, it also increases the space complexity of the software and it is hard to
identify the root cause of the failure. Moreover, if the system fails due to the violation, these
approaches fail together. There are methods that exploit the synchronization mechanism or
logging to find the root cause of the failure. Note that adopting them may increase the time
complexity of the repairing tool.

Table 1 summarizes the research studies on atomicity violations in airborne software
which have been initiated since 2010. Research on types of analyses has mainly focused on
design considerations and identification of the errors in software [32,33]. There are no static
analyses specific to airborne software because it inspects the source code. There are a few
research studies on dynamic and mixed analyses targeted to airborne software [31,34,35].
In theory, there are backward and forward recovery schemes. However, research studies
have been focused on forward recovery only [16,17] and the most recent work dates back
to 2011. We can see that the research community has focused on the detection of the errors
but not on the repairing of software. It is a fact that not all errors can be fixed in software.
Thus, the repairing of software is as important as the detection of errors to withstand the
failures that manifest during operation.

Table 1. Research studies on atomicity violations in airborne software.

Years Analysis
Detection Repairing

Static Dynamic Mixed Forward Backward

2011∼2020 Domingues et al. [32],
Kim et al. [33]

- Cheptsov et al. [31] Singh et al. [34] Tchamgoue et al. [17],
Ha et al. [16]

-

2021∼ - - Singh et al. [35] - - -

2.3. On-the-Fly Repairing of Atomicity Violations

Researchers have proposed on-the-fly repairing of atomicity violation techniques
for real-world software to prevent system failure [36,37]. In general, these techniques
can be classified in diagnosis phase and treatment phase. In the diagnosis phase, the
faults or anomalies of the system are detected with error diagnosis approaches, such as
detection protocols or correct interleaving information [36–38]. The detection protocol
monitors the information of shared variables executed in each thread during execution
and analyzes correlations to diagnose the occurrence of atomicity violations. The algorithm
for diagnosing atomicity violations checks the locking discipline or compares the order
relationships among shared variables. The detection protocol uses access history to store
the information required by the detection algorithm. The access history is a data structure
to store a set of threads, synchronizations and shared variables. Some detection algorithms
include time information in this set. However, the access history causes high time and
space overheads to maintain information during executions.

The diagnosis phase compares the correct interleaving information acquired during
correct interleaving provided at the development stage with data obtained in actual in-
terleaving during the execution to diagnose the occurrence of atomicity violations. This
technique is suitable for application in modern systems, since it has lower time and space
overheads than detection-protocol-based techniques and provides higher accuracy in diag-
nosing atomicity violations.

The correct interleaving information can be provided by developers or through testing.
The developer can directly specify additional execution information as an assertion or
comment near the shared variable in the source code during the development stage. To
diagnose an atomicity violation, we compare the programmer-specified information in the

Appl. Sci. 2022, 12, 2014 6 of 22

source code with the actual execution information. This method has disadvantages. An
inexperienced developer may omit the defects or gather incorrect execution information.

Once the software development process is finished, the posthumous methods for
testing collects the correct interleaving through numerous repeats of the developed software.
Then, following the suit of the previous way, the atomicity violations are diagnosed by
comparing the correct interleaving with the actual execution information. This method has
the advantage of collecting relatively accurate correct interleaving. However, there may be
cases where an incorrect interleaving is collected during testing.

When an error is detected in the diagnosis phase, the treatment phase handles the
error based on the type of error. There are two types of approaches for treatment, forward
and backward recovery. Forward recovery avoids the faults by inserting synchronization
or changing the priority of thread scheduling. Backward recovery re-executes the program
by returning to the line of the code immediately before the error occurred, that is, to the
line of the code where the last operating state shows no system faults.

Due to its relatively low overhead, forward recovery is performed for repairing access
faults. Thus, it employs various methods to implement synchronization, such as insert-
ing condition variables, inserting time-out and inserting locks. The method of inserting
condition variables, which changes thread scheduling, puts the thread in the waiting state
before the access event of the shared variable in which the error occurred. Then, it resumes
the execution of the waiting thread after processing with the shared variable access of
other thread capable of correct interleaving. The time-out method allows the execution
timing of the threads to be changed by using delaying techniques (e.g., using sleep() or
yield()) and leads to fixed-time overheads as delayed times. However, it is crucial to use
appropriate latency to handle access faults because the errors may not be fixed by applying
low latencies. Conversely, applying high latencies may lead to high-cost overheads. The
method of inserting locks is more suitable for repairing atomicity violations.

3. Related Work

This section describes approaches for the on-the-fly repairing of atomicity violations
in general-purpose platforms and avionics. The repair of atomicity violations has mainly
been researched in old, high-user and complex real-world applications, such as MySQL,
Apache and Chrome [3], to capture various types of error patterns. It has not been actively
conducted in airborne software because it is closed for security reasons.

3.1. General-Purpose Platform

Atomicity violations have been around for a long time in general-purpose platforms
that we often use. The occurrence information of atomicity violations is shared among
developers through each software’s bug report. This information provides valuable patterns
(or types) for research on on-the-fly repair approaches [36–38] to prevent system failure
during operation. Since there is a wealth of information on atomicity violations in the bug
report, most of the on-the-fly repairing research studies have been conducted on general-
purpose platforms. It has to be noted that airborne software is hard real-time software.
However, the software of a general-purpose platform does not require hard real-time.

Considering the accuracy and overhead of existing research studies performed on a
general-purpose platform, the method by J. Yu et al. [36] and AI (anticipate invariant) [37]
are suitable for use in real-time systems. These two research studies are similar in terms
of the methods for diagnosing errors using the pre-test information and treating errors by
stalling the thread where the error is diagnosed.

J. Yu et al. [36] defined the order of each static memory operation in a data structure as
PSet (predecessor set). The collection conditions of PSet are as follows: (1) When there are
two static memory operations, P and M, at least one between P and M is a write access;
(2) P and M are executed in two different threads; (3) M is executed immediately after
P is executed. AI [37] defines the order for each static instruction as BSet (belonging set).
The BSet collects static instructions (Sx) that satisfy the following conditions based on a

Appl. Sci. 2022, 12, 2014 7 of 22

dynamic instruction (Dx): (1) It accesses the same address as Dx; (2) it is executed in another
thread, to which Dx does not belong; (3) Sx, accessed just before Dx, is executed and stored.
The methods of these two research studies are similar in that they store access information
from different threads. However, J. Yu et al. [36]’s method does not store access information
in PSet if the previous access was executed in the same thread. On the other hand, AI
stores the access information executed in a different thread even if the previous access was
executed in the same thread. This difference makes the coverage of errors that AI can repair
larger than that of J. Yu et al.’s method.

Figure 2 shows two types of interleaving that can occur in Figure 1. In Figure 1,
the developer would have intended instance ++ to be executed atomically, as shown in
Figure 2a. If this program is correctly executed in the testing phase, as shown in Figure 2a,
since only read access R3 of thread2 satisfies the collection condition of PSet, the PSet
corresponding to this interleaving is stored as a correct interleaving in Figure 2c. This
interleaving information is used when diagnosing the occurrence of atomicity violations in
comparison with actual interleaving in the operation phase. Figure 2b is the interleaving of
atomicity violations that may occur in this program. If this program is incorrectly executed
in the operation phase, as shown in Figure 2b, PSet is collected as shown in the atomicity
violation of Figure 2c. If the actual execution is as shown in Figure 2b, J. Yu et al.’s method
repairs the atomicity violation using the following steps: First, when read access R1 of
thread1 executes, it is compared with the PSet(R1) of the correct interleaving. It is not
diagnosed as an error, since the PSet(R1) of the correct interleaving and the PSet(R1) of
the actual interleaving are the same. Next, when the read access R3 of thread2 executes, it is
compared with the PSet(R3) of the correct interleaving. It is diagnosed as an error, since
the PSet(R3) of the correct interleaving and the PSet(R3) of the actual interleaving are
different. At this time, J. Yu et al.’s method performs stalling before the read access R3 of
thread2 is executed to delay the read access R3 until the write access W2 of thread1 comes
to repair the atomicity violation.

Correct interleaving:
PSet(R1) = {}
PSet(W2) = {}
PSet(R3) = {W2}
PSet(W4) = {}

Atomicity violation:
PSet(R1) = {}
PSet(R3) = {} error!
PSet(W2) = {R2}
PSet(W4) = {}

Correct interleaving:
BSet(R1) = {null}
BSet(W2) = {null}
BSet(R3) = {W2}
BSet(W4) = {W2}

Atomicity violation:
BSet(R1) = {null}
BSet(R3) = {R1}
BSet(W2) = {R3}
BSet(W4) = {W2}

(a) (b) (c) (d)

Figure 2. The result of PSet and BSet of interleaving. (a) Correct interleaving. (b) Atomicity violation.
(c) PSet [36]. (d) BSet (AI) [37].

Similarly, if this program is correctly executed in the testing phase as shown in
Figure 2a, according to the BSet collection conditions, BSet(R1) and BSet(W2) are stored as
null and BSet(R3) and BSet(W4) are stored as W2. This BSet is used to diagnose atomicity
violations in comparison with the actual interleaving in the operation phase. If this program
is incorrectly executed in the operation phase, as shown in Figure 2b, BSet is collected as
shown in the atomicity violation of Figure 2d. The actual execution is shown in Figure 2b.
AI repairs the atomicity violation using the following steps: First, when read access R1 of
thread1 is issued, it is compared with the BSet(R1) from the correct interleaving. We find
that it is not diagnosed as an error, because the BSet(R1) from the correct interleaving and
the BSet(R1) from the actual interleaving are equal to null. Next, when the read access R3
of thread2 is issued, it is compared with the BSet(R3) from the correct interleaving. Since

Appl. Sci. 2022, 12, 2014 8 of 22

the BSet(R3) from the correct interleaving and the BSet(R3) from the actual interleaving
are different from null and R1, it is diagnosed as an error. To treat the diagnosed error, AI
stalls the execution read access R3 of thread2 via sleep() and lets the program continue
with thread1 and issue write access W2. Since the execution sequence is reordered to the
correct sequence, the atomicity violation is repaired.

The on-the-fly repairing of atomicity violations is essential in two aspects, time over-
head and coverage. These approaches have the advantage of low overhead because atomic-
ity violations are diagnosed based on the correct interleaving collected in the test phase
and treated with stalling. The low overhead of these approaches shows their applicability
to real-time systems. The coverage is different because the methods of collecting the correct
interleaving of the two approaches are different. J. Yu et al. [36]’s method collects only
one correct interleaving and AI [37] collects as many correct interleaving types as possible.
This difference allows AI to diagnose the correct interleaving so that the accuracy of the
diagnosis is higher than that of J. Yu et al.’s method [36].

3.2. Avionics

There are reports and research studies of concurrency errors occurred in airborne
software. According to the report in the DoD JSSSEH [23], a race condition, which is one
of the concurrency errors, occurred in the first shuttle flight and the 44th flight of NASA’s
Advanced Fighter Technology Integration (AFTI) F16. All airborne software must comply
with ARINC 653, the standard for airborne software. To prevent airborne software from
crashing, ARINC 653 introduces health management systems (HMSs) for IMA (integrated
modular avionics). The job of HMSs is to detect and repair faults in software. Regardless of
this preventive structure, there are reports and research studies documenting concurrency
errors in airborne software. However, it is not surprising, because all multi-threaded
programs are inherent with concurrency errors. There are research studies focusing on
repairing atomicity violations raised in ARINC 653-based airborne software [6,16]. Ha
et al. [16] and Tchamgoue et al. [6] experimentally proved that the atomicity-violation
issue exists in ARINC 653-based software. The approach these works used to treat the
faults are similar. They store the shared variable access information of each thread in a data
structure called access history [5]. The atomicity violation is diagnosed by examining the
access history to check if the shared variables of each thread can be parallelly executed
and whether they are protected by a lock [4,28]. To treat atomicity violations, Ha et al.’s
method [16] inserts a lock around a shared variable that is not protected by a lock. On
the other hand, Tchamgoue et al.’s method [6] delays the thread initiating an access to the
shared variable.

The access history used to check the parallelism is a set of data structures generally
called label. The label stores parallelism and order relationship information for each
access. The label can be expressed as [α, β]. α and β are any integers defined by the
programmer to denote the start and the end of a thread, respectively. α must always be
less than β (α < β). Here, we give an example to better understand how labeling works to
identify concurrent access to shared variables. Let us assume that there are two threads,
Ti and Tj, branching from the main thread. The label of the main thread at the program
startup time is [1, 100]. When the program creates two threads on the main thread, the
label is split in half. Then, the label of thread1 is set to [1, 50] and the label of thread2
is set to [51, 100]. Next, we compare [αi, βi] of Ti and [αj, β j] of Tj to check if the two
regions collide. The following rules identify the concurrent relationship between threads:

• The two threads Ti and Tj are in a concurrent relationship if the regions are αi < β j
and αj > βi.

• Otherwise, Ti and Tj are in a sequential relationship.

The atomicity violation detection protocol guarantees to find at least one error if there
are concurrency violations in a code. Every access event [label, Locks] pair is logged in
the history and categorizes the access event. There are four types of access events, Read,
Write, Critical Section (CS)-Read and CS-Write. Based on the diagnosis, we take actions

Appl. Sci. 2022, 12, 2014 9 of 22

based on a policy. When the read operation is detected, it checks for the write and CS-write
operations in the history and whether they collide. We search for the Read, CS-read and
CS-write operations to identify the atomicity violations of write operations.

The labeling scheme needs to log every access event in the history. The time and space
overheads of existing atomicity violation diagnosing schemes depend on the maximum
parallelism T and the time and space complexity are O(T). Recent real-world programs
are known to have millions of threads running at the same time [39–41] and navigation
software of an aircraft has about a billion lines of code [42]. An autonomous repair-based
HMS cannot use O(T) software because it is inefficient and unreliable for airborne software.

4. RAV: Repairing Atomicity Violations

This section describes the details of repairing AV (RAV; Repairing Atomicity Violation),
an on-the-fly repairing tool for atomicity violations in ARINC 653-based airborne software.
First, we describe the procedure of the repairing operation of RAV in ARINC 653. Then, we
describe the improved version of the AI (anticipate invariant) algorithm, which is called
embedded AI (eAI). It is designed to be applicable to embedded systems. Then, we describe
how RAV fits into the ARINC 653 health monitor system to repair atomicity violations in
ARINC 653 application.

4.1. Procedure

The repairing AV (RAV) is an on-the-fly tool to repair atomicity violations in ARINC
653-based software. The architecture of RAV is illustrated in Figure 3. RAV is comprised
of a diagnosis engine (AV-DE) and a treatment engine (AV-TE). The AV-DE watches the
shared variables of each thread for diagnosis. The AV-TE stalls instructions that violate the
atomicity. RAV has three execution paths, described below.

Figure 3. The architecture of RAV.

1. Halt: ARINC 653 Application→ AV-DE→ HM of ARINC 653→ AV-TE→ Thread
control;

2. Resume: ARINC 653 Application→ AV-DE→HM of ARINC 653→ AV-TE→ Thread
control;

3. No Operation.

RAV halts a program in the halt execution path when an ARINC 653 program is
diagnosed with an error. RAV executes halted thread again in the resume path if RAV
determines that the thread does not violate atomicity. The last execution path of RAV, i.e.,
no operation, continues to diagnose the program and does not affect the execution of an
ARINC 653 program.

Appl. Sci. 2022, 12, 2014 10 of 22

RAV was designed based on AI [37] of the general-purpose platform. It was performed
in the test phase to create correct interleaving. In the test phase, RAV executed the program
ten times to acquire interleaving information. From the data, it generated an interleaving
set. Since the interleaving set may have contained incorrect interleaving information, we
manually inspected the correctness of the set to finalize the interleaving set. In the operation
phase, RAV treats atomicity violations raised during execution. While testing embedded
software that performs repetitive tasks, AI collects incorrect interleaving information,
such as tracking local variables. We also observed a performance issue in performing the
treatment in the operation phase caused by a sleep() time. Figure 4 shows the repairing
time overhead of each treatment method. As shown in the figure, the greater the sleep time,
the more the total repairing time increases in proportion.

 0

 200

 400

 600

 800

 1000

 1200

CV

Sleep(1
)

Sleep(2
)

Sleep(4
)

Sleep(8
)

Sleep(1
6)

Sleep(3
2)

Sleep(6
4)

Sleep(1
28)

T
im

e
 (

m
s
)

Type of Treatment and Sleep Time (ms)

Figure 4. The repairing time of synthetic programs with 1000 iterations.

4.2. Embedded AI (eAI)

RAV modifies the algorithm of AI to collect correct interleaving in the test phase and
to treat atomicity violations in the operation phase by reflecting the problem as described
above. We named eAI (embedded AI) the modified version of AI. When a loop is executed
in embedded software, eAI collects the static instruction Sx that satisfies the following
conditions for the current dynamic instruction Dx:

• A variable in the data area of low memory is allocated;
• The same memory address is assessed;
• The instruction comes from another thread;
• The instruction immediately before Dx is assessed.

The training algorithm of AI keeps track of all variables and then identifies variables
that have accessed the same memory address in different threads as shared variables.
Local variables declared in a loop can be repeatedly allocated and deallocated. Then, the
variable may be allocated in the same address as the previous allocation. Then, AI faces
the problem of identifying the local variables as shared variables. The training algorithm
of eAI does not track all variables but only the variables allocated to the data area of
memory. The overall correct interleaving collection process is as follows: (1) Instrument
TraceMemoryAccesses() in the target program. (2) Execute the target program to trace
information of shared variables. (3) Once the target program’s execution is completed, the
BSet is executed to create a program with trace information. (4) Obtain BSet, which is a
correct interleaving set. This process is the same as AI, but the algorithm for instrumenting
the memory tracking function into the target program was modified into Algorithm 1.

Appl. Sci. 2022, 12, 2014 11 of 22

Algorithm 1: Training of eAI.

1 Function InstrumentLoadOrStore(Instruction *I):
2 IRBuilder<> IRB(I)
3 MDNode *Node = I->getMetadata("eAIMemoryAccessID")
4 Value *ID = Node->getOperand(0)
5 ConstantInt *CI = dyn_cast<ConstantInt>(ID)
6 Value *Addr = IsWrite ? cast<StoreInst>(I)->getPointerOperand() :

cast<LoadInst>(I)->getPointerOperand()
7 if const GlobalValue* G = dyn_cast<GlobalVAlue>(Addr) then
8 IRB.CreateCall2(TraceAccesses, CI, IRB.CreatePointerCast(Addr,

IRB.getInt8PtrTy()))

When atomicity violations are diagnosed, the treatAV() of AI stalls the thread using
sleep(). Since stalling requires a fixed delay time, there is an issue of time overhead in
the treatment process. If the overhead is high, the program may not meet the real-time
performance requirements; thus, we should appropriately manage stalling time. As shown
in Figure 4, the overhead of stalling in repair time increases rapidly according to the size of
the delay time set for treatment. On the contrary, when we use the condition variable, the
time spent repairing can be shorter than that when using the stalling. This paper used the
condition variable, so that we could apply it in a real-time system. The stalling, which uses
sleep(), can be easily applied because it only needs to delay the execution of the thread in
which an atomicity violation has occurred. However, to use the condition variable, we must
know the current repairing status of the program. Therefore, treatAV() of eAI uses a state
machine to determine the current repairing status. The finite-state machine is illustrated in
Figure 5. The state when the program is executed is Normal. When an atomicity violation is
diagnosed during execution and treatAV() executes wait(), a transition is made from the
“Normal” state to the “Wait” state. Since the diagnosis of atomic violation after switching to
the Wait state occurs because the repairing has not been completed yet, treatAV() of eAI is
not performed. Upon diagnosing that there are no atomic violations (it has been repaired),
treatAV() transitions from the Wait state to the Normal state, resuming the stopped thread
via signal(). The treatment algorithm of eAI is described in Algorithm 2.

Algorithm 2: Algorithm of eAI treatment.

1 Function TreatAV(Repairing Status status):
2 if status == Normal then
3 Wait()
4 status = "Wait"

5 else if status == Wait then
6 Signal()
7 status = "Normal"

Normalstart Wait

Diagnosed

Not Diagnosed

Treated

Figure 5. State diagram of eAI.

Appl. Sci. 2022, 12, 2014 12 of 22

4.3. Application to ARINC 653

The operation of RAV between target software and the ARINC 653 HM is illustrated
in Figure 3. The diagnosis engine of the RAV receives access information from the target
application, diagnoses an atomicity violation and reports the result to the ARINC 653 HM.
The treatment engine is invoked by the ARINC 653 HM to control a thread of the target
application. Algorithm 3 represents a procedure that describes the process depicted in
Figure 3. The diagnosis engine (AV-DE) is instrumented before and after the shared variables
of ARINC 653 application. The instruction and memory address required for diagnosis are
passed to DiagnoseAV() of eAI and the result is returned to the ARINC 653 HM. If an error
occurs, the AV-DE reports the error to the ARINC 653 Health monitor (ARINC 653 HM)
through RAISE_APPLICATION_ERROR(). Then, the ARINC 653 HM executes the registered
error handler, the treatment engine (AV-TE), and takes actions to treat atomicity violations.
The AV-DE can take on different roles depending on where it is instrumented. In the case
of AV-DE being instrumented before shared variable access, the thread waits immediately
when an atomicity violation occurs. In the case of AV-DE being instrumented after shared
variable access, as soon as it is diagnosed that there are no atomicity violations, signal by
treatAV() is executed so that the waiting thread is normally executed. All the diagnostic
results from the AV-DE are reported to the ARINC 653 HM and the ARINC 653 HM treats
the violations.

Algorithm 3: Algorithm of eAI with ARINC 653 HM.

1 Function AV-DE(Dynamic Instruction ins, Memory Adress addr):
2 bool isAV = DiagnoseAV(ins, addr)
3 int error_type = ”atomiciy_violations”
4 int rc = 0
5 if isAV == true then
6 RAISE_APPLICATION_ERROR(error_type, status, sizeo f (int), rc)

7 Function AV-TE(Repairing Status status):
8 TreatAV(status)

5. Experiments

This section describes the test environment, synthetic programs used for the experi-
ments and results. Since airplanes are safety critical systems composed of hardware and
software components, the system undergoes strict software development and testing pro-
cesses. Typically, airborne software follows the V&V model and it is developed in the order
item, system and aircraft [43]. As each component is integrated with other components,
it is tested for correctness as well as reliability. The proposed method can be used in item
verification and can also be deployed in health management systems for the live diagnosis
and treatment of faults. In this paper, we show the results of experiments performed on an
ARINC 653 environment called SIMA. The synthetic program we used was implemented
as ARINC 653 software. The purpose of the program is to verify functionality and measure
the performance of RAV.

5.1. Test Environment

We implemented and experimented on a system with Intel Xeon E5-2650 2.3 GHz CPU
with 64 GB memory running on Ubuntu 14.04 LTS-64 bit. This system was installed in real-
time kernel version 4.14.139-rt66 and the ARINC 653 simulator SIMA (Simulated Integrated
Modular Avionics) v1.3.1. We compiled the code using GCC 5.4.0 and instrumented the
code using LLVM v6.0.0.

5.2. Synthetic Programs

There are four reasons for using a synthetic program. First, even though a program is
tested with static and dynamic debugging tools to find and fix the bugs, there are latent

Appl. Sci. 2022, 12, 2014 13 of 22

bugs which are not discovered. We developed ARINC 653-compliant synthetic software
that runs in an ARINC 653 environment. This is common practice because the effect of these
bugs is very difficult to reproduce. Second, as the code size increases, the probability of
atomicity violations decreases. It is because there is a high probability that critical sections
avoid exhibiting atomicity violations. Thus, to reproduce and accelerate the debugging
process, we used a synthetic program that models the critical sections. Third, atomicity
violation is prevalent both in airborne software and general-purpose software. We analyzed
atomicity violation patterns in different software types. The final and most critical reason
why we used a synthetic program is because airborne software codes are proprietary and
are not open to the public.

To test the proposed RAV, we modeled five atomicity violation patterns prevalent in
real-world software and developed five synthetic programs for the ARINC 653 simulator.
These synthetic programs were implemented as ARINC 653-compliant software that runs in
an ARINC 653 environment. In the ARINC 653 operating system, these synthetic programs
were loaded and executed in one partition. We did not consider the case of multiple
partitions because the scope of this work is to repair atomicity violations in an intra-
partition. It has to be noted that 97% of concurrency errors in real-world software are
observed while two threads are executing [3]. We designed a synthetic program that ran
two threads to create atomicity violations. We only included access events on a single
shared variable without nested parallelism nor locks.

The five types of atomicity violations are described in Table 2 using bug reports
on MySQL [44], Mozilla [45], Apache [46] and Ardupilot [47]. In the pattern, "R" and
"W" denote read and write events, respectively. "[" and "]" denote the beginning and the
end of a region, respectively, that must be protected by a lock. We used "‖" to express
the concurrent execution of threads. In the code shown in Figure 6a, thread1() acquires
lock and performs write and read operations, which is denoted as T[W−R]

i ; thread2() runs
without any protection and can be denoted as TW

j . Since the two threads can be concurrently

executed, we use T[W−R]
i ‖ TW

j to represent this behavior.

Table 2. Patterns of real-world applications.

Case Pattern
Report of Real-World Applications

MySQL [44] Mozilla [45] Apache [46] Ardupilot [47]

Case 1 T[R−R]
i ‖ TW

j
#644, #3596, #12228 #341323, #224911 N/A N/A

Case 2 T[W−W]
i ‖ TR

j
#791, #12848, #19938 #52111, #73761,

#62269 N/A N/A

Case 3 T[W−R]
i ‖ TW

j
#128486 N/A N/A N/A

Case 4 T[R−W]
i ‖ TR−W

j
#56324, #59464 #342577, #270689 #48735, #21287 #7129

Case 5 T[R−R−W]
i ‖ TR−R−W

j
N/A N/A #225525 N/A

Figure 6 describes the source code and the result of the code that executes T[W−R]
i ‖

TW
j . The initial value for the shared variable is 0. thread 1 updates the shared variable

(sv = 1), then checks the shared variable (sv = 0) to update the local variable. thread 2
updates the shared variable (sv = 0). The program should not execute the conditional
statement (line 11) because line 8 (sv = 1) of thread 1. However, as can be seen from the
result shown in Figure 6b, the conditional statement in line 11 is executed and the text
lv: 1 is printed. In this case, the atomicity is violated where sv = 0 (line 19) of thread 2
executes after sv = 1 (line 8) of thread 1. The result shows that there were five atomicity
violations during the life of this short example.

Appl. Sci. 2022, 12, 2014 14 of 22

(a) (b)

Figure 6. An example of execution order of T[W−R]
i ‖ TW

j in the synthetic program. (a) Source code.
(b) Result.

5.3. Functional Evaluation

This section evaluates the function of RAV when it is operating normally. The func-
tions to be evaluated in RAV are instrumentation, collection of correct interleaving, di-
agnosis and treatment. Instrumentation examines the binary code to ensure that the al-
gorithm’s functions are properly inserted before and after the lines of the shared vari-
able. RAV uses _ai_trace_memory_access() to trace memory access in the test phase.
_ai_pre_diagnosis_atomocity_violations() and _ai_post_diagnosis_atomocity_
violations() are instrumented for diagnosis and treatment in the operation phase. _ai_
pre_diagnosis_atomocity_violations() is a function for wait when an error is reported
after diagnosis and _ai_post_ diagnosis_atomocity_violations() is a function for
signal when no errors are reported after diagnosis. Additionally, RAV instruments func-
tions for initialization, destroy and experiment results. If these functions are not instru-
mented in the intended position of the code, the functions of RAV do not work properly.
Figure 7 is the intermediate code showing the instrumented function of the code. As shown
in the figure, the code was correctly instrumented before and after the shared variable sv.

Since correct interleaving is used for diagnosis in the operation phase, incorrect in-
terleaving is not collected in the test phase. We examined the collected interleaving by
performing training 100 times. Table 3 represents the training results. There were seven
incorrect interleaving types for T[R−R]

1 ‖ TW
2 , none for T[W−W]

1 ‖ TR
2 , one for T[W−R]

1 ‖ TW
2 ,

fifteen for T[R−W]
1 ‖ TR−W

2 and fourteen for T[R−R−W]
1 ‖ TR−R−W

2 . It was confirmed that the

more complex the interleaving of the synthetic program was, such as T[R−W]
1 ‖ TR−W

2 and

T[R−R−W]
1 ‖ TR−R−W

2 , the more incorrect interleaving was collected. In the case of complex
interleaving, incorrect interleaving occurred at about 15%, so correct interleaving could
be obtained by performing sufficient training at least ten times. However, since the single
execution of the training process may take a long time depending on the program’s size, the

Appl. Sci. 2022, 12, 2014 15 of 22

number of training was reduced with respect to the complexity of interleaving of shared
variables.

Figure 7. Result of instrumentation.

Table 3. Results of training.

Synthetic Program Interleaving Correctness Number

T[R−R]
1 ‖ TW

2

TR
1 −→ TR

1 −→ TW
2 Yes 51

TW
2 −→ TR

1 −→ TR
1 Yes 42

TR
1 −→ TW

2 −→ TR
1 No 7

T[W−W]
1 ‖ TR

2

TW
1 −→ TW

1 −→ TR
2 Yes 48

TR
2 −→ TW

1 −→ TW
1 Yes 52

TW
1 −→ TR

2 −→ TW
1 No 0

T[W−R]
1 ‖ TW

2

TW
1 −→ TR

1 −→ TW
2 Yes 86

TW
2 −→ TW

1 −→ TR
1 Yes 13

TW
1 −→ TW

2 −→ TR
1 No 1

T[R−W]
1 ‖ TR−W

2

TR
1 −→ TW

1 −→ TR
2 −→ TW

2 Yes 57

TR
2 −→ TW

2 −→ TR
1 −→ TW

1 Yes 28

TR
1 −→ TR

2 −→ TW
1 −→ TW

2 No 5

TR
1 −→ TR

2 −→ TW
2 −→ TW

1 No 7

TR
2 −→ TR

1 −→ TW
2 −→ TW

1 No 1

TR
2 −→ TR

1 −→ TW
1 −→ TW

2 No 2

T[R−R−W]
1 ‖ TR−R−W

2

TR
1 −→ TR

1 −→ TW
1 −→ TR

2 −→ TR
2 −→ TW

2 Yes 14

TR
2 −→ TR

2 −→ TW
2 −→ TR

1 −→ TR
1 −→ TW

1 Yes 72

TR
2 −→ TR

1 −→ TR
1 −→ TR

2 −→ TW
2 −→ TW

1 No 1

TR
2 −→ TR

1 −→ TR
1 −→ TW

1 −→ TR
2 −→ TW

2 No 2

TR
1 −→ TR

2 −→ TR
2 −→ TR

1 −→ TW
2 −→ TW

1 No 1

TR
2 −→ TR

2 −→ TR
1 −→ TR

1 −→ TW
2 −→ TW

1 No 1

TR
1 −→ TR

1 −→ TR
2 −→ TR

2 −→ TW
1 −→ TW

1 No 4

TR
2 −→ TR

2 −→ TR
1 −→ TR

1 −→ TW
1 −→ TW

2 No 1

TR
1 −→ TR

2 −→ TR
2 −→ TW

2 −→ TR
1 −→ TW

1 No 2

TR
1 −→ TR

1 −→ TR
2 −→ TR

2 −→ TW
1 −→ TW

2 No 1

TR
1 −→ TR

1 −→ TR
2 −→ TW

1 −→ TR
2 −→ TW

2 No 1

The state machine used for diagnosis and the condition variable used for treatment
must work correctly for accurate repair. We performed a functional evaluation of diagnosis

Appl. Sci. 2022, 12, 2014 16 of 22

and treatment and the results are shown in Figure 8, which is a part of the log of the
repairing process of TW

1 ‖ T[W−R]
2 . thread 1 on the left and thread 2 on the right are

executed in order. thread 1 repeatedly executes the write operation. thread 2 executes
the read and write operations atomically. After the read operation in thread 2 (id: 6448),
the write operation is not executed and the write operation of thread 1 (id: 6449) tries to
run. At this point, the diagnosis engine reports an atomicity violation. Moreover, before
accessing write, the treatment engine executes wait to stop thread 1. Then, the write
operation in thread 2 (id: 6448) executes normally and the treatment engine executes
signal and resumes the halted thread 1 to repair atomicity violations. Post-repair runs
appeared to execute with normal interleaving.

Figure 8. Log of repairing.

We created a synthetic program with a loop which repeated for a hundred times.
Table 4 shows the result of running RAV on the created program. The first column shows
the type of program and the second column shows the interleaving of threads observed
during the execution of the program. We analyzed the interleaving types and identified
the ones with atomicity violations; we here show them in the third column. The diagnosis
column shows the count of different interleaving observed in the program. In the diagnosis
phase, every interleaving is inspected whether it is correct interleaving or interleaving with
atomicity violation. Since a tread execution is nondeterministic, the number shown in the
table is a sample observation. Once an interleaving is diagnosed as a violation of atomicity,
the interleaving is treated. The fifth column shows the number of treated interleaving types.
Since there cannot be a false negative or false positive in treatment, the accuracy of the
treatment is 100%.

Table 4. Result of functional evaluation of RAV.

Synthetic Program Interleaving Atomicity Violation Diagnosis Treatment Accuracy

T[R−R]
i ‖ TW

j

TR
1 → TW

2 → TR
1 Yes 27 27

100%TR
1 → TR

1 → TW
2 No 24 -

TW
2 → TR

1 → TR
1 No 49 -

T[W−W]
i ‖ TR

j

TW
1 → TR

2 → TW
1 Yes 24 24

100%TW
1 → TW

1 → TR
2 No 24 -

TR
2 → TW

1 → TW
1 No 52 -

T[W−R]
i ‖ TW

j

TW
1 → TW

2 → TW
1 Yes 29 29

100%TW
1 → TR

1 → TR
2 No 34 -

TR
2 → TW

1 → TR
1 No 37 -

T[R−W]
i ‖ TR−W

j

TR
1 → TR

2 → TW
1 → TW

2 Yes 28 28

100%TR
2 → TR

1 → TW
2 → TW

1 Yes 39 39
TR

1 → TW
1 → TR

2 → TW
2 No 27 -

TR
2 → TW

2 → TR
1 → TW

1 No 6 -

T[R−R−W]
i ‖ TR−R−W

j

TR
1 → TR

2 → TR
1 → TW

1 → TR
2 → TW

2 Yes 18 18

100%TR
2 → TR

1 → TR
2 → TW

2 → TR
1 → TW

1 Yes 50 50
TR

1 → TR
1 → TW

1 → TR
2 → TR

2 → TW
2 No 24 -

TR
2 → TR

2 → TW
2 → TR

1 → TR
1 → TW

1 No 8 -

Appl. Sci. 2022, 12, 2014 17 of 22

5.4. Performance Evaluation

This section evaluates the performance of RAV. We measured the time and space
overheads with native and Tchamgoue et al.’s [17] algorithm to verify the performance
of RAV. Time overhead measured program execution time, diagnosis time and treatment
time. Space overhead measured total memory usage used during program execution.
We measured the overhead in the program execution time by increasing the number of
repetitions of the synthetic program from 100,000 to 1,280,000 while increasing the repetition
by multiples of two.

Figure 9 shows the time overhead of five synthetic programs. The total program
execution time increased approximately twice in proportion to the number of program
iterations. The total execution time of each approach was also similar. The time overhead
of Tchamgoue et al.’s [17] algorithm took an average of 1.19×, a minimum of 1.06× and
a maximum of 1.29×, compared to the native algorithm. The time overhead of RAV took
an average of 1.13×, a minimum of 1.06× and a maximum of 1.20×, compared to the
native algorithm. RAV showed slightly lower time overhead than Tchamgoue et al.’s [17]
algorithm, but the difference was very small. The cause of the time overhead is rooted in
the time spent on diagnosis and treatment in the repairing algorithm. When the number
of branches in the program is small, Tchamgoue et al.’s [17] algorithm does not require a
significant overhead because the time spent comparing access history is small. However, if
the number of threads is large, the overhead increases considerably. Since RAV only checks
the collected correct interleaving, it can be diagnosed with lower overhead than Tchamgoue
et al.’s [17] algorithm. The experimental results show that it is repaired with more overhead
than the native program, but less than Tchamgoue et al.’s [17] algorithm. As a result, the
difference in the time overheads of the two approaches was a minimum of 0% and both
techniques are adequate for a real-time system if we can tolerate a time overhead of about
5–30%.

 0
 50

 100
 150
 200
 250
 300

10 20 40 80
160

320
640

1,280

T
im

e
 (

s
)

Iterlation (x1,000)

T1
[R-R]

 || T2
W

 0
 50

 100
 150
 200
 250
 300

10 20 40 80
160

320
640

1,280

T
im

e
 (

s
)

Iterlation (x1,000)

T1
[W-R]

 || T2
W

 0
 50

 100
 150
 200
 250
 300

10 20 40 80
160

320
640

1,280

T
im

e
 (

s
)

Iterlation (x1,000)

T1
[W-W]

 || T2
R

 0
 50

 100
 150
 200
 250
 300

10 20 40 80
160

320
640

1,280

T
im

e
 (

s
)

Iterlation (x1,000)

T1
[R-W]

 || T2
R-W

 0
 50

 100
 150
 200
 250
 300

10 20 40 80
160

320
640

1,280

T
im

e
 (

s
)

Iterlation (x1,000)

Native
Tchamgoue et al., 2011

RAV

T1
[R-R-W]

 || T2
R-R-W

Figure 9. Execution time of synthetic programs [16].

Appl. Sci. 2022, 12, 2014 18 of 22

Figure 10 shows the result of the space overhead of the five synthetic programs. In
all synthetic programs, the native algorithm showed the same space overhead of 20 KB,
regardless of iterations. Tchamgoue et al.’s [17] algorithm showed an exponential increase
in space usage. From 10,000 to 80,000 times, the overhead was lower than that of RAV, but,
after 80,000, the overhead was higher than that of RAV. RAV showed the same overhead
of 219 KB from program start to end. Tchamgoue et al.’s [17] algorithm creates the access
history every time a thread occurs and uses a lot of memory because it needs to update the
access history every time the shared memory is accessed. RAV shows the same memory
usage from beginning to end because correct interleaving is inserted into the memory at
the same time as program execution starts. As a result, Tchamgoue et al.’s [17] algorithm
has a higher memory usage, so, when it is applied in airborne software, it is necessary to
secure the corresponding memory usage. Since RAV has the same or lower overhead, it can
be applied to airborne software.

 0.1

 1

 10

 100

10 20 40 80
160

320
640

1,280N
o
rm

a
liz

e
d
 M

e
m

o
ry

(K
b
y
te

,
lo

g
s
c
a
le

)

Iterlation (x1,000)

T1
[R-R]

 || T2
W

 0.1

 1

 10

 100

10 20 40 80
160

320
640

1280N
o
rm

a
liz

e
d
 M

e
m

o
ry

(K
b
y
te

,
lo

g
s
c
a
le

)
Iterlation (x1,000)

T1
[W-R]

 || T2
W

 0.1

 1

 10

 100

10 20 40 80
160

320
640

1,280N
o
rm

a
liz

e
d
 M

e
m

o
ry

(K
b
y
te

,
lo

g
s
c
a
le

)

Iterlation (x1,000)

T1
[W-W]

 || T2
R

 0.1

 1

 10

 100

10 20 40 80
160

320
640

1,280N
o
rm

a
liz

e
d
 M

e
m

o
ry

(K
b
y
te

,
lo

g
s
c
a
le

)

Iterlation (x1,000)

T1
[R-W]

 || T2
R-W

 0.1

 1

 10

 100

10 20 40 80
160

320
640

1,280N
o
rm

a
liz

e
d
 M

e
m

o
ry

(K
b
y
te

,
lo

g
s
c
a
le

)

Iterlation (x1,000)

Native
Tchamgoue et al., 2011

 RAV

T1
[R-R-W]

 || T2
R-R-W

Figure 10. Memory usage of synthetic programs [16].

Figure 11 shows the repairing time spent while executing a synthetic program with
1,280,000 iterations. The repairing time of Tchamgoue et al.’s [17] algorithm was 3.1 s on
average, a maximum of 4 s for T[W−R]

1 ‖ TW
2 and a minimum 2 of seconds for T[W−W]

1 ‖
TR

2 . The repairing time of RAV was, on average, 1.8 s, a maximum of 2.0 for T[W−R]
1 ‖

TW
2 and a minimum of 1.6 for T[R−R]

1 ‖ TW
2 . The repairing time of Tchamgoue et al.’s [17]

algorithm showed an average of 1.7×, a maximum of 1.99× and a minimum of 1.4× longer
than RAV. Tchamgoue et al.’s [17] program showed that the diagnosis time was lower than
that of RAV, but the total repairing time was higher than that of RAV because of the high
treatment time. The cause of the overhead is that, after diagnosing an atomic violation by
examining the locking discipline, it waits until the execution of the lock is finished before
performing treatment. Unnecessary treats can also cause overhead to increase due to many
false positives. RAV has a higher diagnostic time than Tchamgoue et al.’s [17] algorithm but
has lower overhead because it resumes the stopped thread as soon as the variable executes

Appl. Sci. 2022, 12, 2014 19 of 22

correctly. As a result, the proportion of treatment time in the total repairing time shows
an average of 0.13%, a maximum of 0.18% for T[R−R]

1 ‖ TW
2 and a minimum of 0.05% for

T[W−R]
1 ‖ TW

2 .

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

T1
[R-R]

||T2
W

T1
[W-R]

||T2
W

T1
[W-W]

||T2
R

T1
[R-W]

||T2
R-W

T1
[R-R-W]

||T2
R-R-W

Tchamgoue et al., 2011

RAV

3
1

2 3 3

T
im

e
 (

m
s
)

Diagnosis
Treatment

Figure 11. Repairing time of synthetic programs with 1,280,000 iterations (note that the treatment
time for RAV is described above the bar) [16].

Summarizing the results, RAV collected incorrect interleaving with a low probability
when training a program in which the interleaving of shared variables was complex.
Therefore, it is necessary to perform sufficient training and check the correctness of the
collected interleaving. RAV repaired all five types of atomicity violations in real-world
software. It showed an average of 1.13× time overhead and a constant space overhead of
219 KB. Most of the repair time was spent on diagnosis and the time required for action was
very low. Therefore, RAV can be applied to airborne software to repair atomicity violations
with low overhead. Succeeding researchers can focus on automatic verification or collection
methods to increase the accuracy of correct interleaving collection in training. In addition,
we plan to improve the algorithm to be repaired in RAV by analyzing multi-variable
atomicity violations that manifest in real-world software.

6. Discussion

In Section 5, we show that the proposed tool treated the atomicity violations in the
synthetic program with low overhead. The synthetic program was developed in an ARINC
653 environment called Simulated Integrated Modular Avionics (SIMA), which is com-
mon practice in the industry. We used synthetic programs because airborne software is
proprietary and the industry does not disclose them for security reasons. Synthetic or not,
airborne software is vulnerable to concurrency errors because the ARINC 653 operating
system supports Pthread library. Moreover, it is impossible to guarantee that the treat-
ment of atomicity violations is correct. Additionally, it is difficult to guarantee that a piece
of code does not have side effects on other software components unless it is tested in a
control environment.

UAVs and drones are attracting many researchers in the field, because, unlike other
airborne software, many of their source codes are available as opensource projects. These
software types must be inspected for any latent errors because these projects do not always
strictly follow the standards.

In RAV, we manually inspected the accuracy of the interleaving set acquired in the
test phase. Since it is manually inspected, this might increase the number of false positive
and false negative cases when the code is complex or when the developer makes mistakes.
For future work, we need to develop an automated tool that guarantees the integrity of the
correct interleaving set.

7. Conclusions

It is essential for the aircraft health management system in ARINC 653-based con-
current programs to repair atomicity violations on the fly to ensure the program’s normal

Appl. Sci. 2022, 12, 2014 20 of 22

execution. In previous works, atomicity violations have been diagnosed by comparing the
access history generated and maintained whenever an access operation is executed with
the access information during execution. There is time and space overhead for repairing
whenever an access operation executes. This paper proposes RAV (Repairing Atomicity
Violation). It diagnoses atomicity violations by using correct interleaving collected in the
test phase.

RAV showed a time overhead of 1.6× 1.20× regardless of the number of accesses
to shared variables. It also showed the space overhead of 219 KB. The aircraft is a hard
real-time system, so the program must have a constant time and space overhead during
operation. If the design considers the time and space overhead required for repairs, RAV is
well suited for use in airborne software.

Author Contributions: Conceptualization, T.-h.K. and Y.-K.J.; methodology, E.-t.C.; software, E.-t.C.
and T.-h.K.; validation, E.-t.C., and M.H.; investigation, E.-t.C. and T.-h.K.; resources, E.-t.C.; writing—
original draft preparation, E.-t.C. and T.-h.K.; writing—review and editing, S.L.; visualization, E.-t.C.;
supervision, Y.-K.J. and S.L.; project administration, Y.-K.J.; funding acquisition, Y.-K.J. and S.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research study was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2018R1D1A3B07041838)
and was supported by the Technology Innovation Program (or Industrial Strategic Technology Develop-
ment Program, 20005378, Open Avionics System Architecture and Software Development for Small to
Medium Aircraft Class) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea). It was
also supported by the Electronics and Telecommunications Research Institute (ETRI) grant funded by
the Korean government (21ZS1300; Research on High Performance Computing Technology to overcome
limitations of AI processing).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Firesmith, D.G.; Capell, P.; Falkenthal, D.; Hammons, C.B.; Latimer IV, D.T.; Merendino, T. The Method Framework for Engineering

System Architectures; CRC Press: Boca Raton, FL, USA, 2008.
2. Netzer, R.H.; Miller, B.P. What are race conditions? Some issues and formalizations. ACM Lett. Program. Lang. Syst. 1992, 1, 74–88.

[CrossRef]
3. Lu, S.; Park, S.; Seo, E.; Zhou, Y. Learning from Mistakes: A Comprehensive Study on Real World Concurrency Bug Characteristics.

SIGOPS Oper. Syst. Rev. 2008, 42, 329–339. [CrossRef]
4. Dinning, A.; Schonberg, E. Detecting access anomalies in programs with critical sections. In Proceedings of the 1991 ACM/ONR

Workshop on Parallel and Distributed Debugging, Santa Cruz, CA, USA, 20–21 May 1991; pp. 85–96.
5. Jun, Y.K.; Koh, K. On-the-fly detection of access anomalies in nested parallel loops. ACM SIGPLAN Not. 1993, 28, 107–117.

[CrossRef]
6. Ha, O.K.; Kuh, I.B.; Tchamgoue, G.M.; Jun, Y.K. On-the-Fly Detection of Data Races in OpenMP Programs. In Proceedings of the

2012 Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging, Minneapolis, MN, USA, 16 July 2012;
pp. 1–10. [CrossRef]

7. Ratanaworabhan, P.; Burtscher, M.; Kirovski, D.; Zorn, B.; Nagpal, R.; Pattabiraman, K. Detecting and Tolerating Asymmetric
Races. In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, New York,
NY, USA, 15–19 February 2009; pp. 173–184. [CrossRef]

8. Lucia, B.; Ceze, L. Cooperative Empirical Failure Avoidance for Multithreaded Programs. SIGPLAN Not. 2013, 48, 39–50.
[CrossRef]

9. Mahadevan, N.; Dubey, A.; Karsai, G. Application of Software Health Management Techniques. In Proceedings of the 6th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems, New York, NY, USA, 23–24 May
2011; pp. 1–10. [CrossRef]

10. Srivastava, A.N.; Schumann, J. The Case for Software Health Management. In Proceedings of the 2011 IEEE Fourth International
Conference on Space Mission Challenges for Information Technology, Palo Alto, CA, USA, 2–4 August 2011; pp. 3–9. [CrossRef]

http://doi.org/10.1145/130616.130623
http://dx.doi.org/10.1145/1353535.1346323
http://dx.doi.org/10.1145/174267.174278
http://dx.doi.org/10.1145/2338967.2336808
http://dx.doi.org/10.1145/1504176.1504202
http://dx.doi.org/10.1145/2499368.2451121
http://dx.doi.org/10.1145/1988008.1988010
http://dx.doi.org/10.1109/SMC-IT.2011.14

Appl. Sci. 2022, 12, 2014 21 of 22

11. Goldberg, A.; Horvath, G. Software Fault Protection with ARINC 653. In Proceedings of the 2007 IEEE Aerospace Conference,
Big Sky, Montana, 3–10 March 2007; pp. 1–11. [CrossRef]

12. Ofsthun, S. Integrated vehicle health management for aerospace platforms. IEEE Instrum. Meas. Mag. 2002, 5, 21–24. [CrossRef]
13. Spitzer, C.; Ferrell, U.; Ferrell, T. Digital Avionics Handbook; CRC Press: Boca Raton, FL, USA, 2014.
14. Committee, A.E.E. Avionics Application Software Standard Interface: ARINC Specification 653 Part 1 (Supplement 4—Required Services);

Aeronautical Radio: Annapolis, MD, USA, 2015.
15. Pullum, L.L. Software Fault Tolerance Techniques and Implementation; Artech House, Inc.: Norwood, MA, USA, 2001.
16. Ha, O.; Tchamgoue, G.M.; Suh, J.; Jun, Y. On-the-fly healing of race conditions in ARINC-653 flight software. In Proceedings of

the 29th Digital Avionics Systems Conference, Salt Lake City, UT, USA, 3–7 October 2010; pp. 5.A.6-1–5.A.6-11. [CrossRef]
17. Tchamgoue, G.M.; Ha, O.K.; Kim, K.H.; Jun, Y.K. A framework for on-the-fly race healing in ARINC-653 applications. Int. J.

Hybrid Inf. Technol. 2011, 4, 1–12.
18. New Software Glitch Found in Boeing’s Troubled 737 Max Jet. Available online: https://apnews.com/article/f192296ce28843c3

aa5b7cd599e0a69f. (accessed on 26 November 2020).
19. RTCA, I. Software Considerations in Airborne Systems and Equipment Certification; RTCA, Inc.: Washington, DC, USA, 2011.
20. Wilfredo, T.P. Software Fault Tolerance: A Tutorial; NASA: Washington, DC, USA, 2000.
21. The Open Group. FACE (Future Airborne Capability Environment) Technical Standard, Edition 3.0; The Open Group: San Francisco,

CA, USA, 2017.
22. Wang, J.; Dou, W.; Gao, Y.; Gao, C.; Qin, F.; Yin, K.; Wei, J. A Comprehensive Study on Real World Concurrency Bugs in Node.Js.

In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering, Urbana, IL, USA, 30
October–3 November 2017; pp. 520–531.

23. Department of Defense. Joint Software Systems Safety Engineering Handbook; Department of Defense: Defense, VI, USA, 2010;
pp. E-15–E-18.

24. Apache Project Statistics. Available online: https://projects.apache.org/statistics.html (accessed on 9 April 2020).
25. Giebas, D.; Wojszczyk, R. Detection of Concurrency Errors in Multithreaded Applications Based on Static Source Code Analysis.

IEEE Access 2021, 9, 61298–61323. [CrossRef]
26. Singh, A.; Pai, R.; D’Souza, D.; D’Souza, M. Static Analysis for Detecting High-Level Races in RTOS Kernels. In Formal Methods—

The Next 30 Years; ter Beek, M.H., McIver, A., Oliveira, J.N., Eds.; Springer International Publishing: Cham, Switzerland, 2019;
pp. 337–353.

27. Giebas, D.; Wojszczyk, R. Atomicity Violation in Multithreaded Applications and Its Detection in Static Code Analysis Process.
Appl. Sci. 2020, 10, 8005. [CrossRef]

28. Savage, S.; Burrows, M.; Nelson, G.; Sobalvarro, P.; Anderson, T. Eraser: A Dynamic Data Race Detector for Multithreaded
Programs. ACM Trans. Comput. Syst. 1997, 15, 391–411. [CrossRef]

29. Eslamimehr, M.; Lesani, M.; Edwards, G. Efficient detection and validation of atomicity violations in concurrent programs. J.
Syst. Softw. 2018, 137, 618–635. [CrossRef]

30. Ma, X.; Wu, S.; Pobee, E.; Mei, X.; Zhang, H.; Jiang, B.; Chan, W.K. RegionTrack: A Trace-Based Sound and Complete Checker to
Debug Transactional Atomicity Violations and Non-Serializable Traces. ACM Trans. Softw. Eng. Methodol. 2021, 30, 1–49. [CrossRef]

31. Cheptsov, V.; Khoroshilov, A. Dynamic Analysis of ARINC 653 RTOS with LLVM. In Proceedings of the 2018 Ivannikov Ispras
Open Conference (ISPRAS), Moscow, Russia, 22–23 November 2018; pp. 9–15. [CrossRef]

32. Domingues, R.P.; De Melo Bezerra, J.; Hirata, C.M. Design recommendations to mitigate memory and cache non-determinisms
in multi-core based IMA platform of airborne systems. In Proceedings of the 2015 IEEE/AIAA 34th Digital Avionics Systems
Conference (DASC), Prague, Czech Republic, 13–17 September 2015; pp. 7A1-1–7A1-9. [CrossRef]

33. Kim, H.J.; Ha, O.K.; Jun, Y.K.; Park, H.D. Message Races in Data Distribution Service Programs. In Proceedings of the 2015
8th International Conference on Database Theory and Application (DTA), Jeju Island, Korea, 25–28 November 2015; pp. 33–36.
[CrossRef]

34. Singh, A.; D’Souza, M.; Ebrahim, A. Formal Verification of Datarace in Safety Critical ARINC653 compliant RTOS. In Proceedings
of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India,
19–22 September 2018; pp. 1273–1279. [CrossRef]

35. Singh, A.; D’Souza, M.; Ebrahim, A. Conformance Testing of ARINC 653 Compliance for a Safety Critical RTOS Using UPPAAL
Model Checker. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, New York, NY, USA, 22–26 March
2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1807–1814.

36. Yu, J.; Narayanasamy, S. A Case for an Interleaving Constrained Shared-Memory Multi-Processor. SIGARCH Comput. Archit.
News 2009, 37, 325–336. [CrossRef]

37. Zhang, M.; Wu, Y.; Lu, S.; Qi, S.; Ren, J.; Zheng, W. A Lightweight System for Detecting and Tolerating Concurrency Bugs. IEEE
Trans. Softw. Eng. 2016, 42, 899–917. [CrossRef]

38. Krena, B.; Letko, Z.; Tzoref, R.; Ur, S.; Vojnar, T. Healing Data Races On-the-Fly. In Proceedings of the 2007 ACM Workshop on
Parallel and Distributed Systems: Testing and Debugging, London, UK, 9 July 2007; pp. 54–64. [CrossRef]

39. Dang, H.V.; Snir, M.; Gropp, W. Towards Millions of Communicating Threads. In Proceedings of the 23rd European MPI Users’
Group Meeting, Edinburgh, UK, 25–28 September 2016; pp. 1–14. [CrossRef]

http://dx.doi.org/10.1109/AERO.2007.352946
http://dx.doi.org/10.1109/MIM.2002.1028368
http://dx.doi.org/10.1109/DASC.2010.5655315
https://apnews.com/article/f192296ce28843c3aa5b7cd599e0a69f
https://apnews.com/article/f192296ce28843c3aa5b7cd599e0a69f
https://projects.apache.org/statistics.html
http://dx.doi.org/10.1109/ACCESS.2021.3073859
http://dx.doi.org/10.3390/app10228005
http://dx.doi.org/10.1145/265924.265927
http://dx.doi.org/10.1016/j.jss.2017.06.001
http://dx.doi.org/10.1145/3412377
http://dx.doi.org/10.1109/ISPRAS.2018.00009
http://dx.doi.org/10.1109/DASC.2015.7311459
http://dx.doi.org/10.1109/DTA.2015.17
http://dx.doi.org/10.1109/ICACCI.2018.8554955
http://dx.doi.org/10.1145/1555815.1555796
http://dx.doi.org/10.1109/TSE.2016.2531666
http://dx.doi.org/10.1145/1273647.1273658
http://dx.doi.org/10.1145/2966884.2966914

Appl. Sci. 2022, 12, 2014 22 of 22

40. Ha, O.K.; Jun, Y.K. An efficient algorithm for on-the-fly data race detection using an epoch-based technique. Sci. Program. 2015,
2015, 1–14. [CrossRef]

41. Sridharan, S.; Gupta, G.; Sohi, G.S. Adaptive, Efficient, Parallel Execution of Parallel Programs. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation, Edinburgh, UK, 9–11 June 2014; pp. 169–180.
[CrossRef]

42. Ebert, C.; Jones, C. Embedded Software: Facts, Figures, and Future. Computer 2009, 42, 42–52. [CrossRef]
43. International, S. Guidelines for Development of Civil Aircraft and Systems; SAE International.: Warrendale, PA, USA, 2010.
44. MySQL Bugs. Available online: http://bugs.mysql.com/ (accessed on 1 November 2020).
45. Mozilla Bugs. Available online: https://bugzilla.mozilla.org (accessed on 1 November 2020).
46. Apache Bugs. Available online: https://httpd.apache.org/bug_report.html (accessed on 1 November 2020).
47. Ardupilot Bugs. Available online: https://github.com/ArduPilot/ardupilot/issues (accessed on 1 November 2020).

http://dx.doi.org/10.1155/2015/205827
http://dx.doi.org/10.1145/2594291.2594292
http://dx.doi.org/10.1109/MC.2009.118
http://bugs.mysql.com/
https://bugzilla.mozilla.org
https://httpd.apache.org/bug_report.html
https://github.com/ArduPilot/ardupilot/issues

	Introduction
	Background
	Avionic Health Management System
	Atomicity Violations
	On-the-Fly Repairing of Atomicity Violations

	Related Work
	General-Purpose Platform
	Avionics

	RAV: Repairing Atomicity Violations
	Procedure
	Embedded AI (eAI)
	Application to ARINC 653

	Experiments
	Test Environment
	Synthetic Programs
	Functional Evaluation
	Performance Evaluation

	Discussion
	Conclusions
	References

