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Abstract: In this study, we developed a new approach for feature engineering in geosciences. The
main focus of this study was feature engineering based on the implementation of the dynamic activity
index (MDAI) as a function of the anomaly of the spatial distribution of data, using systems and
discrete mathematical analysis. The methodology for calculating MDAI by groups, geomorphological
variability, the density of tectonic faults, stress-strain state, and magnetic field anomalies, is presented
herein for a specific area. A detailed analysis of the correlation matrix of MDAI revealed weak
correlations between the development features. This showed that the considered properties of the
geological environment are independent sets and can be used in the analysis of its geodynamic
stability. As a result, it was found that most of the territory where high-level radioactive waste
(HLRW) disposal is currently planned is in a relatively stable zone.

Keywords: system analysis; DMA algorithms; dynamic activity index; structural tectonic block;
geodynamic data; safety

1. Introduction

Methods of discrete mathematical analysis, machine learning, and big data analysis
use “feature” in their terminology. The feature of a study object is the result of measuring or
modeling some individual property of the object, and their aggregate reflects the model of
the object. The solution to urgent problems in assessing natural and man-made risks, such
as searching for anomalies in geophysical fields [1–3], recognizing strong earthquake-prone
areas [4–8], geodynamic zoning [9,10], etc., requires the creation of effective methods for the
formalized analysis of a complex of geological and geophysical features. When analyzing
the data, the features are synthesized using mathematical modeling methods [11–13] and
may contain complex mathematical constructions. It is difficult to interpret them physically.
In this case, the informativeness of geological and geophysical features is assessed [14–16].
Therefore, the feature model of the object under study should be adequately analyzed, and
the results of this analysis should correctly reflect the real natural-technical system.

A unique project is being implemented in Russia to create an underground research
laboratory (URL). The main goal of this project is to confirm the possibility of final isolation
of high-level radioactive waste (HLRW) in geological formations. Considering interna-
tional experience, the concept of deep geological repository (DGR) was chosen, the main
parameters of which are given in [17]. DGR is planned to be created in granite gneiss
rocks of the Nizhnekansky massif 4–5 km from the Yenisei River at a depth of 500–600 m.
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HLRW will be placed in large-diameter wells drilled from horizontal workings on horizons
with proposed dimensions of 1.0 × 1.5 km. The multibarrier protection system consists
of classical elements used in various DGR projects (Sweden, Finland, Japan, USA, etc.):
geological environment, bentonite, borosilicate glass, and container body. Currently, the
geodynamic and seismic regime is being studied in this area [18–20].

The geological and tectonic features of the DGR location area are described in [20–24].
The time of the radiobiological hazard of HLRW exceeds ten thousand years, so the main
focus is to assess and predict the geodynamic stability of a structural tectonic block con-
taining HLRW. A structural tectonic block is a dynamically active system in which internal
and external energy sources determine the spatiotemporal evolution of its structural forms
and stress-strain state. The activity degree of the system is reflected in the features (mor-
phology) of the distribution of geological and geophysical characteristics, including the
relief of the Earth’s surface, the scheme of tectonic faults and stress-strain state, etc. When
such information does not provide an obvious sign of instability [21], system analysis is the
most constructive assessment. This allows long-term forecasts in conditions of information
uncertainty, uses fundamental geological patterns as the only criteria, and guarantees
reliability [25].

For this purpose, and based on the methods and algorithms of discrete mathematical
analysis (DMA) and fuzzy logic, a method of formalized analysis was developed [26,27]. It
considers the relationship of geodynamics and the morphological features of the distribu-
tion of geological and geophysical parameters (including a digital relief model, stress-strain
state, geophysical fields, and other characteristics of the environment) [1,26,28,29].

The calculation of dynamic indicators’ activity measurements is presented in Section 2.
The results of correlation analysis and the final measure of geodynamic safety are presented
in Section 3. Assessment of the stability of the geological environment is detailed in
Section 4. Finally, in Section 5, conclusions are summarized.

2. Methodology for Assessing the Integral Index of Dynamic Stability of a Structural
Tectonic Block

Information about the methodology that was developed by the Geophysical Center
RAS is detailed below. Its algorithms are based on the language of fuzzy sets and fuzzy
logic [26,30]. DMA algorithms have successfully proven themselves in solving a wide range
of geological and geophysical problems in the field of Earth sciences (strong recognition of
earthquake-prone areas, monitoring of volcanoes and geomagnetic activity, etc.) [26,31–34].

In [26], a finite system of functions of geological and geophysical parameters was
studied on a two-dimensional grid. The challenge of calculating the anomaly measurements
for a group of geological and geophysical features was formalized. The mathematical
component of the sustainability assessment methodology for the structural-tectonic block
is described in detail in [1,26] and tested at the HLRW disposal site. Its main provisions are
as follows.

The area of interest Π = {o ≤ x1 ≤ t; u ≤ x2 ≤ v} exists on the coordinate plane
R2(x1, x2). A set of geological and geophysical fields F from m datasets (in the form of
digital maps of various parameters: geographical, geological, geophysical, geodynamic,
economic, and others) is selected for this area for use in evaluating the stability of the
region Π.

F = { f1, . . . , fm},
fi : Π→ R; i = 1, . . . , m

(1)

The goal is to divide the region Π into relatively unstable (conditionally dangerous)
and stable (conditionally safe) elements. This ranking is also called geodynamic zoning [10].

In the region Π a regular grid W = W(h1, h2) with nodes w is given:

W =

{
w = (o + ih1; u + jh2)

∣∣∣∣ i = 0, . . . , N; h1 = t−o
N

j = 0, . . . , M; h2 = v−u
M

}
(2)
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On the grid W it is necessary to analyze the spatial distribution of systems of functions
F in the neighborhoods of the node w. To do this, we defined a fuzzy measure of activity
µ(w) in the range from 0 to 1, according to the rules described below.

Step 1. Calculation of the dynamic indicator.
Each parameter f from the set F is a distribution function on the grid W. For each

parameter f , it is possible to determine the dynamic indicator D f , which is a functional
characteristic of the measurement of f . The value of D f (w) is interpreted as a quantitative
assessment of the behavior of the function f in the node w ∈ W, calculated according to
the specified rules. In terms of data analysis, the dynamic indicator D f (w) is a feature.

Step 2. Calculation of measure of dynamic activity index (MDAI).
For each dynamic indicator D f , a measure of activity (anomaly) µD f is determined

in the range from 0 to 1. It shows the degree of expression of the property f in the node
w, defined by the indicator D f . The measure of dynamic activity index µD f is calculated
from the dynamic indicator D f in the methodology of discrete mathematical analysis. The
transformation D f → µD f translates the analysis of the measurement of f into the language
of fuzzy logic: measures of dynamic activity index µD f for different dynamic indicators of
D f are fuzzy structures on the grid W, and they can be combined in any compositions and
any quantities using fuzzy logic operations and averaging.

Step 3. Calculation the integral measure of activity µF.
As the last step of the algorithm, all the measures of dynamic activity index µD f

are combined into a single integral indicator of µF. The formula of the combination is
the arithmetic mean of all measures of dynamic activity index µD f . Depending on the
research task, weighting coefficients for activity measures or other compound formulas
can be used [35]. To show the measures of geodynamic safety, the inverse of the integral
measure of activity is used:

SF = 1− µF (3)

The transformation F→ µF translates vector analysis concerning the system of func-
tions F into scalar analysis for the final measure of anomaly µF, which, in terms of decision
theory, is the reduction of a multicriteria problem to a scalar choice of a utility function. In
terms of geodynamic zoning [36], the criteria for estimating the value of SF according to
the system of features F are determined according to Table 1. This approach to the rank-
ing is adequate; if an integral measure is expressed in the range 0–1, then the conditions
SF ≤ 0.25 и SF ≥ 0.75 mean the absence or the presence of safety (anomalies), respectively.
The interval (0.25; 0.75) indicates uncertainty and the need for additional research.

Table 1. Ranking of the integral measure of geodynamic safety SF.

Node (Cell, Structural Block) w Measures of Geodynamic Safety SF

hazardous ≤ 0.25
neutral ∈ (0.25; 0.75)

safe ≥ 0.75

3. Feature Engineering Based on Measurement of Dynamic Stability Index
3.1. Needed Data

According to the methodology described in [26], when selecting parameters and
related dynamic indexes, we used a set of parameters necessary for assessing geodynamic
stability. All the initial data were collected in a GIS project [37]. We used a set of the
following data:

1. Digital terrain model based on radar interferometric survey of the Earth’s surface,
Shuttle radar topographical mission (SRTM-4);

2. Schemes of tectonic faults [38,39];
3. Scheme of neotectonic structures of the joint zone of the Siberian platform and the

West Siberian plate [40];
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4. Kinematic model of modern horizontal movements and rates of deformation of the
Earth’s crust according to GNSS monitoring data [19,41];

5. Data on the stress-strain state of the Nizhnekansky massif obtained as a result of finite
element modeling [42,43];

6. Map of the anomalous magnetic field [38].

Dynamic indexes were obtained from the above datasets based on the study of the
following characteristics: relief, faults, stress-strain state, and anomalous magnetic field.

3.2. Feature Calculation

For the realization of the methodology, software modules based on the calculation of
morphometric indicators and normalization of geological and geophysical parameters were
developed. These parameters reflect patterns of relief L1

Re(w), L2
Re(w), and |∇Re|(w); fault

densities
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(w,

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 18 
 

3. Feature Engineering Based on Measurement of Dynamic Stability Index 
3.1. Needed Data 

According to the methodology described in [26], when selecting parameters and re-
lated dynamic indexes, we used a set of parameters necessary for assessing geodynamic 
stability. All the initial data were collected in a GIS project [37]. We used a set of the fol-
lowing data: 
1. Digital terrain model based on radar interferometric survey of the Earth’s surface, 

Shuttle radar topographical mission (SRTM-4); 
2. Schemes of tectonic faults [38,39]; 
3. Scheme of neotectonic structures of the joint zone of the Siberian platform and the 

West Siberian plate [40]; 
4. Kinematic model of modern horizontal movements and rates of deformation of the 

Earth’s crust according to GNSS monitoring data [19,41]; 
5. Data on the stress-strain state of the Nizhnekansky massif obtained as a result of fi-

nite element modeling [42,43]; 
6. Map of the anomalous magnetic field [38]. 

Dynamic indexes were obtained from the above datasets based on the study of the 
following characteristics: relief, faults, stress-strain state, and anomalous magnetic field. 

3.2. Feature Calculation 
For the realization of the methodology, software modules based on the calculation of 

morphometric indicators and normalization of geological and geophysical parameters 
were developed. These parameters reflect patterns of relief 𝐿ோ௘ଵ (𝑤), 𝐿ோ௘ଶ (𝑤), and |∇ோ௘|(𝑤); 
fault densities ϼ(𝑤, 𝒫) and ϼ(𝑤, 𝜌) ; stress-strain states 𝜎୶୶(𝑤) , 𝜎௬௬(𝑤) , σ௜௡௧(𝑤) , 𝛦୶୶(𝑤) 𝛦௬௬(𝑤), and 𝑑𝑖𝑙(𝑤); and magnetic field anomalies 𝐿ெ௔௚ଶ (𝑤), ห∇ெ௔௚ห(𝑤). 

The first two indicators, 𝐿ோ௘ଵ  and 𝐿ோ௘ଶ , characterize the geomorphological variability 
landform sections at node 𝑤, and the third, |∇ோ௘|, is the gradient of relief: 𝐿ோ௘ଵ (𝑤) = ∑ |𝑅𝑒(𝑤ഥ) − 𝑅𝑒(𝑤)|௪ഥ ∈஼(௪) 4   (4) 

𝐿ோ௘ଶ (𝑤) = 2 + 𝑐𝑜𝑠 𝜃г + 𝑐𝑜𝑠 𝜃в2   (5) 

𝑐𝑜𝑠 𝜃г = −1 + ൫𝑅𝑒(𝑤ସ) − 𝑅𝑒(𝑤)൯ × ൫𝑅𝑒(𝑤଺) − 𝑅𝑒(𝑤)൯ට1 + ൫𝑅𝑒(𝑤ସ) − 𝑅𝑒(𝑤)൯ଶ × ට1 + ൫𝑅𝑒(𝑤଺) − 𝑅𝑒(𝑤)൯ଶ  (6) 

𝑐𝑜𝑠 𝜃в = −1 + ൫𝑅𝑒(𝑤ଶ) − 𝑅𝑒(𝑤)൯ × ൫𝑅𝑒(𝑤଼) − 𝑅𝑒(𝑤)൯ට1 + ൫𝑅𝑒(𝑤ଶ) − 𝑅𝑒(𝑤)൯ଶ × ට1 + ൫𝑅𝑒(𝑤଼) − 𝑅𝑒(𝑤)൯ଶ (7) 

The third relief gradient index is the gradient modulus |∇ோ௘(𝑤)|; it is responsible for 
the maximum change in relief at a node 𝑤 and calculated by the Sobel operator: |𝛻ோ௘(𝑤)| = |𝛻ோ௘г (𝑤)| + |𝛻ோ௘в (𝑤)| (8) 𝛻ோ௘г (𝑤) = ൫𝑅𝑒(𝑤଻) + 2𝑅𝑒(𝑤଼) + 𝑅𝑒(𝑤ଽ)൯ − ൫𝑅𝑒(𝑤ଵ) + 2𝑅𝑒(𝑤ଶ) + 𝑅𝑒(𝑤ଷ)൯ (9) 𝛻ோ௘в (𝑤) = ൫𝑅𝑒(𝑤ଷ) + 2𝑅𝑒(𝑤଺) + 𝑅𝑒(𝑤ଽ)൯ − ൫𝑅𝑒(𝑤ଵ) + 2𝑅𝑒(𝑤ସ) + 𝑅𝑒(𝑤଻)൯ (10) 

The MDAI for 𝐿ோ௘ଵ , 𝐿ோ௘ଶ , and |∇ோ௘| are calculated as: 

) and

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 18 
 

3. Feature Engineering Based on Measurement of Dynamic Stability Index 
3.1. Needed Data 

According to the methodology described in [26], when selecting parameters and re-
lated dynamic indexes, we used a set of parameters necessary for assessing geodynamic 
stability. All the initial data were collected in a GIS project [37]. We used a set of the fol-
lowing data: 
1. Digital terrain model based on radar interferometric survey of the Earth’s surface, 

Shuttle radar topographical mission (SRTM-4); 
2. Schemes of tectonic faults [38,39]; 
3. Scheme of neotectonic structures of the joint zone of the Siberian platform and the 

West Siberian plate [40]; 
4. Kinematic model of modern horizontal movements and rates of deformation of the 

Earth’s crust according to GNSS monitoring data [19,41]; 
5. Data on the stress-strain state of the Nizhnekansky massif obtained as a result of fi-

nite element modeling [42,43]; 
6. Map of the anomalous magnetic field [38]. 

Dynamic indexes were obtained from the above datasets based on the study of the 
following characteristics: relief, faults, stress-strain state, and anomalous magnetic field. 

3.2. Feature Calculation 
For the realization of the methodology, software modules based on the calculation of 

morphometric indicators and normalization of geological and geophysical parameters 
were developed. These parameters reflect patterns of relief 𝐿ோ௘ଵ (𝑤), 𝐿ோ௘ଶ (𝑤), and |∇ோ௘|(𝑤); 
fault densities ϼ(𝑤, 𝒫) and ϼ(𝑤, 𝜌) ; stress-strain states 𝜎୶୶(𝑤) , 𝜎௬௬(𝑤) , σ௜௡௧(𝑤) , 𝛦୶୶(𝑤) 𝛦௬௬(𝑤), and 𝑑𝑖𝑙(𝑤); and magnetic field anomalies 𝐿ெ௔௚ଶ (𝑤), ห∇ெ௔௚ห(𝑤). 

The first two indicators, 𝐿ோ௘ଵ  and 𝐿ோ௘ଶ , characterize the geomorphological variability 
landform sections at node 𝑤, and the third, |∇ோ௘|, is the gradient of relief: 𝐿ோ௘ଵ (𝑤) = ∑ |𝑅𝑒(𝑤ഥ) − 𝑅𝑒(𝑤)|௪ഥ ∈஼(௪) 4   (4) 

𝐿ோ௘ଶ (𝑤) = 2 + 𝑐𝑜𝑠 𝜃г + 𝑐𝑜𝑠 𝜃в2   (5) 

𝑐𝑜𝑠 𝜃г = −1 + ൫𝑅𝑒(𝑤ସ) − 𝑅𝑒(𝑤)൯ × ൫𝑅𝑒(𝑤଺) − 𝑅𝑒(𝑤)൯ට1 + ൫𝑅𝑒(𝑤ସ) − 𝑅𝑒(𝑤)൯ଶ × ට1 + ൫𝑅𝑒(𝑤଺) − 𝑅𝑒(𝑤)൯ଶ  (6) 

𝑐𝑜𝑠 𝜃в = −1 + ൫𝑅𝑒(𝑤ଶ) − 𝑅𝑒(𝑤)൯ × ൫𝑅𝑒(𝑤଼) − 𝑅𝑒(𝑤)൯ට1 + ൫𝑅𝑒(𝑤ଶ) − 𝑅𝑒(𝑤)൯ଶ × ට1 + ൫𝑅𝑒(𝑤଼) − 𝑅𝑒(𝑤)൯ଶ (7) 

The third relief gradient index is the gradient modulus |∇ோ௘(𝑤)|; it is responsible for 
the maximum change in relief at a node 𝑤 and calculated by the Sobel operator: |𝛻ோ௘(𝑤)| = |𝛻ோ௘г (𝑤)| + |𝛻ோ௘в (𝑤)| (8) 𝛻ோ௘г (𝑤) = ൫𝑅𝑒(𝑤଻) + 2𝑅𝑒(𝑤଼) + 𝑅𝑒(𝑤ଽ)൯ − ൫𝑅𝑒(𝑤ଵ) + 2𝑅𝑒(𝑤ଶ) + 𝑅𝑒(𝑤ଷ)൯ (9) 𝛻ோ௘в (𝑤) = ൫𝑅𝑒(𝑤ଷ) + 2𝑅𝑒(𝑤଺) + 𝑅𝑒(𝑤ଽ)൯ − ൫𝑅𝑒(𝑤ଵ) + 2𝑅𝑒(𝑤ସ) + 𝑅𝑒(𝑤଻)൯ (10) 

The MDAI for 𝐿ோ௘ଵ , 𝐿ோ௘ଶ , and |∇ோ௘| are calculated as: 

(w, ρ); stress-strain states σxx(w), σyy(w), σint(w), Exx(w) Eyy(w),
and dil(w); and magnetic field anomalies L2

Mag(w),
∣∣∇Mag

∣∣(w).
The first two indicators, L1

Re and L2
Re, characterize the geomorphological variability

landform sections at node w, and the third, |∇Re|, is the gradient of relief:

L1
Re(w) =

∑w∈C(w)|Re(w)− Re(w)|
4

(4)

L2
Re(w) =

2 + cosθΓ + cosθB

2
(5)

cosθΓ =
−1 + (Re(w4)− Re(w))× (Re(w6)− Re(w))√

1 + (Re(w4)− Re(w))2 ×
√

1 + (Re(w6)− Re(w))2
(6)

cosθB =
−1 + (Re(w2)− Re(w))× (Re(w8)− Re(w))√

1 + (Re(w2)− Re(w))2 ×
√

1 + (Re(w8)− Re(w))2
(7)

The third relief gradient index is the gradient modulus |∇Re(w)|; it is responsible for
the maximum change in relief at a node w and calculated by the Sobel operator:

|∇Re(w)| =
∣∣∣∇Γ

Re(w)
∣∣∣+ ∣∣∣∇B

Re(w)
∣∣∣ (8)

∇Γ
Re(w) = (Re(w7) + 2Re(w8) + Re(w9))− (Re(w1) + 2Re(w2) + Re(w3)) (9)

∇B
Re(w) = (Re(w3) + 2Re(w6) + Re(w9))− (Re(w1) + 2Re(w4) + Re(w7)) (10)

The MDAI for L1
Re, L2

Re, and |∇Re| are calculated as:

µL1
Re(w) =

L1
Re(w)

L1
Re(w)+L1

Re

µL2
Re(w) =

L2
Re(w)

L2
Re(w)+L2

Re

µ∇Re(w) =
∇Re(w)

∇Re(w)+∇Re

(11)

In studying the stability of a structural-tectonic block, the key issue is the macroscopic
manifestation of the geodynamic process. In the Earth’s crust, this macroscopic manifesta-
tion is most often represented by the relative displacement of parts of a massif concerning
each other. Analysis of the processes occurring at the boundaries between structural-
tectonic blocks is a necessary step for the creation of modern analytical and numerical
geodynamic models [44]. For this, we added the indicators
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), which characterizes proximity to tectonic faults.
The MDAI of fault density was determined using the linear density, which was

obtained in a circular vicinity within each cell of the grid. The length of the segment of each
line crossed by the circular neighborhood was multiplied by the line weight factor. Then all
the length values were summed up and divided by the area of the circle. This process was
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repeated for all cells in the grid. The calculation of the values
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) (14)

Figure 1 shows the original digital elevation model of the HLRW disposal area.
Figures 2–4 show the calculated maps of elevation variability for L1

Re(w), L2
Re(w), and

|∇Re|(w), respectively. An example of the calculation of the proximity to tectonic faults
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) as the shortest distance to a tectonic fault is given in Figure 5; an example of the
measure of fault density
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(w) is given in Figure 6.
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The next MDAI referred to the stress-strain state. The indexes for stress tensor com-
ponents σxx, σyy and stress intensity σint, which were obtained from the results of the
numerical modeling in [30], were calculated. The indexes for deformation parameters of
the Earth’s crust, derived from GNSS measurements, were also calculated [19,41]. The
components of the strain tensor exx, eyy and the dilatation strain EDil were used as input
data. The transformation of the stress-strain state parameters was carried out based on the
conversion of these parameters to a gradient scale in the range 0 to 1. For this purpose,
indicators a, b, c, and d were determined. They correspond to the following measurements
of the dynamic activity in Table 2: a, maximum value of stresses/strains; b, boundary
value of stresses or strains on the positive part of the scale identified by expert judgment; c,
boundary value of stresses or strains on the negative part of the scale identified by expert
judgment; d, minimum value of stresses/strains. For each xi interval, a transformation was
performed according to Equation (14). Thus, each interval of stress and strain values xi
corresponds to a certain calculation formula and interval of the dynamic activity measure.

xi ∈

[a; b][
b; b+c

2

][
b+c

2 ; c
]

[c; d]

→


0.5× x−a

b−a
0.5 + x−b

c−b
1.5− x−b

c−b
0.5× d−x

d−c

(15)

Table 2. Dynamic activity measure intervals based on stress and strain valuation.

Intervals Value

[a; b] 0–0.5[
b; b+c

2

]
0.5–1[

b+c
2 ; c

]
1–0.5

[c; d] 0.5–0

Below are shown MDAIs of stress-strain state. Stress values σxx, σyy, and σint are given
in Figures 7–9 and strain values exx, eyy, and EDil in Figures 10–12.
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To determine the MDAI of the magnetic field, we used Equation (5) for magnetic
field variability index L2

Mag(w) and Equation (8) for magnetic field variation gradient∣∣∇Mag
∣∣(w).
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Figure 13 shows distributions of integral measures of geodynamic safety and graphs
of the distribution of their values by intervals within selected groups: geomorphological
variability SRe(w), tectonic faults density S
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SRe(w) = 1−
µL1

Re(w) + µL2
Re(w) + µ∇Re(w)

3
(16)

S
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3
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µexx(w) + µeyy(w) + µEDil(w)

3

)
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SMag(w) = 1−
µL2

Mag(w) + µ∇Mag(w)

2
(19)
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The distributions of the integral measures within the groups differ significantly. The
integral measure of geomorphological variability SRe(w) is characterized by a uniform
distribution of data in the measurement interval from 0.45 to 0.9 (Figure 13a). The geomor-
phological variability in the study area is not high. A large part of the area is flat with low
elevation differences (Figure 1), but small areas of high-degree geomorphological variability
can also be observed with a relative geodynamic instability measurement in the range of
0.1–0.25. The integral measure of tectonic fault density S

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 18 
 

3. Feature Engineering Based on Measurement of Dynamic Stability Index 
3.1. Needed Data 

According to the methodology described in [26], when selecting parameters and re-
lated dynamic indexes, we used a set of parameters necessary for assessing geodynamic 
stability. All the initial data were collected in a GIS project [37]. We used a set of the fol-
lowing data: 
1. Digital terrain model based on radar interferometric survey of the Earth’s surface, 

Shuttle radar topographical mission (SRTM-4); 
2. Schemes of tectonic faults [38,39]; 
3. Scheme of neotectonic structures of the joint zone of the Siberian platform and the 

West Siberian plate [40]; 
4. Kinematic model of modern horizontal movements and rates of deformation of the 

Earth’s crust according to GNSS monitoring data [19,41]; 
5. Data on the stress-strain state of the Nizhnekansky massif obtained as a result of fi-

nite element modeling [42,43]; 
6. Map of the anomalous magnetic field [38]. 

Dynamic indexes were obtained from the above datasets based on the study of the 
following characteristics: relief, faults, stress-strain state, and anomalous magnetic field. 

3.2. Feature Calculation 
For the realization of the methodology, software modules based on the calculation of 

morphometric indicators and normalization of geological and geophysical parameters 
were developed. These parameters reflect patterns of relief 𝐿ோ௘ଵ (𝑤), 𝐿ோ௘ଶ (𝑤), and |∇ோ௘|(𝑤); 
fault densities ϼ(𝑤, 𝒫) and ϼ(𝑤, 𝜌) ; stress-strain states 𝜎୶୶(𝑤) , 𝜎௬௬(𝑤) , σ௜௡௧(𝑤) , 𝛦୶୶(𝑤) 𝛦௬௬(𝑤), and 𝑑𝑖𝑙(𝑤); and magnetic field anomalies 𝐿ெ௔௚ଶ (𝑤), ห∇ெ௔௚ห(𝑤). 

The first two indicators, 𝐿ோ௘ଵ  and 𝐿ோ௘ଶ , characterize the geomorphological variability 
landform sections at node 𝑤, and the third, |∇ோ௘|, is the gradient of relief: 𝐿ோ௘ଵ (𝑤) = ∑ |𝑅𝑒(𝑤ഥ) − 𝑅𝑒(𝑤)|௪ഥ ∈஼(௪) 4   (4) 

𝐿ோ௘ଶ (𝑤) = 2 + 𝑐𝑜𝑠 𝜃г + 𝑐𝑜𝑠 𝜃в2   (5) 

𝑐𝑜𝑠 𝜃г = −1 + ൫𝑅𝑒(𝑤ସ) − 𝑅𝑒(𝑤)൯ × ൫𝑅𝑒(𝑤଺) − 𝑅𝑒(𝑤)൯ට1 + ൫𝑅𝑒(𝑤ସ) − 𝑅𝑒(𝑤)൯ଶ × ට1 + ൫𝑅𝑒(𝑤଺) − 𝑅𝑒(𝑤)൯ଶ  (6) 

𝑐𝑜𝑠 𝜃в = −1 + ൫𝑅𝑒(𝑤ଶ) − 𝑅𝑒(𝑤)൯ × ൫𝑅𝑒(𝑤଼) − 𝑅𝑒(𝑤)൯ට1 + ൫𝑅𝑒(𝑤ଶ) − 𝑅𝑒(𝑤)൯ଶ × ට1 + ൫𝑅𝑒(𝑤଼) − 𝑅𝑒(𝑤)൯ଶ (7) 

The third relief gradient index is the gradient modulus |∇ோ௘(𝑤)|; it is responsible for 
the maximum change in relief at a node 𝑤 and calculated by the Sobel operator: |𝛻ோ௘(𝑤)| = |𝛻ோ௘г (𝑤)| + |𝛻ோ௘в (𝑤)| (8) 𝛻ோ௘г (𝑤) = ൫𝑅𝑒(𝑤଻) + 2𝑅𝑒(𝑤଼) + 𝑅𝑒(𝑤ଽ)൯ − ൫𝑅𝑒(𝑤ଵ) + 2𝑅𝑒(𝑤ଶ) + 𝑅𝑒(𝑤ଷ)൯ (9) 𝛻ோ௘в (𝑤) = ൫𝑅𝑒(𝑤ଷ) + 2𝑅𝑒(𝑤଺) + 𝑅𝑒(𝑤ଽ)൯ − ൫𝑅𝑒(𝑤ଵ) + 2𝑅𝑒(𝑤ସ) + 𝑅𝑒(𝑤଻)൯ (10) 

The MDAI for 𝐿ோ௘ଵ , 𝐿ோ௘ଶ , and |∇ோ௘| are calculated as: 

(w) has a uniform distribution
of values between 0 and 0.75. About 31% of all data fall within the relative geodynamic
stability interval of 0.75–0.9 (Figure 13b). The integral measure of the stress-strain state
Ssss(w) has a distribution close to normal, and about 85% of all data fall into the 0.25–0.75
transition range (Figure 13c). Up to 14% of all nodes are in the area of relative geodynamic
stability. The integral measure of magnetic field anomaly variability SMag(w) is not uni-
formly distributed over the intervals. The 0.75–1 interval of relative geodynamic stability
accounts for up to 47% of all data, the 0.25–0.75 interval of transient values for about 50%
of all data, and the 0–0.25 interval of relative geodynamic instability for about 3%.

4. Discussion

Correlation matrices and correlation strength thresholds were calculated for dy-
namic indexes D f and their MDAI µD f . Pearson’s correlation coefficient is presented
in the matrix:

r = ∑((xi − x)× (yi − y))√
∑
(
(xi − x)2 ×∑(yi − y)2

) (20)

The lower threshold for the presence of correlation was determined using Student’s
t-test Equation (21) and the intervals for the strength of the correlation according to
Equation (22):

r0 =
t√

t2 + n− 2
(21)

rint =
1− r0

3
(22)

Correlation strength intervals were determined for the dataset used (27,495 rows in
each of the indicators and a significance level of 0.95): weak correlation in the 0.012–0.341
interval, medium correlation in the 0.341–0.671 interval, and strong correlation in the
0.671–1 interval. The strength of the correlation was represented as a discrete color scale.

Figure 14 shows the correlation matrix of MDAI µD f . As shown in the figure, 65 out
of 78 correlation values of MDAI µD f have a weak correlation relationship. This is a good
indicator in terms of data analysis as the features must be noncollinear, otherwise, the
aggregation ability of the integral measure of geodynamic safety is reduced due to the high
dispersion of the data SF(w). Medium and strong correlations are found within index group
µD f . In the relief group, indexes of geomorphological variability µL1

Re(w) and µL2
Re(w)

have a strong correlation with the index of relief gradient µ∇Re(w). MDAIs µL1
Re(w) and

µL2
Re(w) have a medium correlation. The measures of proximity to tectonic faults index

µ
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(w) have a strong correlation, as the indices show high spatial
correspondence [42,45] (Figures 5 and 6). The fault group measurements have an average
correlation strength with the stress measurements µσyy(w) and µσint(w). This is primarily
due to the mathematical model for calculating the stress state [43], which considers the fault
tectonics of the area. In the stress group, µσyy(w) and µσint(w) have a strong correlation
relationship, as the stress σyy has the greatest contribution to the stress intensity σint [44].
The MDAIs of the strain tensor components µexx(w) and µeyy(w), determined from GNSS
observations [19], have a weak correlation. The MDAI of dilatation strain µEDil(w) has a
strong correlation with the measure µexx(w) and a medium correlation with the measure
µeyy(w); therefore, their spatial relationship can be seen (Figures 7–9). This is explained
by the formula for calculating strain dilatation, which includes the components of the
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strain tensor exx and eyy [41]. The average correlation strength was found between the
measure of magnetic field anomaly variability µL2

Mag(w) and the gradient of magnetic field
anomaly variability µ∇Mag(w). Internal correlation of feature groups was due to either
interdependent formulas for deriving the initial properties of the dynamic indicators D f ,
or the same set of initial feature data F (as in the case of topography or magnetic field
anomalies). Table 3 shows the correlation of the integral geodynamic safety groups: safety
measure of geomorphological variability, SRe(w); safety measure of tectonic faults density,
S
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(w); safety measure of a stress-strain state, Ssss(w); and safety measure of magnetic
field anomalies, SMag(w). Their correlation everywhere indicates a weak correlation or no
correlation at all. This characterizes these indexes as reflecting different properties of the
geological environment and as independent datasets.
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(w); 6—index of stress tensor component µσxx(w); 7—index of stress tensor
component, µσyy(w); 8—index of stress intensity, µσint(w); 9—index of strain tensor component,
µexx(w); 10—index of strain tensor component, µeyy(w); 11—index of dilatation strain µEDil(w);
12—magnetic field variability index, µL2

Mag(w); 13—magnetic field variation gradient, µ∇Mag(w).

Table 3. Correlation matrix of integral measures of geodynamic safety.

SRe(w) S
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(w) Ssss(w) SMag(w)

SRe(w) 1 0.13 −0.03 0.28
S
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(w) 0.13 1 0.04 0.16

Ssss(w) −0.03 0.04 1 −0.28
SMag(w) 0.28 0.16 −0.28 1

The integral measure of geodynamic safety SF(w) was calculated based on a com-
bination of four integral measures for relief, faults, stress-strain state, and magnetic
field anomalies:
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SF(w) =
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(w) + Ssss(w) + SMag(w)

4
(23)

The spatial distribution of the integral measure of geodynamic safety SF(w) is shown
in Figure 15, and the distribution of measurements by intervals is shown in Figure 16.
Green corresponds to the most stable state, red to the least stable, and yellow to the
intermediate zones.
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According to the results of the integral measure ranking (Table 1), nodes of relative
geodynamic instability SF(w) ≤ 0.25 account for an area of about 14 km2 (305 nodes).
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Most of these nodes belong to the area of interaction between major tectonic structures
and sharp variations in height gradient, which are actively expressed in abnormal values
of all measures of activity of dynamic indexes µD f . The range of hazardous nodes is
very small and occupies about 1.1% of the total volume. Nodes of geodynamic stability
SF(w) ≥ 0.75 correspond to flat areas of relief located in the centers of main structural-
tectonic blocks, equidistant from tectonic faults and outside zones of anomaly stress-strain
state. Nodes of relative geodynamic stability occupy an area of about 9.6%. Transition zones
SF(w) ∈ (0.25; 0.75) are not uniformly distributed. Most of the transition interval nodes
are associated with areas of local tectonic interaction, areas of moderate terrain variability,
and stress state within background values. The transition interval nodes occupy the largest
study area, about 89.3%.

5. Conclusions

Assessment of the stability of the geological environment during disposal HLRW for
the period of their radiobiological hazard (more than ten thousand years) is a very difficult
task in the field of Earth sciences. Currently, this complex problem is being solved in several
countries. For example, in Sweden («Forsmark») and Finland («Aspo»), similar facilities
are already under construction. The proposed methodology for assessing sustainability
complements the methods used in these and other countries to assess the suitability of the
geological environment for the disposal of HLRW. The degree of stability of the environment
as a geodynamic active system is related to the distribution features of the geospatial data
complex, including the characteristics of the relief, tectonic faults, geophysical fields,
stresses, etc. The search for anomalies and morphological patterns in the distribution of
data allows us to identify possible sites of the destruction of structural blocks.

The presented methodology for assessing the stability of the geological environment
based on the methods of DMA and fuzzy logic is informed by the analysis of dynamic
indicators as functions of geodynamic activity of the environment by groups: geological
and geophysical data, geomorphological variability of relief, the density of tectonic faults,
stress-strain state, and magnetic and gravity field anomalies for the area [46–49]. A detailed
analysis of the correlation matrix of the MDAI for four groups’ characteristics of the
environment µD f demonstrated that the absolute majority have a weak correlation. This
is a positive point, as the features should not be collinear. Otherwise, due to the high
variance of the data, the generalizing ability of the integral measure of geodynamic safety
SF(w) would decrease. Medium and strong correlations were found within the groups of
indicators µD f .

The integral measure of geodynamic safety SF(w), which combines different MDAIs,
allows geodynamic zoning of the HLRW disposal area and specifying places for field
instrumental observations.

The effectiveness of the presented methodology depends on the quality and volume
of the source data. In our study, the methodology only demonstrates a possible approach
to the systemic assessment of stability, and it could be expanded in the future both in
terms of increasing features and by creating new algorithms. It could also be used for the
identification of linear anomalies associated with hidden tectonic faults and dangerous
zones of geodynamic instability.

It was found that most of the studied territory, where HLRW disposal is currently
planned, is located in an intermediate zone in terms of the degree of geodynamic stability
SF ≥ 0.75. The number of dangerous clusters SF ≤ 0.25 is very small and occupies about
1.1% of the entire territory.
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