
����������
�������

Citation: Oviedo-Salas, E.; Terán-

Villanueva, J.D.; Ibarra-Martínez, S.;

Santiago-Pineda, A.; Ponce-Flores,

M.P.; Laria-Menchaca, J.; Castán-

Rocha, J.A.; Treviño-Berrones, M.G.

GRASP Optimization for the Strip

Packing Problem with Flags, Waste

Functions, and an Improved

Restricted Candidate List. Appl. Sci.

2022, 12, 1965. https://doi.org/

10.3390/app12041965

Academic Editors: Antonio J. Nebro

and José Manuel García-Nieto

Received: 12 January 2022

Accepted: 8 February 2022

Published: 14 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

GRASP Optimization for the Strip Packing Problem with Flags,
Waste Functions, and an Improved Restricted Candidate List
Edgar Oviedo-Salas, Jesús David Terán-Villanueva * , Salvador Ibarra-Martínez *, Alejandro Santiago-Pineda ,
Mirna Patricia Ponce-Flores, Julio Laria-Menchaca, José Antonio Castán-Rocha and
Mayra Guadalupe Treviño-Berrones

Facultad de Ingeniería “Arturo Narro Siller”, Universidad Autonoma de Tamaulipas (UAT), Centro Universitario
Tampico Madero, Tampico 89109, Mexico; eaos9407@gmail.com (E.O.-S.); aurelio.santiago@uat.edu.mx (A.S.-P.);
mirna_poncef@hotmail.com (M.P.P.-F.); jlaria@docentes.uat.edu.mx (J.L.-M.);
jacastan@docentes.uat.edu.mx (J.A.C.-R.); mgtrevino@docentes.uat.edu.mx (M.G.T.-B.)
* Correspondence: jdTeran@docentes.uat.edu.mx (J.D.T.-V.); sibarram@uat.edu.mx (S.I.-M.)

Abstract: This research addresses the two-dimensional strip packing problem to minimize the total
strip height used, avoiding overlapping and placing objects outside the strip limits. This is an NP-
hard optimization problem. We propose a greedy randomized adaptive search procedure (GRASP),
incorporating flags as a new approach for this problem. These flags indicate available space after
accommodating an object; they hold the available width and height for the following objects. We
also propose three waste functions as surrogate objective functions for the GRASP candidate list
and use and enhanced selection for the restricted candidate list, limiting the object options to better
elements. Finally, we use overlapping functions to ensure that the object fits in the flag because there
are some cases where a flag’s width can be wrong due to new object placement. The tests showed
that our proposal outperforms the most recent state-of-the-art metaheuristic. Additionally, we make
comparisons against two exact algorithms and another metaheuristic.

Keywords: strip packing problem; NP-hard optimization; GRASP; object placing flag

1. Introduction

The strip packing problem (SPP) is a two-dimensional industrial minimization prob-
lem. Given a strip of infinite length and bounded width, the problem is to define a packing
of rectangular objects into a strip that minimizes its final length. The SPP is present in
the industrial sector in material fabrics as paper, wood, glass, plastics, and metal, among
others; its purpose is to reduce the amount of waste of the strip. Additionally, this problem
is similar to the two-dimensional knapsack problem [1], where considered are the width
and height of the objects in the knapsack. Furthermore, the variable cost and size of the bin
packing problem [2] have some similarities regarding the variable size of the bin, which
relates to the size of the strip. Nevertheless, there are also extensions to these problems,
such as the three-dimensional bin packing problem [3].

The SPP is known as an NP-hard optimization problem [4]. Therefore, in real-world
scenarios, the use of heuristic and metaheuristic algorithms is advised [5,6].

The greedy randomized adaptive search procedure (GRASP) is a constructive multi-
start optimization algorithm with proven accuracy in NP-hard combinatorial optimization
problems. In [7,8], the authors use a simple GRASP to solve the job–shop problem, mini-
mizing the makespan while maximizing the workflow, and the orienteering problem with
hotel selection, which look for a path with time limit and maximum score in a graph.

Other papers, such as [9], use a GRASP with a reduced candidate list to tackle the
DNA sequence motif discovery.

Additionally, hybrid GRASP algorithms are common; e.g., in [10], Bruni et al. solve
the k-traveling repairman problem with profits. In [11,12], Santiago et al. and Saad et al.

Appl. Sci. 2022, 12, 1965. https://doi.org/10.3390/app12041965 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12041965
https://doi.org/10.3390/app12041965
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2859-7905
https://orcid.org/0000-0002-3265-8531
https://doi.org/10.3390/app12041965
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12041965?type=check_update&version=2

Appl. Sci. 2022, 12, 1965 2 of 18

tackle the precedence-constraint tasks scheduling using a GRASP hybridized with a cellular
processing algorithm and a simulated annealing, respectively. Khamlichi et al. used another
hybrid GRASP to solve the manufacturing planning [13] for demand fluctuations. Hence,
we believe that GRASP is simple and has high hybridizable properties, making room
for improvements.

1.1. Literature That Allows Object Rotation

The following is the most relevant literature regarding the strip parking problem.
However, this subsection only contains papers that allow rotations, not considered in
our research.

In 2004, Beltran et al. [14] implemented a hybrid algorithm using GRASP and VNS
algorithm to solve the strip packing problem and consider guillotine cuts.

Later, in 2013, Silveira et al. [15] proposed a GRASP heuristic and a first-fit decreasing
height technique with two approximation algorithms for the strip packing problem and the
two-dimensional loading capacitated vehicle routing problem.

Gaticia et al. [16] presented, in 2016, an algorithm called strip packing problem game
(SPPG) that uses real players, patterns, decision trees, data mining, and heuristics. Their
proposed algorithm implemented a puzzle representing a strip packing instance to obtain
solutions. The algorithm analyzes the player’s movements through data mining techniques
and pattern recognition. Their experimental results showed that SPPG identifies game
patterns from previous plays, obtaining adjustments of 87.03% for known instances and
88.2% for unknown instances.

In 2019, Chen et al. [17] presented a heuristic algorithm to the two-dimensional
rectangular packing problem using anticipation strategy and step method. They aim to
maximize the speed of the fill rate of the strip and improve adjustments in the construction
procedure. The computational test concluded that their proposal is competitive against
recent algorithms.

Finally, in 2020, Martin et al. approached the constrained two-dimensional guillo-
tine placement problem (C2GPP) in [18]; this problem is similar to the one presented by
Beltran et al. in [14], which considers guillotine cuts. Their objective is to use orthogonal
cuts with constrained patterns to select an optimal set of large objects. The authors pro-
posed a nonlinear integer function to obtain linear programming for nonlinear models
and decision trees. The study concludes that models based on ascending storage lead to
optimal or semi-optimal solutions with a reasonable computational cost.

1.2. Literature That Does Not Allow Object Rotation

Here, we show the most relevant literature regarding no object rotating strip
parking problem.

In 2003, Martello et al. [19] implemented a branch and bound algorithm for the strip
packing problem using instances up to two hundred objects. The computational results
showed that they were able to solve 75% of the instances.

In 2008, Alvarez-Valdes et al. [20] implemented a reactive GRASP algorithm for the
strip packing problem, improving their strategies and critical search options.

Later, in 2009, Alvarez-Valdes et al. [21] proposed a new branch and bound for the strip
packing problem. They aim to reduce the tree search and generate better lower bounds.

Two years later, Leung et al. [22] presented a new approach named “two-stage
intelligent search algorithm” for the strip packing problem. Their proposal consists of
two stages; the scoring rule and the combination of simulated annealing algorithm with
local search.

In 2016, Zhang et al. proposed an improved hybrid metaheuristic algorithm with
variable neighborhood search that generates sets based on block pattern construction [23],
called hybrid algorithm (HA), which has three phases. The first phase uses the least waste
strategy, which consists of scoring rules to select the items that fit the least waste on the strip.
The second phase selects a better sequence to improve the initial solution. Finally, the third

Appl. Sci. 2022, 12, 1965 3 of 18

phase constructs different neighborhoods based on block patterns. Their computational
tests show that the HA algorithm surpasses other approaches from state of the art for hard
instances of the strip packing problem and conclude that the HA algorithm is efficient in
selecting neighborhoods dynamically.

Later, in 2019, Wei et al. [24] analyzed the SPP with unloading constraints, which
consist of storing objects in a two-dimensional space for transport and unloading. Their
objective was to minimize the total height and satisfy the discharge condition using segment
trees, heuristics for open spaces, and random local search.

A year later, Rakotonirainy et al. [25] proposed two metaheuristics for the strip
packing problem. The first consisted of a simulated annealing combined with a heuristic
construction algorithm. The second implemented a simulated annealing in predefined
packing layouts without encoding solutions. The authors used 1718 instances, and they
concluded that their proposal improved its original version in terms of the quality of
the solution.

Table 1 shows the differences among the most relevant approaches, most of which will
be used as a comparison.

Table 1. Differences between approaches.

Differences between Approaches

GRASPSPP (Our proposal) Reactive GRASP [20]

Simple GRASP Use of reactive GRASP
Use of flags Use of best fit (BF)
Overlap functions Evaluate and rearrange the solution
Height and width measurement functions Use of floating accommodations
Avoid floating objects -

New Branch and Bound [21] Iterative Search [24]

Use of Branch and Bound Use of first-fit
GRASP for improvements Arrangement in open space
Evaluate and rearrange the solution Change solutions
Floating objects Use of random local search
Waste space validation Combination of 2D-SPP and CVRP

Branch and Bound [19] Two-stage ISA [22]

Use of Branch and Bound Use of search algorithm
Available space by two points GRASP makes improvements

Arrangements by constraints Accommodations in six dynamic
spaces

Height and width evaluation Width measurement
Branches reduction by selection -

2. Strip Packing Problem (SPP)

The strip packing problem is an NP-hard optimization problem commonly found in
the industrial sector in materials such as paper, fabrics, wood, glass, plastics, and metal.
Their purpose is to reduce the amount of waste in a strip, avoiding overlapping and placing
objects outside the strip limits. This problem is defined using the following sets:

O = {o1, o2, . . . , on} (1)

OW = {ow1, ow2, . . . , own} (2)

OH = {oh1, oh2, . . . , ohn} (3)

where O is the set of rectangular objects; OW is the set of object widths, and OH is the set
of heights.

Appl. Sci. 2022, 12, 1965 4 of 18

For every oi their correspondent width and height are owi and ohi respectively. The
objective of the strip packing problem is to accommodate O into a delimited strip with a
fixed width and infinite height, avoiding overlapping and aiming to reduce the total strip
length used.

We implement a GRASP meta-heuristic algorithm to the strip packing problem, priori-
tizing the objects that generate less waste of area in the strip to minimize the height used.

One interesting element of our proposal is the use of flags. These flags are in the
upper left and bottom right corners of an accommodated object. Additionally, they store
the existing information in the strip, such as the widths and heights available for the
next candidate.

On the other hand, we analyze the total height, waste area, the algorithm performance,
and computational time. The impact of waste functions is also analyzed, and finally,
functions that validate overlaps for objects are incorporated to determine if the current flag
is disabled or updated.

3. GRASP Algorithm for SPP

The greedy randomized adaptive search procedure algorithm (GRASP) is a meta-
heuristic proposed by Feo et al. [26,27]. The GRASP algorithm is a multi-start process that
has two phases. The first phase corresponds to a heuristic construction, which provides a
high-quality solution, and the second phase improves the solution through a local search.
However, given the nature of the solution, a slight change in the placement of the rectangu-
lar objects for an already-completed solution would produce a huge problem for repairing
highly-possible overlaps or would increase wastes. Therefore, we avoid the use of local
search, limiting the algorithm to the heuristic construction phase.

Algorithm 1 shows the general procedure of our proposed optimization method; it
generates the solutions with a defined number of iterations. The process starts with the
LoadInstance function that loads the instance. The InitializeParameters function initializes
the main parameters to use in GRASP construction. The ReorderObjects function consists
of ordering the objects from the smallest area to the largest area. The SPPGRASP function
constructs the GRASP solutions; we validate the solutions to obtain the best solution. This
code is available at https://github.com/csalas07/GraspSpp (accessed on 4 February 2022).

Algorithm 1 GRASP General Procedure

1: Sol = ∅, best = ∅
2: LoadInstance()
3: InitializeParameters()
4: ReorderObjects()
5: for i = 1→ MaxIter do
6: Sol = SPPGRASP()
7: if f (Sol) < best then
8: best = f (Sol)
9: end if

10: end for
Output: best

3.1. GRASP Construction

One of the main contributions of this paper is the use of flags, and at the beginning
of the algorithm, we set a single flag at the lowest left corner of the strip to mark the first
place for setting an object.

Algorithm 2 describes the initial construction that consists of three parts. The first is to
select an available flag index with the FindFlagIndex function (see line 4), which iterates
a list of available flags and selects the index of the flag that has the lowest height, and if
there were several flags with the same height, it chooses the one furthest to the left. The
second part consist of the use of waste functions (see Equations (5)–(7)) to analyze the

https://github.com/csalas07/GraspSpp

Appl. Sci. 2022, 12, 1965 5 of 18

objects’ waste. Finally, the last part is constructing the candidate list (CL) and the restricted
candidate list (RCL).

Algorithm 2 GRASP Construction Part 1

Input: k
1: miss = |O|
2: while miss > 0 do
3: CL = ∅
4: j = FindFlagIndex(Flags)
5: for i = 0→|O| do
6: if si = 0 && owi ≤ t f wj then
7: CL = CL ∪ {oi}
8: wkij = CalculateWaste(k)
9: W = W ∪ {wij}

10: end if
11: end for
12: if CL 6= ∅ then
13: kElems = max(|CL| × 0.10, 5)
14: RCL = ∅
15: RW = ∅
16: for i = 1→ kElem do
17: imin = arg mini wkij∀wkij ∈W
18: RCL = RCL ∪ {oimin}
19: RW = RW ∪ {wkimin}
20: W = W \ {wkimin}
21: end for
22: Limit = max(W) + (β× (max(W)−min(W)))
23: for i = 1→|RCL| do
24: if wkij ∈ RW > Limit then
25: RW = RW \ {wkij}
26: RCL = RCL \ {oi}
27: end if
28: end for
29: Or = Roulette(RCL, RW)

The algorithm checks that the set value si is equal to zero, where S = {s1, s2, . . . , sn} is
a set that represents the availability of the objects (see Equation (4)).

si =

{
1 The object is set in the strip
0 Otherwise

(4)

The CalculateWaste(k) function calculates the waste area of an object wkij (see line 8).
We use three waste functions (see Equations (5)–(7)) to analyze the objects’ waste. Each
function validates different components among the rectangular objects and a specific flag.

w1
ij = min(

∣∣∣d f wj − owi

∣∣∣ ,
∣∣∣t f wj − owi

∣∣∣) + min(
∣∣∣l f hj − ohi

∣∣∣ ,
∣∣∣r f hj − ohi

∣∣∣) (5)

w2
ij = min(

∣∣∣l f hj − ohi

∣∣∣ ,
∣∣∣r f hj − ohi

∣∣∣) (6)

w3
ij = (min(

∣∣∣d f wj − owi

∣∣∣ ,
∣∣∣t f wj − owi

∣∣∣)×max(oh, min(l f hj, r f hj))+

(min(
∣∣∣l f hj − ohi

∣∣∣ ,
∣∣∣r f hj − ohi

∣∣∣)× owi) (7)

Appl. Sci. 2022, 12, 1965 6 of 18

where O = {o1, o2, . . . , on} is the set of objects and wkij is the waste of the object i on the
flag j. Hence, in the algorithm, we calculate the waste for all the available objects oi for the
selected flag f j. Figure 1 shows the characteristics of the flags and the objects, i.e., d f wj and
t f wj are the flag’s desirable and total width, respectively; l f hj and r f hj are the height to
the left and to the right of the flag. Finally, SP is the starting point and owi and ohi are the
current object width and height, respectively.

Figure 1. Characteristics of the flags and objects.

The selection of the first object is the one with the largest area. We select the rest of
the elements according to the waste area function which is similar in some sense to the
feature selection used in [28]; the WA value stores all waste area values for each object for a
specific flag. Additionally, we validate that CL 6= ∅ in line 12. Therefore, if no object fits in
the space of the flag, then we try to raise the flag (see line 35 of Algorithm 3).

Algorithm 3 GRASP Construction Part 2

30: if NoObjectOverlapping() then
31: FixFlagOverlapping()
32: Set(Or, j)
33: end if
34: else
35: RiseFlag()
36: end if
37: end while

Later, Equation (8) calculates a limit value, which will be compared with the waste
areas of the candidate objects to create the restricted candidate list (RCL).

Limit = max(WA) + (β× (max(WA)−min(WA))) (8)

where β is a real number between 0 and 1; we made several tests to identify the best value,
but we could not find it; hence, we chose to use random values between 0.4 and 0.5, which
were the values with the best performance.. Additionally, the objects have a wide variety of
sizes and, therefore, wastes, meaning that there might be lower or higher differences among
the wastes. Hence, we could end up without candidates or with a lot of them, nullifying
the purpose of the restricted candidate list.

Therefore, the candidate list selects kElems, which are either five elements or 10% of
the objects in CL until exhaust CL (see line 13). As a result, the algorithm initializes the
restricted candidate list with the elements in CL with the lowest waste.

Appl. Sci. 2022, 12, 1965 7 of 18

Line 17 obtains the index of the object for which the waste wkij is minimal. Then, we
update the restricted candidate list (RCL) and the restricted waste list (RW), respectively
(see lines 18, and 19). Finally, the procedure removes wkimin from W (see line 20).

The algorithm calculates the Limit value to further restrict the RCL to those wastes
that have a lower or equal value than Limit (see line 22). Therefore, the algorithm updates
RW and RCL in lines 25 and 26, respectively.

The procedure selects an object Or in RCL randomly with a roulette technique [29]
(see line 29); for further explanation see Section 3.2.

3.2. Roulette Procedure

Algorithm 4 describes the selection process using the roulette. The roulette assigns
larger probabilities to the elements in RCL with lower waste.

Algorithm 4 General Roulette Procedure

Input: RCL, RW
1: RW ′ = {wk′ij|wk′ij = max(RW) + min(RW)− wkij, ∀wkij ∈ RW}
2: t = ∑wk′ij∈WK′(wk′ij)

3: p = Random(1, t)
4: for ∀wk′ij ∈ RW ′ do
5: p = p− wk′ij
6: if p ≤ 0 then
7: return (oi ∈ RCL)
8: end if
9: end for

The procedure starts obtaining the maximum and minimum waste values from RW
transforming high values of wkij to lower values of wk′ij and vice versa (see line 1 of
Algorithm 4). Additionally, t stores the total sum of RW ′ and p obtains a random value
between 1 and t in lines 2 and 3, respectively.

Finally, the procedure iterates the converted values in RW ′ and subtracts wk′ij from
p; see lines 4 and 5. The process ends when the p value is less than or equal to zero and
returns the selected object oi in lines 6 and 7.

3.3. Object Arrangement

Once we have the selected object or, we try to accommodate it in f j. However, first,
we need to check for overlapping of the current object or regarding other objects in the
strip. If there is any overlapping, then we update the data of the current flag and restart the
selection of the object (see line 30). There is another possible overlapping, which occurs
between the object or and another flag fk; if this happens, we merge the information of
f j and fk together and proceed to accommodate the object or in f j (see lines 31 and 32,
respectively).

Once or is placed in the strip, we create two new flags at the upper left and the lower
right corners of the object (see Figure 2).

Appl. Sci. 2022, 12, 1965 8 of 18

Figure 2. Flag placing; f j and fk are the new flags.

3.4. Overlapping among Objects

Figure 3 shows the idea of the overlaps detection among rectangles. The function
validates that the current rectangular object does not cover an active rectangular object in
the strip (see line 30 in Algorithm 3).

Figure 3. Overlaps between objects.

Here, when the algorithm created f j, it also set t f wj before the object to the right was
there. Therefore, it contains wrong information. Hence, we check for collisions of oi with
the objects in the strip.

3.5. Overlaps between Rectangles and Flags

Figure 4 shows the overlaps between objects and flags. The function validates that
the current rectangular object oi does not cover the nearest flag space fk. In case of overlap-
ping, the process updates the current flag f j, merging the information with fk and finally
deleting it.

Appl. Sci. 2022, 12, 1965 9 of 18

Figure 4. (a) Shows the overlap between an object and a flag. (b) The overlap fix.

3.6. Rise Flag

Figures 5 and 6 present the rise flag concept. The procedure expands the total width
to the right and changes the height of the flag, allowing the algorithm to improve the
management of the space, avoiding larger empty spaces (see line 35 in Algorithm 3).

Figure 5. (a) Rise flag first case. (b) The flag fix.

Figure 6. (a) Rise flag second case. (b) The flag fix.

Appl. Sci. 2022, 12, 1965 10 of 18

The rise flag function changes the current flag information when no available object
fits in the current flag. There are two possible cases for this function. The first case happens
when the left height is lower than the right height; if this happens, then the flag is deleted.
However, for the second case, if the right height is lower than the left height, we merge
both flags f j = f j + fk.

4. Experimental Results

This section presents the experimental results from the proposed optimization method
called GRASPSPP, which includes a comparison among the waste functions and four
state-of-the-art papers, using nonparametric tests.

4.1. Configuration and Instances

The algorithm runs computational tests on a computer with 2.50 GHz with 8 GB of
RAM, Windows 7, and the Microsoft Visual Studio platform with C++ as the program-
ming language.

Table 2 shows the data of the instances used, where the first column shows the
instance name, the second column shows the author’s name, and the third and fourth
columns show the total of the instances and their sizes. The instances are available at https:
//mega.nz/folder/9slymA7b#kUSGqJGcfGszPDxF7a5sJg (accessed on 4 February 2022).

Table 2. Used instances.

Name Autor Total n

2lcvrp Gendreau [30] 180 15–255
Chr/cgcut Christofides & Whitlock [31] 3 10–70
Brk/N1-13 Burke [32] 13 10–500
Ben/beng Bengtsson [33] 10 20–200
Htu/ht Hopper and Turton [34] 114 16–28
Hop Hopper and Turton [35] 350 17–199
Bea/gcut-ngcut Beasley [36,37] 25 10–22
Class 1–4 Martello and Vigo [19] 200 20–100
Class 5–10 Berkey and Wang [38] 300 20–100
50cx–15,000cx Pinto and Oliveira [39] 6 50–15,000
P1 Ramesh Babu [40] 1 1000

4.2. Waste Comparison

In this section, we present the comparison among the three waste functions regarding
quality and time. The waste functions detect the amount of wasted space of any object.
For the computational test, the algorithm uses three waste functions. We evaluate the
performance and efficiency to determine the best waste function using the Friedman and
the Wilcoxon tests. The waste functions are w1

ij, w2
ij, and w3

ij (see Equations (5)–(7)).
Figure 7 describes the quality result obtained from the different waste area functions.

This comparison indicates that waste function w1
ij obtains lower heights than w2

ij, and w3
ij.

However, w3
ij obtains lower heights than w2

ij.

https://mega.nz/folder/9slymA7b#kUSGqJGcfGszPDxF7a5sJg
https://mega.nz/folder/9slymA7b#kUSGqJGcfGszPDxF7a5sJg

Appl. Sci. 2022, 12, 1965 11 of 18

Figure 7. Waste performance comparison.

A Friedman test showed that w1
ij is the best-ranked waste function, followed by w3

ij,

and w2
ij in last place. Additionally, it shows that there is a statistically significant difference

among them. Finally, the Wilcoxon test indicates that waste function w1
ij has statistically

better quality than w3
ij and w2

ij.
Regarding efficiency, most of the tests showed a computing time close to one second,

which is not suitable for graphics. Here, the waste function w3
ij showed the lowest times.

A Friedman test confirmed that the best ranked waste function is w3
ij, followed by w1

ij,

and w2
ij in the last place. Finally, the Wilcoxon test indicated that there is no statistical

difference between w1
ij and w3

ij. However, there is a significant difference between w1
ij

and w2
ij. Therefore, w1

ij produces solutions with low computational times and the highest

quality. On the other hand, w2
ij produces solutions with high computational times and low

quality. Therefore, our proposed algorithm uses the waste function w1
ij for the rest of the

computational test.

4.3. Comparison between GRASPSPP and Iterative Search Algorithm

In this section, we compare the results between the GRASPSPP algorithm and the
iterative search (IS) algorithm presented in 2019 [24] by Wei et al. The authors performed
20 independent runs at 1000 iterations; thus, we configured our computational experimen-
tation with the same runs and iterations.

Figure 8 shows the comparison of the average errors (errAvg) for the 20 runs for each
instance set, for which we also calculated the average and standard deviation among all
the sets of instances for the GRASPSPP (1.13 average, 0.06 standard deviation) and IS
(1.12 average, 0.02 standard deviation). These errAvg are the average of the minimum error
and the maximum error:

errAvg =
minError + maxError

2
(9)

and the error is calculated as follows:

error =
obtainedHeight

bestHeight
(10)

Additionally, this figure shows that GRASPSPP outperforms IS in six instances, and IS
outperforms GRASPSPP in one instance. The Wilcoxon test result showed that GRASPSPP
and IS produce statistically equivalent solutions with a significance value of 0.233.

Appl. Sci. 2022, 12, 1965 12 of 18

Figure 8. Average errors (errAvg) between GRASPSPP and IS.

Figure 9 shows the computational times between the GRASPSPP (2.70 average,
2.07 standard deviation) and IS (17.77 average, 9.51 standard deviation) algorithms. Here,
the computational times are the average of the computational time of the 20 runs per set of
instances. In all cases, the IS algorithm obtains higher computational times than GRASPSPP.
Additionally, the Wilcoxon test result showed that GRASPSPP statistically outperforms IS
with a 98.2% certainty.

Figure 9. Time comparison between GRASPSPP and IS algorithm.

4.4. Comparison between GRASPSPP and Branch and Bound Algorithm

This section shows the comparison between GRASPSPP and a Branch and Bound
algorithm (B&B) presented in 2003 [19] by Martello et al, where the authors executed
their approach with a time limit of one hour and reported the time in which they found
their best result. For this comparison, we executed the GRASPSPP algorithm with a time
limit of 5 min in an attempt to produce an equivalent computational effort because our
processor is an Intel Core i5 at 2.50 Ghz, which outperforms the authors’ Pentium III at
800 Mhz processor.

Figure 10 shows the percentage error (see Equation (11)) comparison between GRASP-
SPP (2.62 average, 7.17 standard deviation) and B&B (0.97 average, 1.79 standard deviation).
We obtain the %error as follows:

%error = (100× (obtainedHeight− bestHeight))/bestHeight (11)

Here, GRASPSPP outperformed B&B in eight instances; while B&B outperformed
GRASPSPP in 11 instances. Among those 11 instances, three of them presented an extremely

Appl. Sci. 2022, 12, 1965 13 of 18

high %error in GRASPSPP; therefore, we require further analysis of the properties of
those instances to identify the cause and implement corrections; those instances were ht4,
ht7, and ht9. Additionally, the Wilcoxon test showed that the GRASPSPP and B&B are
statistically equivalent.

Figure 10. Percentage error (%error) results between GRASPSPP and B&B.

Figure 11 shows the computational time comparison between GRASPSPP (0.000 average,
0.001 standard deviation) and B&B (1116.30 average, 1632.09 standard deviation). These
values are the computational times of each instance set. Here, the B&B algorithm presents
some instances with the highest possible values, because they reached the time limit
of 3600 s. On the other hand, the proposal processes the instances with times closer to
one second.

Figure 11. Time comparison between GRASPSPP and B&B algorithm.

A visual comparison shows that the GRASPSPP algorithm is faster than B&B. Addi-
tionally, the Wilcoxon test corroborates that the GRASPSPP outperforms B&B statistically
with a p-value of 0.001.

4.5. Comparison beteween GRASPSPP and a New Branch & Bound Algorithm

This section compares the experimental results between GRASPSPP and a new branch
and bound algorithm (NB&B) proposed by Alvarez et al. in 2009 [21], where the authors
executed their approach with a time limit of 1200 s. For this comparison, we executed
our GRASPSPP algorithm with a time limit of 150 s to produce equivalent results because
our processor is an Intel Core i5 at 2.50 Ghz, which outperforms the authors’ Pentium 4 at
2 Ghz processor.

Figure 12 shows the percentage error comparison (see Equation (11)) values between
GRASPSPP (6.43 average, 7.13 standard deviation) and NB&B (1.37 average, 1.72 standard
deviation) algorithm. Here, we can see that the NB&B algorithm outperforms GRASPSPP
in most cases. However, GRASPSPP achieved a tie in 18 instances and won over NB&B in
five instances. Finally, the Wilcoxon test showed that the NB&B statistically outperforms
GRASPSPP with a p-value of 0.000.

Appl. Sci. 2022, 12, 1965 14 of 18

Figure 12. GAP comparison between GRASPSPP and NB&B algorithm.

Figure 13 shows the computational time comparison between GRASPSPP (0.42 aver-
age, 1.67 standard deviation) and NB&B (19.33 average, 51.20 standard deviation) algorithm.
These values are the computational times of each instance set. Here, the NB&B algorithm
reached the time limit of 1200 s, or even exceeded it, for five instances. On the other hand,
GRASPSPP produced times near 1 s for most cases. Finally, the Wilcoxon test shows that
the GRASPSPP algorithm outperforms NB&B with a p-value of 0.000.

Figure 13. Time comparison between GRASPSPP and NB&B.

4.6. Comparison between GRASPSPP and Reactive GRASP Algorithm

This section shows the comparison results between the GRASPSPP and reactive
GRASP algorithm proposed by Alvarez et al. in 2008 [20]. The comparisons only have the
best height and average values because the author prioritizes the results of the instances and
not the computational times. Therefore, we cannot guarantee a fair equivalence regarding
quality and efficiency; hence, we included these comparisons merely as a complement
using a time limit of 60 s.

Figure 14 shows the percentage error (see Equation (11)) comparison between GRASP-
SPP (0.03 average, 0.01 standard deviation) and reactive GRASP (0.84 average, 0.57 standard
deviation) algorithm from instance C1–C7 from the set Htu/ht (see Table 2. The reactive
GRASP produces, in general, high average errors. The Wilcoxon test shows that the
GRASPSPP algorithm outperforms statistically the reactive GRASP with a p-value of 0.046.

Appl. Sci. 2022, 12, 1965 15 of 18

Figure 14. Average error between GRASPSPP and reactive GRASP.

Figures 15 and 16 shows the comparison of best values between the GRASPSPP
(958.94 average, 1847.64 standard deviation) and reactive GRASP (948.59 average,
1786.24 standard deviation) algorithms. It is important to highlight that the author does not
provide the rest of the average errors for these instances. Instead, they choose to use the
best value, and, according to Figure 14, we believe that their algorithm produces solutions
with a high variance.

Figure 15. Best values comparison between GRASPSPP and reactive GRASP, part 1.

Figure 16. Best values comparison between GRASPSPP and reactive GRASP, part 2.

As we can see, the differences between both algorithms are minimal except for a
handful of instances.

The Wilcoxon test shows that the reactive GRASP has statistically better performance
than GRASPSPP with a p-value of 0.000.

5. Conclusions

In this paper, we tackle the strip packing problem, which is NP-hard [4]. For this
problem, we proposed a GRASP algorithm with flags, three waste functions, and an
improved selection of the restricted candidate list (RCL). Additionally, we carried out an
extensive experimentation with state-of-the-art algorithms and datasets.

The GRASP algorithm processes the instance with a new approach through flags,
which indicate ideal available spaces for new objects. However, there are some cases where
old flags keep outdated information; therefore, we check for collisions for every object.

Additionally, we proposed three waste functions that help to identify the possible
wasted space for each object in the candidate list. These waste functions consider different

Appl. Sci. 2022, 12, 1965 16 of 18

measures. Among them, the best waste function is w1
ij, which considers the minimum

distance of the object width regarding the flag desired and total width, plus the minimum
distance of the object height regarding the left and right flag height. The other two waste
functions consider the vertical waste and the total area waste.

Regarding the improved selection of the restricted candidate list, we noticed that using
the limit in the restricted candidate list was not enough to prevent the algorithm from
using bad objects for any specific flag. Therefore, we selected a subset of the candidate list
with the best waste to enhance the selection process of the restricted candidate list. This
improvement was carried out and tested before the rest of the tests, and it significantly
enhanced the performance of GRASPSPP.

The computational tests showed that GRASPSPP outperformed the most recent state
of the art metaheuristic (IS) regarding quality and efficiency. However, GRASPSPP out-
performed the two exact B&B algorithms regarding efficiency, while achieving equivalent
performance regarding quality with the first exact algorithm (B&B). Finally, the last meta-
heuristic (reactive GRASP) outperformed GRASPSPP regarding quality; however, the
authors did not report computational time. Nevertheless, GRASPSPP outperformed this
metaheuristic regarding average errors.

As future work, we will consider analyzing the characteristics of some instances that
produced a high percentage of error for further improvement. Additionally, we consider
that an object permutation can code this problem, placing the objects according to the flag
at the bottom and further to the left.

Author Contributions: Conceptualization, J.D.T.-V., M.P.P.-F. and S.I.-M.; methodology, J.D.T.-V. and
S.I.-M.; software, E.O.-S.; validation, S.I.-M., A.S.-P., M.P.P.-F. and J.L.-M.; formal analysis, A.S.-P. and
E.O.-S.; investigation, E.O.-S. and J.D.T.-V.; writing—original draft preparation, E.O.-S., M.G.T.-B.
and J.A.C.-R.; writing—review and editing, J.D.T.-V. and E.O.-S.; visualization, J.A.C.-R.; supervision,
S.I.-M., M.P.P.-F. and J.L.-M.; project administration, S.I.-M.; funding acquisition, S.I.-M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Universidad Autonoma de Tamaulipas.

Institutional Review Board Statement: No applicable.

Informed Consent Statement: No applicable.

Data Availability Statement: No applicable.

Acknowledgments: We thank Consejo Nacional de Ciencia y Tecnología (Conacyt) for supporting
the project with number: 782021.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Egeblad, J.; Pisinger, D. Heuristic approaches for the two- and three-dimensional knapsack packing problem. Comput. Oper. Res.

2009, 36, 1026–1049. [CrossRef]
2. Fadda, E.; Fedorov, S.; Perboli, G.; Barbosa, I.D.C. Mixing machine learning and optimization for the tactical capacity planning in

last-mile delivery. In Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference, COMPSAC,
Madrid, Spain, 12–16 July 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 1291–1296.
[CrossRef]

3. Martello, S.; Pisinger, D.; Vigo, D. The Three-Dimensional Bin Packing Problem. Oper. Res. 2000, 48, 256–267. [CrossRef]
4. Baker, B.S.; Coffman, E.G., Jr.; Rivest, R.L. Orthogonal Packings in Two Dimensions. SIAM J. Comput. 1980, 9, 846–855. [CrossRef]
5. Routledge. Optimization in Industry: Volume 2, Industrial Applications, 2nd ed.; Routledge: Philadelphia, PA, USA, 2017; p. 270.
6. Glover, F. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 1986, 13, 533–549.

[CrossRef]
7. Rajkumar, M.; Asokan, P.; Anilkumar, N.; Page, T. A GRASP algorithm for flexible job-shop scheduling problem with limited

resource constraints. Int. J. Prod. Res. 2011, 49, 2409–2423. [CrossRef]
8. Sohrabi, S.; Ziarati, K.; Keshtkaran, M. A Greedy Randomized Adaptive Search Procedure for the Orienteering Problem with

Hotel Selection. Eur. J. Oper. Res. 2020, 283, 426–440. [CrossRef]

http://doi.org/10.1016/j.cor.2007.12.004
http://dx.doi.org/10.1109/COMPSAC51774.2021.00180
http://dx.doi.org/10.1287/opre.48.2.256.12386
http://dx.doi.org/10.1137/0209064
http://dx.doi.org/10.1016/0305-0548(86)90048-1
http://dx.doi.org/10.1080/00207541003709544
http://dx.doi.org/10.1016/j.ejor.2019.11.010

Appl. Sci. 2022, 12, 1965 17 of 18

9. Gokalp, O. DNA Sequence Motif Discovery Using Greedy Construction Algorithm Based Techniques. In Proceedings of the
2020 5th International Conference on Computer Science and Engineering (UBMK), Diyarbakir, Turkey, 9–11 September 2020;
pp. 176–180. [CrossRef]

10. Bruni, M.; Beraldi, P.; Khodaparasti, S. A hybrid reactive GRASP heuristic for the risk-averse k-traveling repairman problem with
profits. Comput. Oper. Res. 2020, 115, 104854. [CrossRef]

11. Santiago, A.; Terán-Villanueva, J.D.; Martínez, S.I.; Rocha, J.A.C.; Menchaca, J.L.; Berrones, M.G.T.; Ponce-Flores, M. GRASP and
Iterated Local Search-Based Cellular Processing algorithm for Precedence-Constraint Task List Scheduling on Heterogeneous
Systems. Appl. Sci. 2020, 10, 7500. [CrossRef]

12. Saad, A.; Kafafy, A.; El Raouf, O.A.; El-Hefnawy, N. A GRASP-Simulated Annealing approach applied to solve Multi-Processor
Task Scheduling problems. In Proceedings of the 2019 14th International Conference on Computer Engineering and Systems
(ICCES), Cairo, Egypt, 17–18 December 2019; pp. 310–315. [CrossRef]

13. Khamlichi, H.; Oufaska, K.; Zouadi, T.; Dkiouak, R. A Hybrid GRASP Algorithm for an Integrated Production Planning and a
Group Layout Design in a Dynamic Cellular Manufacturing System. IEEE Access 2020, 8, 162809–162818. [CrossRef]

14. Beltran, J.D.; Calderon, J.E.; Cabrera, R.J.; Perez, J.A.M.; Moreno-Vega, J.M. GRASP/VNS hybrid for the strip packing problem.
In Proceedings of the First International Workshop on Hybrid Meta-Heuristics (HM04), Valencia, Spain, 22–23 August 2004.

15. Da Silveira, J.L.; Miyazawa, F.K.; Xavier, E.C. Heuristics for the strip packing problem with unloading constraints. Comput. Oper.
Res. 2013, 40, 991–1003. [CrossRef]

16. Gaticia, G.; Reyes, P.; Contreras-Bolton, C.; Linfati, R.; Escobar, J.W. Un algoritmo para el Strip Packing Problem obtenido
mediante la extracción de habilidades de expertos usando minería de datos. Ing. Investig. Tecnol. 2016, 17, 179–190. [CrossRef]

17. Chen, M.; Wu, C.; Tang, X.; Peng, X.; Zeng, Z.; Liu, S. An efficient deterministic heuristic algorithm for the rectangular packing
problem. Comput. Ind. Eng. 2019, 137, 106097. [CrossRef]

18. Martin, M.; Morabito, R.; Munari, P. A bottom-up packing approach for modeling the constrained two-dimensional guillotine
placement problem. Comput. Oper. Res. 2020, 115, 104851. [CrossRef]

19. Martello, S.; Monaci, M.; Vigo, D. An Exact Approach to the Strip-Packing Problem. Informs J. Comput. 2003, 15, 310–319.
[CrossRef]

20. Alvarez-Valdes, R.; Parreño, F.; Tamarit, J.M. Reactive GRASP for the strip-packing problem. Comput. Oper. Res. 2008,
35, 1065–1083. [CrossRef]

21. Alvarez-Valdes, R.; Parreño, F.; Tamarit, J.M. A branch and bound algorithm for the strip packing problem. OR Spectr. 2009,
31, 431–459. [CrossRef]

22. Leung, S.C.; Zhang, D.; Sim, K.M. A two-stage intelligent search algorithm for the two-dimensional strip packing problem. Eur. J.
Oper. Res. 2011, 215, 57–69. [CrossRef]

23. Zhang, D.; Che, Y.; Ye, F.; Si, Y.W.; Leung, S.C. A hybrid algorithm based on variable neighbourhood for the strip packing problem.
J. Comb. Optim. 2016, 32, 513–530. [CrossRef]

24. Wei, L.; Wang, Y.; Cheng, H.; Huang, J. An open space based heuristic for the 2D strip packing problem with unloading constraints.
Appl. Math. Model. 2019, 70, 67–81. [CrossRef]

25. Rakotonirainy, R.G.; van Vuuren, J.H. Improved metaheuristics for the two-dimensional strip packing problem. Appl. Soft
Comput. J. 2020, 92, 106268. [CrossRef]

26. Feo, T.A.; Resende, M.G. A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 1989,
8, 67–71. [CrossRef]

27. Feo, T.A.; Resende, M.G. Greedy Randomized Adaptive Search Procedures. J. Glob. Optim. 1995, 6, 109–133. [CrossRef]
28. An, N.T.; Dong, P.D.; Qin, X. Robust feature selection via nonconvex sparsity-based methods. J. Nonlinear Var. Anal. 2021, 5, 59–77.

[CrossRef]
29. Gendreau, M.; Potvin, J.Y. Integrated Methods for Optimization, 2nd ed.; Springer: New York, NY, USA, 2012; Volume 146, p. 648.

[CrossRef]
30. Gendreau, M.; Iori, M.; Laporte, G.; Martello, S. A Tabu Search heuristic for the vehicle routing problem with two-dimensional

loading constraints. Networks 2008, 51, 4–18. [CrossRef]
31. Christofides, N.; Whitlock, C. An Algorithm for Two-Dimensional Cutting Problems. Oper. Res. 1977, 25, 30–44. [CrossRef]
32. Burke, E.K.; Kendall, G.; Whitwell, G. A New Placement Heuristic for the Orthogonal Stock-Cutting Problem. Oper. Res. 2004,

52, 655–671. [CrossRef]
33. Bengtsson, B.E. Packing rectangular pieces—A heuristic approach. Comput. J. 1982, 25, 353–357. [CrossRef]
34. Hopper, E.; Turton, B.C. A review of the application of meta-heuristic algorithms to 2D strip packing problems. Artif. Intell. Rev.

2001, 16, 257–300. [CrossRef]
35. Hopper, E.; Turton, B.C.H. Problem Generators for Rectangular packing problems. Stud. Inform. Univ. 2002, 2, 123–136.
36. Beasley, J.E. An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure. Oper. Res. 1985, 33, 49–64. [CrossRef]
37. Beasley, J.E. Algorithms for unconstrained two-dimensional guillotine cutting. J. Oper. Res. Soc. 1985, 36, 297–306. [CrossRef]
38. Berkey, J.O.; Wang, P.Y. Two-Dimensional Finite Bin-Packing Algorithms. J. Oper. Res. Soc. 1987, 38, 423–429. [CrossRef]

http://dx.doi.org/10.1109/UBMK50275.2020.9219366
http://dx.doi.org/10.1016/j.cor.2019.104854
http://dx.doi.org/10.3390/app10217500
http://dx.doi.org/10.1109/ICCES48960.2019.9068118
http://dx.doi.org/10.1109/ACCESS.2020.3018505
http://dx.doi.org/10.1016/j.cor.2012.11.003
http://dx.doi.org/10.1016/j.riit.2016.06.003
http://dx.doi.org/10.1016/j.cie.2019.106097
http://dx.doi.org/10.1016/j.cor.2019.104851
http://dx.doi.org/10.1287/ijoc.15.3.310.16082
http://dx.doi.org/10.1016/j.cor.2006.07.004
http://dx.doi.org/10.1007/s00291-008-0128-5
http://dx.doi.org/10.1016/j.ejor.2011.06.002
http://dx.doi.org/10.1007/s10878-016-0036-6
http://dx.doi.org/10.1016/j.apm.2019.01.022
http://dx.doi.org/10.1016/j.asoc.2020.106268
http://dx.doi.org/10.1016/0167-6377(89)90002-3
http://dx.doi.org/10.1007/BF01096763
http://dx.doi.org/10.23952/JNVA.5.2021.1.05
http://dx.doi.org/10.1007/978-1-4614-1900-6
http://dx.doi.org/10.1002/net.20192
http://dx.doi.org/10.1287/opre.25.1.30
http://dx.doi.org/10.1287/opre.1040.0109
http://dx.doi.org/10.1093/comjnl/25.3.353
http://dx.doi.org/10.1023/A:1012590107280
http://dx.doi.org/10.1287/opre.33.1.49
http://dx.doi.org/10.1057/jors.1985.51
http://dx.doi.org/10.1057/jors.1987.70

Appl. Sci. 2022, 12, 1965 18 of 18

39. Ferreira, E.; Oliveira, J. Algorithm based on graphs for the non-guillotinable two-dimensional packing problem. In Proceedings
of the Second ESICUP Meeting, Southampton, UK, 1 January 2005.

40. Babu, A.R.; Babu, N.R. Effective nesting of rectangular parts in multiple rectangular sheets using genetic and heuristic algorithms.
Int. J. Prod. Res. 1999, 37, 1625–1643. [CrossRef]

http://dx.doi.org/10.1080/002075499191166

	Introduction
	Literature That Allows Object Rotation
	Literature That Does Not Allow Object Rotation

	Strip Packing Problem (SPP)
	GRASP Algorithm for SPP
	GRASP Construction
	Roulette Procedure
	Object Arrangement
	Overlapping among Objects
	Overlaps between Rectangles and Flags
	Rise Flag

	Experimental Results
	Configuration and Instances
	Waste Comparison
	Comparison between GRASPSPP and Iterative Search Algorithm
	Comparison between GRASPSPP and Branch and Bound Algorithm
	Comparison beteween GRASPSPP and a New Branch & Bound Algorithm
	Comparison between GRASPSPP and Reactive GRASP Algorithm

	Conclusions
	References

