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Abstract: Site-specific pest management (SSPM) is a component of precision agriculture that relies on
spatially enabled agronomic data to facilitate pest control practices within management zones rather
than whole fields. Recent integration of high-resolution environmental data, multivariate clustering
algorithms, and species distribution modeling has facilitated the development of a novel approach to
SSPM that bases zone delineation on environmentally independent subfield units with individual
potential to host pest populations (eSSPM). Although the potential benefits of eSSPM are clear,
methods currently described for its implementation still demand further evaluation. To offer clear
insight into this matter, we used field-level environmental data from a Tahiti lime orchard and realistic
simulations of six citrus pests to: (1) generate a series of virtual (i.e., controlled) infestation scenarios
suitable for methodological testing purposes, (2) evaluate the utility of nested (i.e., within-cluster)
partitioning essays to improve the accuracy of current eSSPM methods, and (3) implement two
biological clustering validators to evaluate the performance of 10 clustering algorithms and choose
appropriate numbers of management zones during field partitioning essays. Our results demonstrate
that: (1) nested partitioning essays outperform zoning methods previously described in eSSPM,
(2) more than one clustering algorithm tend to be necessary to generate field partition models that
optimize site-specific pest control practices within crop fields, and (3) biological clustering validation
is an essential addition to eSSPM zoning methods. Finally, the generated evidence was integrated
into an improved workflow for within-field zone delineation with pest control purposes.

Keywords: algorithms; clustering; modeling; pest control; precision agriculture; site-specific;
virtual pests

1. Introduction

Site-specific pest management (SSPM) is a component of precision agriculture (PA)
that relies on spatially explicit agronomic data to facilitate pest control practices within
homogeneous sub-field units (i.e., management zones or MZ) rather than whole fields [1–3].
Although the integration of precision inputs such as satellite imagery and climatic records
into modern-day agriculture is relatively new, the first explorations of SSPM date back
to the middle 1990s when data generated in the field of integrated pest management
(IPM; e.g., pest samples, estimations of pest-induced crop damage) was geographically
enabled by global positioning systems (GPS) and cutting edge variable rate technologies
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(VRT; e.g., automated tractors, planters). Such a fusion of tools and concepts facilitated
the consolidation of site-specific insect pest management (SSIPM) [3], a multidisciplinary
approach to IPM which aims to partition infested crop fields into “treatment” and “no
treatment” zones based on interpolated maps of within-field pest densities and economic
thresholds of tolerance to pest-induced crop damages [4–7].

Recently, the integration of high-resolution environmental data, multivariate cluster-
ing techniques, and species distribution modeling (SDM) has led to the development of
“ecological site-specific pest management” (eSSPM), an ecologically oriented approach to
IPM which bases the delineation of MZ on environmentally independent sub-field units
with individual potential to host pest populations [8]. SDM implements a variety of sta-
tistical mechanisms (i.e., modeling algorithms) to infer the spatial distribution of species
based on correlations between their known geographic occurrences and the environmental
conditions associated with them [9]. eSSPM field partitioning essays (i.e., delineation of
MZ) are based on the following sequential steps: (1) description of cause-effect relationships
between mapped environmental variables and within-field pest distributional patterns,
(2) partitioning of a target crop field into a maximum number of MZ, (3) redefinition of
MZ via SDM algorithms, (4) validation of environmental independence between MZ, and
(5) classification of MZ based on their potential to host pest populations [8]. Although the
prospective benefits of eSSPM are relevant and straightforward (e.g., controlled pesticide
use, increase of crop value), field partition models generated by this approach are prone to
show different sub-optimal results such as presence zones nested within absence clusters,
presence zones insensitive to differentiated levels of pest infestation, more than one pest
absence zones, and inaccurately delimitated MZ [8].

Different factors explain eSSPM current limitations. First, the development of field
partitioning essays based on single-time implementations of multivariate clustering (MC)
algorithms, since pest absence zones within a crop field can consist of more than one
environment equally unsuitable for pest establishment but still recognizable as independent
MZ [8]. Second, the lack of clear-cut criteria to select appropriate MC algorithms during
field partitioning essays, which is essential because the final topology of field partition
models used in PA is highly influenced by the clustering approach used to compute
them [10]. Third, the redefinition of sub-field units using SDM algorithms, due to SDM’s
tendency to generate zonal models with different degrees of spatial overlap between
some MZ and incomplete representation of others [8]. Finally, the selection of optimal
numbers of MZ based on measurements of environmental overlap between sub-field units
(i.e., Schoener’s D) rather than true clustering validation indexes (CVI). CVI are equations
designed to evaluate the results of clustering analyses based on the degree of congruence
between natural groups and the data used to create them (i.e., internal validation) or
between natural groups and some other external reference (i.e., external validation) [10,11].

The development of this paper was based on two assumptions. First, to overcome the
methodological limitations currently reported for eSSPM, field partitioning essays should
consist of a two-steps process (i.e., nested field partitioning) where a rough distinction
between pest presence and pest absence zones (i.e., binary field partitioning) precedes the
subdivision of resulting sub-field units (i.e., complementary field partitioning). Second,
external validation of eSSPM field partitioning essays based on biologically interpretable
CVI should facilitate the selection of optimal MC algorithms to be used and appropriate
numbers of MZ to be delineated. To prove these statements: (1) we used high-resolution
environmental data from a Tahiti lime orchard and realistic simulations of six common
citrus pests to generate a series of virtual infestation scenarios suitable for methodological
testing purposes; (2) we implemented a series of nested field partitioning essays to test their
capability to minimize sub-optimal zoning results reported for current eSSPM methods,
and (3) we used two biologically meaningful CVI to compare the performance of 10 MC
algorithms and to determine appropriate numbers of MZ to be considered during field
partitioning essays. The use of simulated pest data allowed the development of testing
essays under controlled virtual scenarios, an advised condition to assess modeling method-
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ologies in ecology since it grants researchers unrestricted access to statistical processes and
evidence necessary for drawing robust conclusions about natural mechanisms [12–14].

Five main contributions are presented in this paper. First, a clear distinction between
SSIPM and eSSPM as conceptually and methodologically independent implementations of
SSPM. Second, robust empirical evidence regarding the utility of nested field partitioning
essays on overcoming the limitations reported for current eSSPM zoning approaches. Third,
solid empirical evidence regarding the utility of biologically meaningful CVI to test the
performance of MC algorithms and select adequate numbers of MZ during eSSPM zoning
essays. Fourth, the first precedent on the simultaneous use of multiple MC algorithms to
delineate MZ within the context of PA. Finally, an up-to-date workflow that considerably
improves the accuracy of zoning methods presently implemented in eSSPM (Figure 1).

Figure 1. New workflow proposed to delineate management zones with pest control purposes.

2. Materials and Methods
2.1. Summary

The development of this work was based on the following methodological steps:
(1) environmental representation of the experimental orchard by means of precision sam-
pling tools (i.e., unmanned aerial vehicle, multispectral camera, data loggers, georeferenced
soil samples, georeferenced pest samples), (2) probabilistic modelling of six virtual pests
within the boundaries of the experimental orchard (i.e., phytopathogenic nematode, bacte-
rial canker, fungal foot rot, insect-transmitted disease, invasive weed, phytophagous mite),
(3) “binary field partitioning essays” to distinguish between pest presence and pest absence
zones within the experimental orchard, (4) “complementary field partitioning essays” to
distinguish differentiated levels of pest presence and to identify presence zones nested
within absence clusters, (5) evaluation of field partition models by means of biologically
meaningful CVI (i.e., biological homogeneity index or BHI and biological stability index or
BSI), and (6) refinement of field partition models by means of hierarchical dendrograms (of
environmental relationships between zones), bubble charts (of zonal suitability values) and
visual networks (of zone environmental independence). The resulting observations were
used to update zoning methods currently described in eSSPM.

2.2. Study Site

Environmental data were collected from a nine years old, artificially irrigated or-
chard (6.5 ha) dedicated to the commercial production of Tahiti lime (variety “Cucho,”
Citrus aurantium × Citrus latifolia, 6 m × 4 m between individuals) in the central region of
Veracruz, Mexico. Climatic conditions associated with this region are warm humid, with
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abundant summer rains and annual temperatures between 24 ◦C and 26 ◦C [15]. Predomi-
nant soil types range from sandy-clay to sandy-loam, with pH values ranging from 6.62 to
6.99 [16]. Surrounding landscapes are represented by agricultural plantations (e.g., sugar
cane, corn, beans) and small remnants of dry forest, which was the primary ecosystem
of the region before recent agricultural expansion [17]. The selection of this study area
(i.e., Carrillo Puerto municipality) was based on its contribution to regional citrus activities
and abundance of small commercial plantations. In contrast, the experimental orchard was
chosen on account of its available historical data (i.e., environmental, production-related).

2.3. Data Sets

Four data sets were used to represent environmental conditions within the experimen-
tal orchard (1 m2/pixel): multispectral aerial imagery, microclimatic data logs, presence-
absence data of citrus pests, and georeferenced soil samples.

Multispectral imagery was captured using an unmanned aerial system (UAS) inte-
grated by a low-cost quadcopter (3DR Solo, discontinued in 2019) and a cheap sports
camera (Ekken 4K, 60 FPS) modified with a planar lens designed for vegetation analysis
(i.e., NDVI-7; red-edge 750 nm, green 500–565 nm, blue 450–485 nm). Recent studies have
used similar platforms to approach vegetation biophysical features [8,18,19]. The UAS was
deployed once over the experimental orchard on October 17th of 2018 approximately at
zenith (between 14:00 and 14:30 h. local time) to guarantee maximum radiation conditions
and minimum shadow effects. This UAS followed a photogrammetric route designed to
take images with 60% side overlap and 80% vertical overlap at a flight altitude of 50 meters
above the takeoff site. A set of 12 fixed ground control points (e.g., georeferenced vinyl
squares on the ground) was used to facilitate aerial image spatial referencing.

Microclimatic data was sampled using nine Arduino-based data loggers assembled
and programmed in the Biogeography laboratory of the Instituto de Ecología, A.C. (IN-
ECOL). Arduino is an open-source electronics prototyping platform based on simple,
customizable hardware and software [20]. Data loggers were installed evenly across the
orchard below fully grown trees, while ambient temperature and humidity sensors were
placed 15 cm above the ground as in Méndez-Vázquez et al. [8]. Loggers were set to record
information with a frequency of 60 minutes for 20 days, from October 28th to November
17th of the year 2018.

Georeferenced soil samples and presence-absence data of Phytophthora sp. “foot rot”
and “brown rot” were collected from 73 randomly selected Tahiti lime trees. Two stages
of foot rot were considered. Resinous wounds and callus tissue near the grafting area
were associated with “active” and “inactive” foot rot infections, respectively [21]. After
careful inspection of each tree, a soil sample of approximately 400 gr was collected from
the uppermost 30 cm of the topsoil, where roots of citrus trees mainly develop [22]. Once
in the laboratory, 100 gr of each available sample were used to prepare 1:5 dilutions in
demineralized water as in Méndez-Vázquez et al. [8]. Such dilutions were used to measure
soil pH and electrical conductivity (EC) values using a multipurpose sensor for monitoring
water quality (YERYI TDS/EC/PH/TEMP meter).

2.4. Environmental Predictors of Virtual Pests

Multispectral images captured via UAS were used to generate three outputs: one
multispectral orthomosaic (blue, green, and red edge bands), one digital surface model
(DSM), and one digital terrain model (DTM). These products were created using Agisoft
Photoscan (V1.2 for Debian Linux distributions), an image analysis software widely used
in PA that facilitates the creation of maps from UAS imagery [23,24]. The native resolution
of such outputs was re-scaled from 20 cm2/pixel to 1 m2/pixel to avoid computationally
heavy processes and still achieve very high spatial resolution in our results. Four sub-
products were obtained from the manipulation of spectral data. Red edge, green and blue
bands of the orthomosaic were used to calculate a vegetation index highly correlated to
plant metabolism and stress (i.e., single-band normalized differences vegetation index
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or SI-NDVI [21]). SI-NDVI (NDVI from now on) values facilitated the estimation of
fractional vegetation cover (FVC) based on methods described by Thorp, Hunsaker, and
French [25]. This measurement of plant area per surface unit is closely related to leaf area
index and evapotranspiration [26,27]. The available DTM was used to compute maps of
flow accumulation and topographic roughness index (TRI) using algorithms implemented
in functions “r.terraflow” [28] and “r.tri” [29] of GRASS GIS 7 [30]. Within-field patterns of
crop cover and terrain features are known environmental drivers of different agricultural
pest species [27,31].

Microclimatic data logs were summarized into averages, maxima, and minima of every
sampled variable (i.e., ambient temperature, relative humidity). Using logger coordinates
and the inverse distance weights algorithm (IDW) implemented in the function “v.surf” of
GRASS GIS 7, three raster maps were created to represent the experimental orchard in terms
of average temperature, mean relative humidity, and vapor pressure deficit (VPD). This
last variable is closely related to evapotranspiration and ecosystem function [32] and was
calculated by implementing Allen’s equation based on temperature and humidity data [33].
IDW is a statistical interpolation technique historically used to generate surface models of
climatic variables and within-field pest distributions [34,35]. Although methods based on
semivariograms (e.g., kriging) are a more standard approach to interpolate point-based
data in PA [11,36,37], IDW is much simpler to implement, is less demanding in computing
power, and is readily available in practically every GIS software today. The resulting
interpolated maps were not accurate representations of the environment associated with
the experimental orchard but reductionist models that simplified the evaluation of complex
environment-pest interactions in geographic space. The influence exerted by climatic
conditions over the distributional patterns of pests is well known [38–40].

Soil EC, soil pH and presence-absence data collected from citrus trees were also
spatially interpolated using the IDW algorithm as in Corwin and Lesch [41] and Méndez-
Vázquez et al. [8]. Soil pH and EC are relevant variables for agriculture due to their close
relationship to crop productivity and soil physical properties, respectively [42,43]. Citrus
foot rot and brown rot are different manifestations of Phytophthora sp. infections that affect
crop productivity and facilitate the establishment of secondary diseases [44].

Twelve digital maps of environmental features were generated (in TIFF format). Vari-
able names, codes, and methods used to compute them are presented in Table 1.

Table 1. Environmental predictors, their corresponding codes, and the estimation methods used to
compute them.

Code Variable Estimation Method

aFRot active citrus foot rot IDW interpolation of presence-absence data
flowAccum flow accumulation “r.terraflow” function of GRASS GIS 7

cropFVC fractional vegetation cover FVC = (1 + NDVI)/(1 − NDVI) × NDVIˆ0.5
iFRot inactive citrus foot rot IDW interpolation of presence-absence data

relHum mean relative humidity IDW interpolation of data logs
sunRad mean sub-canopy radiation IDW interpolation of data logs

cropNDVI single image NDVI SI-NDVI = (NIR − BLUE)/(NIR + BLUE)
soilEC soil electrical conductivity IDW interpolation of soil samples
soiPH soil pH IDW interpolation of soil samples

TRI topographic roughness index “r.tri function” of GRASS GIS 7
VPD vapor-pressure deficit VPD = esm − ea

IDM: All IDW interpolation essays were executed using the “v.surf” function of GRASS GIS 7. esm: esm = (esmn
+ esmx)/2; esmn = 0.6108 × exp((17.27 ×min Temp)/(min Temp + 273.3)); esmx = 0.6108 × exp((17.27 ×max
Temp)/(max Temp + 273.3)). ea = (mean RH/100) × esm.

2.5. Within-Field Distribution of Virtual Pests

Six pairs of uncorrelated predictor variables were used to simulate known distribu-
tional patterns of six virtual pests within the experimental orchard. Distributional maps of
each pest are presented in Figure 2, whereas specific environmental ranges considered dur-
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ing pest design are shown in Table 2. Pest virtualization was performed using R statistical
software’s “virtualspecies” package [45].

Figure 2. Distributional patterns of virtual pests (1–6) simulated within the experimental orchard.
Values close to 1 (dark colors) represent regions of higher pest suitability.

Table 2. Environmental predictors, response functions, and parameterization values used to design
virtual pests.

Pest Variable 1 Fun. Var 1 Range Var 1 Variable 2 Fun. Var 2 Range Var 2

1 VPD normal m = 0.55, sd = 0.25 TRI normal m = 0.2, sd = 0.15
2 flowDir quadratic a = 3, b = 1, c = 0.25 sunRad custom m = 195, diff = 55, prob = 0.95
3 relHum quadratic a = 3, b = 1, c = 0.25 aFRot logistic beta = 0.3, alpha = 0.25
4 soilPH logistic beta = 10, alpha = 1 cropNDVI normal m = 0.05, sd = 0.1
5 cropHeight normal m = 1.5, sd = 0.1 ambTemp quadratic a = 3, b = 1, c = 0.25
6 iFRot logistic beta = 0.75, alpha = 0.05 soilEC normal m = 155, sd = 35

Distributional patterns of pest 1 were driven by temperature–humidity interactions
(i.e., vapor pressure) and terrain features (i.e., topographic roughness) known to facilitate
the proliferation of phytopathogenic nematodes specialized in citrus crops
(i.e., Tylenchulus semipenetrans) [46].

Pest 2 responded to the existence of places prone to flooding (i.e., direction of flow
accumulations) and low exposition to sunlight (i.e., sun radiation), where canker-producing
bacteria (i.e., Xanthomonas axonopodis) can survive for days [47,48]. Pest 3 was inspired
by fungal diseases (i.e., Phytophthora sp. foot rot/brown rot) that become active during
the most humid months of the year (i.e., relative humidity) [21]. The distribution of
pest 4 was based on an insect-transmitted disease (i.e., citrus greening) that proliferates
better on citrus trees (i.e., NDVI) already exposed to physiological stress (i.e., pH) [49].
Pest 5 mimicked a generic undesired weed that invades bare soil areas of citrus orchards
(i.e., FVC) when warm microclimates occur (i.e., ambient temperature). Finally, distribu-
tional patterns of pest 6 were based on those of a phytophagous mite (i.e., white/broad mite,
Polyphagotarsonemus latus) whose populations thrive on trees damaged by previous dis-
eases (i.e., inactive Phytophthora sp. foot rot) and highly stressing environmental conditions
(i.e., electrical conductivity) [21].
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2.6. Nested Field Partitioning Essays

As mentioned before, the field partitioning approach implemented by current eSSPM
methods shows relevant shortcomings during the delineation of MZ, such as presence
zones nested within absence clusters, presence zones insensitive to differentiated levels of
pest infestation, more than one pest absence zones, and inaccurately delimitated MZ [8]. To
avoid these scenarios, MZ delineation essays implemented in this work were based on a
two-step approach that we denominated nested field partitions. The first step consisted of
binary field partitions where 500 random and spatially independent points representative
of the experimental orchard (in terms of environmental factors relevant to the distribution
of each simulated pest) were used to develop clustering essays that facilitated a rough
distinction between pest presence and pest absence zones.

The second step consisted of complementary field partitions where 500 representa-
tions of presence-only and absence-only zones were used to implement within-cluster
field partitions useful to identify differentiated levels of pest infestation and nested pest
presence/absence zones. The main difference between binary and complementary field
partitioning essays is that the former aims to partition the target crop field into two sub-field
units (i.e., pest presence and pest absence clusters). In contrast, the latter seeks to parti-
tion binary sub-field units into several MZ that facilitate whether the “rescue” of nested
presence/absence zones or the recognition of differentiated levels of pest infestation.

Ten MC algorithms were used to partition the experimental orchard binarily or com-
plementarily (Table 3). These algorithms were implemented using R statistical software’s
“clValid” package [50] and were selected on account of their known capability to group
biological data sets [10,50]. A more profound explanation of such clustering approaches is
presented in Appendix A.

Table 3. Multivariate clustering (MC) algorithms compared during field partitioning essays devel-
oped in this work.

Method Acronym Class Reference Package

Average linkage AL hierarchical [51] fastcluster
Clustering large applications CLA partitioning [52] cluster

Complete linkage CL hierarchical [51] fastcluster
Divisive analysis DIA hierarchical [52] cluster
Fuzzy analysis FNY partitioning [52] cluster

Model-based clustering MCL model-based [53] mclust
Partitioning around medioids PAM partitioning [52] cluster

Self-organizing maps SOM machine learning [54] kohonen
Single linkage SL hierarchical [51] fastcluster
Ward’s linkage WL hierarchical [55] fastcluster

Since it was not always possible to generate “perfect” field partition models (i.e., con-
taining completely homogeneous clusters), binary partitions of the experimental crop field
yielded one of four possible scenarios: (1) the partition model included clusters that clearly
distinguished between pest presence and pest absence zones, (2) the model included one
accurate absence cluster and a presence cluster that incorrectly hosted absence zones, (3) the
model included one accurate presence cluster and an absence cluster that incorrectly hosted
presence zones, and (4) both clusters in the model included a mixture of presence and
absence zones. Complementary partitioning essays were implemented on presence-only
clusters for scenarios (1) and (2). This facilitated the differentiation of pest levels (scenario 1)
and the isolation of nested pest absence zones (scenario 2), depending on the case. Scenar-
ios (3) and (4) demanded the partitioning of both pest presence and pest absence clusters,
which facilitated the isolation of nested pest presence zones (scenario 3) and the distinction
between pest presence and pest absence zones (scenario 4).
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2.7. Validation of Field Partition Models

Selection of best field partition models (i.e., testing the performance of MC algorithms)
and appropriate numbers of MZ were based on BHI and BSI indexes (0-1). BHI is an
external measure for genetic clustering validation proposed by Datta and Datta [56] that
determines how homogeneous clusters in a partition model are (higher values meaning
a higher homogeneity) in terms of biologically meaningful categories called “functional
classes” (i.e., genetic functions). In our case, surrogate environmental classes (e.g., high
presence, low presence, pest absence) were generated by applying different suitability
thresholds to distribution maps representative of the simulated pests. The specific number
of presence levels and thresholds used to define them varied according to the case. The
package “clValid” calculates BHI based on the following equation:

BHI(C, B) =
1
K

K

∑
k=1

1
nk(nk − 1) ∑

i 6=j∈Ck

I(B(i) = B(j)), (1)

where nk equals n(Ck ∩ B), which is the number of annotated categories (i.e., pest levels)
in statistical cluster Ck, B(i) is the functional class containing category i, and B(j) is the
functional class containing category j.

A second evaluation based on BSI measures was performed in cases where more than
one field partition model shared the highest BHI values. BSI tests clustering consistency
for observations with similar biological functionality (higher values meaning higher sta-
bility) [50]. To do so, new clustering essays are developed by removing one sample at a
time (from the clustered data set) and cluster membership of observations with similar
functional annotation is compared with cluster memberships observed during essays based
on all available samples. BSI can also be calculated by the “clValid” package through the
following equation:

BSI(C, B) =
1
F

F

∑
k=1

1
n(Bk)(n(Bk)− 1)M

M

∑
l=1

∑
i 6=j∈Bk

n
(

Ci,0 ∩ Cj,l
)

n
(
Ci,0
) , (2)

where F is the total number of functional classes, Ci,0 is the statistical cluster containing
observation i, and Cj,l is the statistical cluster containing observation j when column l
is removed.

After the best partition models were selected (i.e., MC algorithms and number of MZ
that maximized BHI/BSI values), cluster membership numbers were interpolated within
the experimental orchard using the IDW algorithm included in GRASS GIS 7 (function
“v.surf”). Maps resulting from these interpolations were reclassified to eliminate decimal
values and produce management zones containing unique cluster membership numbers.

2.8. Classification of Management Zones

After binary and complementary field partition models were fused to generate prelim-
inary field partition models, management zones were categorically classified (e.g., absence,
low presence, high presence) based on a decision support system consisting of hierarchical
dendrograms, bubble charts, and cartographic projections.

Individual dendrograms were generated by hierarchically clustering (i.e., AL) environ-
mental values representative of management zones included in a preliminary field partition
model and true presence/absence zones known to operate within the experimental orchard.
True presence and absence zones were delineated by selecting a presence-absence suitabil-
ity threshold (PAST) for each virtual pest and reclassifying all values in their distribution
models. All suitability values below the PAST established for a given pest were reclassi-
fied to 0, whereas those equal or above such a PAST were reclassified to 1. The resulting
dendrograms were used to represent the existing relationships between MZ included in
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preliminary field partition models and the environmental closeness of such MZ to true
presence/absence zones delimited for their corresponding pests.

Bubble charts were computed based on the mean suitability values observed within
MZ included in preliminary field partition models. Zonal suitability averages were cal-
culated by overlaying the distribution model generated for a target pest (see “Within
field distribution of virtual pests”) and MZ included in its corresponding partition model.
Bubble size and color corresponded with their represented values (bigger/darker bubbles
meant higher suitability values).

Cartographic representations of preliminary field partition models and the known
distribution of their corresponding pests facilitated the interpretation of hierarchical den-
drograms and bubble charts previously described.

2.9. Validation of Management Zones

According to PA theory, after a target crop field has been partitioned into n sub-field
units, the appropriateness of MZ needs to be evaluated to determine whether there are real
differences between them (or not) in terms of the agricultural phenomenon to be managed
(e.g., soil properties, yield). Historically, this task has been accomplished by implementing
strategies as simple as ANOVA models or as complex as mixed linear models (MLM).
However, no standard method has been described to this date [10,11].

Since in our case MZ are expected to show individual potential to host pest populations,
their represented environments are also likely to be differentiated from one another. This
condition can be evaluated with SDM background tests, which are tools initially designed to
measure the level of environmental overlap between SDM models generated for two species
(pairwise comparisons) using Schoener’s D. This index (0–1) is sensitive to ecological
similarities (between geographic entities) given by diet and microhabitat variables [57,58].

In this work, the generation of zonal SDM models and the implementation of back-
ground tests was based on the “ENMTools” package for R [59], which estimates the
spatial distribution of compared species based on the Maxent (i.e., maximum entropy)
algorithm [60] and estimates Schoener’s D with the following equation:

D = 1− 1
2

(
∑
ij

∣∣Z1ij − Z2ij
∣∣), (3)

where Z1ij and Z2ij represent the occupancy of entities 1 and 2, respectively.
In practice, environmental and geographic samples (i.e., environmental values, geo-

graphic coordinates; n = 500) of management zones included in preliminary field partition
models were used to implement pairwise background tests that generated individual
matrices of between-zone overlaps (one for each pest). Such matrices were used to feed a
set of visual networks that represented management zones as labeled nodes, the environ-
mental similarity between zones as numbers next to each link (i.e., D), and the statistical
significance of a particular nexus value as the link’s width. In cases where preliminary field
partition models considered more than one absence zones, these were fused into a single
absence cluster before MZ networks were computed.

The threshold used to determine similarities between MZ was an environmental over-
lap equal to or greater than 10% (D ≥ 0.1). Regardless of the observed similarity between
zones, statistically significant environmental relationships (α = 0.05) were represented as
“thick” links between nodes. In contrast, statistically insignificant ones were drawn as
“slim” (low similarity values below the alpha level) and “normal” (high similarity values
below the alpha level) links between nodes.

The results of this exercise (i.e., environmental relationships between MZ) were used
to generate a series of final field partition models that were regarded as the best possible
options to facilitate pest management practices within the experimental orchard from an
eSSPM perspective.
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3. Results
3.1. Nested Field Partitioning Essays (Binary)

All BHI and BSI values used to evaluate binary partition models (roughly distinguish
between pest presence and pest absence clusters) are presented in Figure 3. These results
show that the best performing MC algorithms for pests 1 to 6 were, respectively: CL, MCL,
SL, CL, SL, and WL (Figure 4). Binary field partition models that displayed BHI values
approaching 1 showed excellent capability to distinguish between pest presence and pest
absence zones (i.e., pest 5, pest 6). The exception to this pattern was observed in pest
2 which generated a field partition model with a BHI value of 0.93 but was unable to
distinguish accurately between pest presence and pest absence zones on one half of the
experimental orchard (i.e., south). It is worth noticing that the BSI value displayed by the
binary partition model generated for pest 2 (i.e., 0.69) was significantly lower than BSI
values observed in partition models developed for pests 5 and 6 (0.97 and 0.89 respectively).

Figure 3. Biological homogeneity index (BHI) and biological suitability index (BSI) values calculated
for binary partitions modeled by the compared algorithms. These indexes base partition selection on
the highest observed values.

3.2. Nested Field Partitioning Essays (Complementary, Presence-Only)

Best performing MC algorithms during field partitioning essays developed within
presence-only clusters are shown in Figure 5 (BHI) and Figure 6 (BSI). For pests 1 to 6 best
performing algorithms were: SOM, SL, CL, MCL, DIA, and MCL (Figure 7). In this case,
partitioning essays developed over homogeneous geographic entities (i.e., BHI approaching
1) were prone to recognize highly homogeneous zones (pest 2, pest 4). An exception to this
pattern was observed in pest 6, where partitioning of a homogeneous presence-only cluster
resulted in poorly homogeneous zones (BHI: 0.67).
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Figure 4. Best binary partition models generated for the six virtual pests simulated within the
experimental orchard.

Figure 5. Biological homogeneity index (BHI) values calculated for complementary partition essays
implemented over presence-only clusters of binary models. This index bases partition selection on
the highest observed values.
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Figure 6. Biological suitability index (BSI) values calculated for complementary partition essays
implemented over presence-only clusters of binary models. This index bases partition selection on
the highest observed values.

Figure 7. Best partition models of presence-only clusters used to identify differentiated levels of pest
presence and isolated nested absences within the experimental orchard.

3.3. Nested Field Partitioning Essays (Complementary, Absence-Only)

Implementation of field partitioning essays within absence-only clusters was pertinent
only for binary partitions of pests 1 to 4. Figures 8 and 9 show that best performing MC
algorithms for these pests were: WL, SL, MCL and MCL (Figure 10). In this case, all
generated field partition models displayed relatively high BHI values, even those that were
developed within poorly homogeneous absence-only zones (pests 1, 3, and 4).
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Figure 8. Biological homogeneity index (BHI) values calculated for complementary partition essays
implemented over absence-only clusters of binary models. This index bases partition selection on the
highest observed values.

Figure 9. Biological stability index (BSI) values calculated for complementary partition essays
implemented over absence-only clusters of binary models. This index bases partition selection on the
highest observed values.
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Figure 10. Best partition models of absence-only clusters used to isolate nested presences and
absences from inadequate parent clusters.

3.4. Classified Management Zones

The preliminary field partition model generated for pest 1 showed good visual agree-
ment with its corresponding distribution map (Figure 11, left). Moreover, only one absence
zone was recognized (i.e., zone 1, suitability: 0.23), as well as three zones with differenti-
ated levels of pest presence (i.e., zone 2, suitability: 0.41; zone 3, suitability: 0.43; zone 4,
suitability: 0.59). This partition model also showed statistically supported environmental
agreement with presence and absence zones included in the reclassified distribution model
generated for pest 1. In the case of pest 2 (Figure 11, right), visual agreement between its
preliminary field partition model and its corresponding reclassified distribution model
was also good but partial, since a significant area of the orchard where the target pest was
known to be present (roughly one-quarter of the total field) was associated with suitability
values below the established threshold for presence-absence discrimination (i.e., 0.25).
Three absence zones were identified (i.e., zone 1, suitability: 0.15; zone 2, suitability: 0.15;
zone 4, suitability: 0.16) as well as three more zones of differentiated pest presence (i.e.,
zone 3, suitability: 0.41; zone 5: suitability: 0.46; zone 6, suitability: 0.57). Both sets of zones
displayed high environmental agreement with true presence and absence zones included
in the reclassified distribution model generated for pest 2.

The preliminary partition model generated for pest 3 (Figure 12, left) showed good
visual and environmental agreement with its corresponding reclassified distribution model.
Only one pest absence zone was recognized (suitability: 0.25), although a portion of it
was incorrectly included in a pest presence management zone (i.e., zone 3). The highest
mean suitability was observed in zone 2 (0.71), whereas those of zones 3 and 4 ranged from
0.55 to 0.64. In the case of pest 4 (Figure 12, right), the generated field partition model
showed good agreement (both environmental and visual) with its corresponding reclassi-
fied pest distribution map; nevertheless, none of the delineated MZ could be classified as
absence-only. Instead, four pest presence levels were recognized (zone 1, suitability: 0.32;
zone 2, suitability: 0.45; zone 3, suitability: 0.45, zone 4, suitability: 0.67), two of which
displayed identical mean suitability values (MZ 2 and 3) but significantly differentiated
environmental conditions.
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Figure 11. Multivariate chart used to classify MZ included in partition models that facilitate within-
field management of pests 1 and 2. Environmental dendrogram based on Euclidean distances and
average linkage.

Figure 12. Multivariate chart used to classify MZ included in partition models that facilitate within-
field management of pests 3 and 4. Environmental dendrogram based on Euclidean distances and
average linkage.

Preliminary field partition models generated for pests 5 and 6 displayed good agree-
ment with their corresponding reclassified pest maps. In the case of pest 5 (Figure 13,
left), six MZ were delineated within the experimental orchard, with zones 1 through 4
showing mean suitability values below the presence-absence threshold previously estab-
lished (suitability: 0.0). In an exceptional scenario, MZ that corresponded with known
presences of pest 5 (MZ 5 and 6) also showed mean suitability values considerably below
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the presence-absence threshold (0.03 and 0.07 respectively), apparently as a result of natu-
ral distributional features of pest weeds. The field partition model developed for pest 6
(Figure 13, right) included three MZ, one pest absence zone (zone 1, suitability: 0.08) and
two differentiated levels of presence (zone 2, suitability: 0.30; zone 3, suitability: 0.38).

Figure 13. Multivariate chart used to classify MZ included in partition models that facilitate within-
field management of pests 5 and 6. Environmental dendrogram based on Euclidean distances and
average linkage.

Corrected versions of preliminary partition models (i.e., zone number according
to mean suitability values, fused redundant zones) generated for all evaluated pests is
presented in Figure 14.

Figure 14. Preliminary models of field partition generated to facilitate management of all six virtual
pests within the experimental orchard.
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3.5. Validated Management Zones

For all six virtual pests, networks of environmental relationships (Figure 15) showed
varying degrees of similarity between the MZ included in their corresponding field partition
models, from no environmental relationships at all (D = 0) to completely overlapping
environments (D = 1). However, significance values associated with such between-zone
similarities (pD) support only three environmental links that show a maximum D value
of 0.02 (thick lines between nodes, pests 2 and 4), which is insignificant in terms of the
threshold value used to define strong environmental relationships between MZ (D ≥ 0.1).
Such a condition was interpreted as evidence of environmental independence between the
MZ included in preliminary field partition models generated for all six virtual pests. This
is important since zones with individual potential to host pest populations are expected to
be environmentally independent from the rest [8].

Figure 15. Environmental relations between management zones (by pest, 1–6). Zones are represented
by nodes of a different color (corresponding to colors used to represent management zones during
previous analyses) and size, with bigger nodes representing higher mean suitability values. Environ-
mental distances between MZ (1-D) are represented by numbers next to network edges (i.e., links).
Link width (i.e., slim, normal, thick) corresponds with the three manifestations of environmental
relationships between MZ considered here. Slim edges (barely visible) represent statistically insignifi-
cant relationships which showed D values below the established threshold for recognition of strong
environmental ties. Normal edges (visible but slim) represent statistically insignificant relationships
where D values surpassed the established threshold for recognizing environmental bounds between
zones. Thick edges represent statistically significant relationships where D values may or may not
have surpassed the threshold established for the recognition of environmental bounds between zones.
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Although between-zone overlaps observed in the generated networks did not justify
the fusion of MZ for any of the analyzed field partition models, such similarities exist
and should be considered when using such models to program/implement pest control
practices within the experimental orchard. Final field partition models are presented in
Figure 16.

Figure 16. Final partition models generated to optimize management of virtual pests within the
experimental orchard.

4. Discussion
4.1. Nested Field Partitioning Essays in eSSPM

Field partitioning strategies currently described in eSSPM are based on one-time im-
plementations of MC algorithms capable of delineating homogeneous and environmentally
independent MZ with individual potential to host pest populations [8]. Although this
is an efficient approach to partition within-field variability for temporally and spatially
stable agricultural phenomena (i.e., yield properties, soil conditions) [61–64], it shows clear
limitations when used to partition the spatial variability of agricultural pests which are
dynamic in space and time and tend to be present only in specific areas of crop fields (i.e.,
pest presence zones). Therefore, previous implementations of this method report field
partition models with sub-optimal topologies such as presence zones nested within absence
clusters, presence zones insensitive to differentiated levels of pest infestation, and more
than one pest absence zones [8].

The fact that field partition models generated during the development of this work
showed a low propensity to present the inconsistencies mentioned above, was interpreted as
evidence that nested partitioning essays are an efficient strategy to minimize the frequency
of sub-optimal results during the delineation of MZ with pest control purposes. However,
it is necessary to stress the weaknesses that restrain us from claiming universal usefulness
for the methods proposed in this paper. In this sense, three types of sub-optimal scenarios
were observed: (1) partition models which included nested pest presences in small portions
of the crop field (pests 2 and 3), (2) partition models which showed marginal suitability
values even in pest presence zones (pest 5), and (3) partition models which showed a pest
absence zone considerably larger than expected (pest 4).

For the first scenario, discussions should revolve around the nature of nested field
partitioning essays themselves, since even though sub-optimal results in the generated field
partition models (i.e., presence zones within absence clusters) were limited to small parts
of the crop field, they still exert an influence over the final topologies of such models. This
indicates that the two-step process proposed in this paper could be modified to an n-step
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process which includes as many within-cluster partitioning essays as necessary to isolate
nested pest presence zones. In practice, such n-step nested partitioning essays should
follow the same logic as their two-step predecessors, with biologically meaningful CVI
being used to determine optimal MC algorithms to be used and the appropriate number of
MZ to be delineated. However, it should be noticed that this improvement of the zoning
method originally proposed will imply more processing time although computational
needs will remain the same.

For scenarios two and three, discussions should focus on the type of pests intended to
be managed. In these cases, sub-optimal zoning results were observed in field partition
models generated for citrus greening (pest 4) and invasive weeds (pests 5) specifically.
These two pests share NDVI (pest 4) or NDVI by-products (pest 5) as environmental
predictors, which preconditions the crop field to show pest presence sites only where
some form of vegetation is also present. However, field partitioning essays for these pests
included values of all pixels representative of the experimental orchard. This form of
implementation seems to have created a special condition where environmental values
from places where no vegetation was present combined with values of complementary
pest predictors (i.e., soil PH for pest 4, ambient temperature for pest 5) created false zones
of marginal pest presence, which acted as confusion factors during the partitioning of the
target crop filed. Based on these observations, we recommend that when the pest to be
managed strictly needs the presence of vegetation to manifest, predictors to be used during
partitioning essays should include a preprocessing that excludes all environmental values
occurring in pixels where such a precondition is not fulfilled.

4.2. Performance of MC Algorithms within the Context of eSSPM

Although most PA zoning essays reported by literature are based on implementations
of particular clustering approaches (e.g., fuzzy c-means, FANNY, McQuitty) [10,11], results
presented here show that more than one MC algorithms tend to be necessary to delineate
MZ with pest control purposes. This is because the spatial nature of data sets to be clustered
during field partitioning essays could (and many times do) vary considerably depending
on the pest to be managed and on the portion of the crop field being partitioned. Thus,
clustering methods of proven efficiency to develop binary field partitions do not necessarily
correspond to those that offer the best performance during complementary ones (whether
presence-only or absence-only), even when the same pest is being considered. Similarly,
any set of MC algorithms used to partition a crop field assuming a pest “A” will rarely
perform accurately during partitioning essays developed for a pest “B.”

Despite this result, a general pattern was observed where partitioning essays intended
to distinguish between pest presence and pest absence sites (i.e., binary, absence-only)
were better resolved by hierarchical MC algorithms (i.e., pests 1, 3, 4, 5, and 6), whereas
more sophisticated approaches (i.e., SOM, DIA, MCL) were necessary to find differentiated
levels of pest presence within general presence clusters (i.e., pests 1, 4, 5 and 6). This
trend is consistent with published research that highlights the efficiency of hierarchical
MC algorithms (i.e., SL, CL, WL) to partition sets of well-separated binary data (whether
biologically meaningful or not) [10,65,66], as well as that of partitioning and model-based
algorithms (i.e., MCL, DIA, SOM) to perform this same task with data sets that include
observations more closely positioned in statistical space [50,67,68]. It must be noted,
however, that plenty of other research works successfully explore the implementation of
hierarchical clustering methods to partition spatially close data sets, as well as partitioning
and model-based approaches to partition well separated binary data sets. Taking these
observations into account, we recommend developing eSSPM field partitioning essays
(i.e., binary, complementary) based on a combination of MC algorithms that best suit the
particularities of the specific pests and fields to be managed.
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4.3. Validation of Field Partition Models Using Biologically Meaningful CVI

A high proportion of field partitioning methods currently described in PA determine
optimal numbers of management zones by means of internal and stability CVI [11,37,61,62,64,69],
which are specialized algorithms designed to validate unsupervised clustering essays [70].
Internal validation uses intrinsic information in the data to assess the quality of clustering
(e.g., compactness, contentedness, fuzziness performance, partition entropy, fuzziness
performance), whereas stability measures evaluate the consistency of a clustering topology
by comparing results from different iterations where each column (i.e., observation) is
removed one at a time during the clustering process (e.g., average proportion of non-
overlap, average distance, average distance between means) [50]. It is necessary to consider,
however, that these examples do not deal with the delineation of management zones with
pest management purposes. Instead, they focus on the management of resources such as
fertilizers and water which are inputs needed when soil conditions are not favorable for
plant fertility.

The task of enclosing pest populations within environmentally homogeneous zones
poses different technical complexities than enclosing qualitative classes of the crop itself.
For instance, zoning methods used in fertilization and irrigation PA are based on envi-
ronmental features that are more stable in time (e.g., soil properties, terrain form) and
agricultural phenomena that are driven almost exclusively by such factors (e.g., soil fertility,
water deficit). On the other hand, in the case of eSSPM it is necessary to consider that
species are living entities constantly evolving to occupy as many environments as possible
within the boundaries of their physiological limitations (i.e., adaptation [71]). This means
that they will rarely restrict their natural expansion to the limits of a single “climatic compo-
nent” (i.e., set of environmental conditions) as demonstrated by ecological and agronomic
literature [72–75]. On the contrary, species tend to occupy different climatic components
simultaneously, depending on factors such as the time of the year and the immediate needs
of their populations [76].

Since agroecosystems follow the same physical rules as natural ecosystems (at least
in nature), the existence of differentiated microenvironmental conditions can be assumed
for most agricultural fields [77,78]. We can also assume that within-field pest distribution
will usually converge with more than one microenvironmental component, and that such
components are not the only factors governing how pests distribute within the crop field
but complementary influences that closely interact with other pest drivers such as the
available resources (e.g., food abundance, mating sites) [79]. This is the main reason why
we find internal and stability CVI lacking as validators of field partitioning essays in
eSSPM, because of their natural tendency to favor partition models that maximize internal
coherence of microclimatic components (i.e., cluster) that, although relevant, are not the
only drivers of pest within-field dynamics.

BHI compensates for the influence of unknown pest drivers by seeking maximum
congruence between microenvironmental components that are somewhat homogeneous
in nature (i.e., clusters) and the known spatial distribution of target pests. This way it is
possible to evaluate field partitioning essays in function of clusters’ capability to enclose
individuals of the same class (e.g., levels of pest infestation) rather than their internal
structure (which excludes the influence of other factors but microenvironmental). Despite
these encouraging conclusions, there are limitations in the use of BHI that need to be
mentioned. For instance, when presence-absence thresholds were set too low or too high
during binary field partitioning essays, BHI was unable to identify best performing partition
models. Under such circumstances, BHI gave higher scores to partition models that were
composed of one big cluster containing most observations and a second much smaller
cluster that included few isolated values. All these models showed BHI values near to 1.

The reason for the observed phenomenon is that, at least in great measure, original
implementations of BHI (and BSI) were designed to be used with genes instead of suitability
classes [56]. Gene classes make sense regardless of them forming part of big or small
clusters, since they all have a specific function. In our case, however, functional classes
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were represented by groups of places with similar potential to host pest populations (i.e.,
MZ). Since this potential is not an intrinsic attribute of the pest itself but of the geographic
space occupied by it (i.e., distribution area), its gradation into functional intervals (i.e., pest
levels) represents a rather subjective task with more than one equally plausible outcomes.
This created scenarios where, even when the same MC algorithm was implemented with
the same data sets, using different threshold values to define pest levels resulted in partition
models with varying degrees of dissimilarity with ground truth samples (i.e., virtual data).

Although BSI was useful as a secondary validator when different models showed
the highest BHI, it did not offer any means to facilitate the validation process in cases
where bad model partitions showed high BHI values. To facilitate the recognition of these
suboptimal partition models, we recommend the exploration of S2

T or “total within-zone
pest suitability variance”. S2

T was designed to validate field partitioning essays with
crop management purposes [36] and recently adapted to the needs of site-specific pest
management [8]. Since higher S2

T values indicate more heterogeneous classes (i.e., MZ),
useful field partition models should show low scores for this index. This way, when a model
shows extremely high BHI and an extremely low S2

T values, it should be regarded with
caution since suitability thresholds used to define pest levels might still need proper tuning.

4.4. SDM-Based Validation of Management Zones

As mentioned before, once a crop field has been subdivided into individual MZ, it is
necessary to corroborate the existence of differences between them in terms of the agricul-
tural phenomenon to be managed. This process, known as validation of management zones,
can be developed through different statistical approaches such as clustering validation
indexes. CVI represent the most cited approach to the validation of MZ in PA; nevertheless,
there are numerous indexes available for such purposes today and no clear agreement in
terms of which one offers the best results [10]. Moreover, they are incapable of assessing
agronomically meaningful differences between MZ. ANOVA tests, on the other hand, are a
straightforward means to corroborate the existence of statistically significant differences
between MZ. However, they are limited to the evaluation of individual variables that could
or could not reflect the multidimensionality of complex environments. Additionally, they
assume independence in the input dataset, a condition that is not met when environmental
values are spatially referenced [11]. Finally, although MLM do account for spatial corre-
lation in the data and consider the conjunct effect of different variables over the modeled
phenomenon, they demand meticulous parameterization and their implementation tends
to be more computationally intensive than other methods [11].

The validation of MZ based on SDM background tests offers different advantages.
Since SDM tools (e.g., background tests) were developed to facilitate the study of species
geographic distributions, they are spatially explicit in design. This is relevant because they
offer ad hoc methodologies to minimize the effect of spatial biases usually present in SDM-
related processes such as modeling species distributions and comparing environmental
preferences between species/populations (e.g., differences in sampling effort between
populations, spatially uneven samplings, differences in the habitat available to populations
in geographic regions where they do not overlap) [58]. Moreover, SDM tools perform
between-zone comparisons in terms of complex multivariate environments and determine
environmental similarity based on relative rather than absolute measures (i.e., Schoener’s
D) [59]. These features make SDM background tests a more realistic and flexible approach
to validating MZ than the rest of methodologies discussed above (at least in SSPM). Finally,
the use of ecological networks to explain inter-zonal environmental differences is not only
easy to set up (only two parameters are needed; i.e, a D threshold and a significance level for
such a threshold) but also improves considerably the interpretability of SDM background
tests when used to validate site-specific management zones with pest control purposes.
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4.5. New Workflow for MZ Delineation in eSSPM

Based on the results and discussions presented during the development of this work,
an improved version of current eSSPM zoning methods was described. This new workflow
consists of five straightforward steps: (1) description of cause–effect relationships between
georeferenced presence–absence data and mapped environmental predictors (not discussed
in this paper), (2) single binary partition of a crop field validated through biologically
meaningful CVI, (3) n complementary partitions of presence-only and absence-only clusters
validated through biologically meaningful CVI, (4) suitability-based classification of MZ,
and (5) validation of MZ based on SDM background tests.

5. Conclusions

Results generated in this work support the fact that delineating pest management
zones (MZ) based on nested field partitions of environmental features represents an effective
means to overcome many of the limitations associated with zoning methods previously
described in eSSPM, such as presence zones insensitive to differentiated levels of infestation
and nested presences/absence. In general, more than one MC algorithm is necessary to
delineate accurate MZ in eSSPM. Hierarchical MC algorithms tended to generate better
outputs during binary and absence-only partitioning essays, whereas more sophisticated
approaches (i.e., model-based, machine learning) tended to outperform the rest during
presence-only complementary partitions.

The validation of partitioning essays based on biologically meaningful CVI (i.e., BHI,
BSI) are of great utility during the selection of best-performing algorithms and optimum
numbers of MZ to be delineated. Still, due to inaccuracies observed in specific circum-
stances, we recommend complementing the evaluation of field partitioning essays with
S2

T. We also conclude that the visual aids used during the classification of MZ (e.g., den-
drograms, bubble charts, maps) are important resources that facilitate relevant agronomic
decisions such as what zones should be considered individual subfield units and what
zones should be fused together. Similarly, SDM background tests displayed as ecolog-
ical networks represent an efficient and flexible way to corroborate the environmental
uniqueness of MZ and corroborate cases of fusion/separation of zones.

A novel workflow to the delineation of MZ within the context of eSSPM was described.
It is based on the following sequential steps: (a) selection and mapping of zoning factors,
(b) binary partition of the managed crop field, (c) complementary partitions (i.e., presence-
only, absence-only) of the managed crop field, (d) classification of zones included in
preliminary partition models, and (e) ecological validation of corrected (i.e., final) zones.
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Appendix A

A list with the abbreviations and acronyms referred to in this work are presented in
Table A1 to facilitate further review.

Table A1. Meanings of abbreviations and acronyms referred to in this work.

Abbreviation Meaning Class

AL average linkage clustering algorithm
CL complete linkage clustering algorithm

CLA clustering large applications clustering algorithm
DIA divisive analysis clustering algorithm
FNY fuzzy analysis clustering algorithm
MCL model-based clustering clustering algorithm
PAM partitioning around medioids clustering algorithm

SL single linkage clustering algorithm
SOM self-organizing maps clustering algorithm
WL Ward’s linkage clustering algorithm

SSPM site-specific pest management discipline
eSSPM ecological site-specific pest management discipline

IPM integrated pest management discipline
PA precision agriculture discipline

SDM species distribution modeling discipline
SSIPM site-specific insect pest management discipline
aFRot active foot rot pest driver

cropFVC fractional vegetation cover of the research orchard pest driver
cropHeight height of trees included in the research orchard pest driver
cropNDVI normalized differences vegetation index of the research orchard pest driver

DSM digital surface model pest driver
DTM digital terrain model pest driver

flowAccum flow accumulation pest driver
flowDir flow direction pest driver

FVC fractional vegetation cover pest driver
iFRot inactive foot rot pest driver

maxTemp maximum ambient temperature pest driver
minTemp minimum ambient temperature pest driver

NDVI normalized differences vegetation index pest driver
relHum relative humidity pest driver
SI-NDVI single-image normalized differences vegetation index pest driver
soilEC soil electrical conductivity pest driver
soilPH soil potential of hydrogen pest driver
sunRad sun radiation pest driver

TDS total dissolved solids pest driver
TRI topographic roughness index pest driver
VPD vapor pressure deficit pest driver
FPS frames per second precision agriculture tool
GIS geographic information system precision agriculture tool
GPS global positioning system precision agriculture tool
MZ management zones precision agriculture tool
UAS unmanned aerial system precision agriculture tool

ANOVA analysis of variance statistical method
BHI biological homogeneity index statistical method
BSI biological stability index statistical method
CVI classification validation index statistical method
D Schoener’s D statistical method
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Table A1. Cont.

Abbreviation Meaning Class

IDW inverse distance weights statistical method
MC multivariate clustering (algorithm) statistical method

MLM mixed linear models statistical method
PAST presence–absence suitability threshold statistical method

pD probability of D statistical method
S2

T total within-field suitability variance statistical method

Four types of MC algorithms were used during the development of this work: hierar-
chical, partitioning, machine learning (based), and model based. Hierarchical clustering
algorithms are based on agglomerative methods that yield a dendrogram which can be
cut at a chosen height to produce the desired number of clusters [50]. Each observation is
initially placed in its own cluster and the clusters are successively joined together in order
of their “closeness”. The closeness of any two clusters is determined by a dissimilarity
matrix and can be based on a variety of agglomeration methods, which in the case on this
work were:

1. Average linkage [51], mean distance between observations.
2. Complete linkage [51], maximum distance between observations.
3. Single linkage [51], minimum distance between observations.
4. Ward linkage [55], error sum of squares.

For all cases, the manipulation of the distance function exerts an influence on the
combination of any two groups to form a new one [10]. Manipulation of such a distance
function can be achieved through the equation:

D
(
Gx,

(
Gi, Gj

))
= αiD(Gx, Gi) + αjD

(
Gx, Gj

)
+ βD

(
Gi, Gj

)
+ µ

∣∣D(Gx, Gi)− D
(
Gx, Gj

)∣∣, (A1)

where D is a distance function, αi, αj, β and µ are coefficients that have their values
determined according to the applied algorithm.

A fifth hierarchical clustering approach was tested in this work:

1. DIANA (Divisive analysis [52]) is an algorithm that initially starts with all observa-
tions in a single cluster, and successively divides the clusters until each one contains
a single observation; thus, hierarchies are built in n − 1 steps. During each step, the
cluster C with the largest diameter is selected based on the following equation:

diam(C) := maxi,j∈Cd(i, j) (A2)

Assuming diam(C) > 0, we then split up C into two clusters A and B, according to a
variant of the method of Macnaughton-Smith et al. [80]. At first A := C and B := θ,
later one object is moved from A to B and then other objects are moved from A to B.

Partitioning algorithms divide a set of elements into k groups without constructing
a hierarchical structure, following the principle that elements in a same group should be
more similar than elements belonging to different groups [50]. These algorithms perform a
division of the data to identify n natural groups into a certain number of disjoint groups,
with a centroid for each group as a reference and employing a distance function. They can
perform clustering automatically and seek to achieve the maximum similarity between the
elements of the same group and the minimum similarity between different groups [10]. In
our case, the following algorithms were used to implement partitioning clustering during
the development of this work:

2. PAM (Partitioning around medioids [52]), similar to “k-means”, the number of clusters
(i.e., k) is fixed in advance and an initial set of cluster centers (i.e., “medioids”, in
contrast to “means” used in k-means) is required to start the algorithm. PAM is
considered more robust than k-means because it admits the use of other dissimilarities
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besides Euclidean distance. The implementation of PAM clustering was based on
the equation:

TD :=
k

∑
i=1

∑
xj∈Ci

d
(
xj, mi

)
, (A3)

where TD is the total deviation, defined as the sum of dissimilarities of each point
Xj ∈ C1 to medioid mi of its cluster.

3. CLARA (Clustering large applications [52]), a sampling-based algorithm that imple-
ments PAM on a number of sub-datasets, which allows for faster running times when a
number of observations is relatively large. CLARA complies with the following algorithm:

a. Create randomly, from the original dataset, multiple subsets with fixed
size (sampsize).

b. Compute PAM algorithm on each subset and choose the corresponding k repre-
sentative objects (medioids). Assign each observation of the entire data set to
the closest medioid.

c. Calculate the mean (or the sum) of the dissimilarities of the observations to their
closest medioid. This is used as a measure of the goodness of the clustering.

d. Retain the sub-dataset for which the mean (or sum) is minimal. A further
analysis is carried out on the final partition.

4. FANNY (Fuzzy analysis [52]), this algorithm performs fuzzy clustering, where each
observation can have partial membership in each cluster. Thus, each observation has
a vector that gives the partial membership to each of the clusters. A hard cluster can
be produced by assigning each observation to the cluster where it has the highest
membership. FANNY clustering is based on the equation:

C =
k

∑
v=1

∑ ∑ ur
ivur

jvd(i, j)

2 ∑ ur
jv

, (A4)

where uiv is the membership of element i in relation to group v, n is the number of
elements that form the data set, k is the number of groups to be formed, r corresponds
to a pertinent exponent, and d(i, j) is the distance between elements i and j.

Machine learning algorithms possess the capability of improving their performance
automatically through experience. To do so, they build a mathematical model based
on sample data, known as “training data”, in order to make predictions or decisions
without being explicitly programmed to do so. Although machine learning approaches
are commonly associated to modeling and prediction tasks, these tools can also be used to
develop clustering essays [81]. In this work, only one machine learning clustering algorithm
was used:

5. SOM (Self-organizing maps [54]), an unsupervised learning technique based on neural
networks that is popular among computational biologists and machine learning
researchers. SOM is a concept of competition network that tries to find the most
similar distance between the input vector and neuron with weight vector wi. SOM
always consist of both input vector x and output vector y. At the start of the learning,
all the weights (wi) are initialized to small random numbers. The set of weights forms
a vector wi = wij, i = 1, 2, . . . , kx, j = 1, 2 . . . , ky where kx is the row number and ky is
the column number. Euclidian distance d between the input vector x and the neuron
with weight vector of the given neuron wc is computed by:

d(x, w) = |x(t)− wc(t)|, (A5)

where t is an integer. Next, SOM will search for the winner neuron using the minimum
distance (best matching unit, BMU). BMU is calculated as follows:

BMU = argmin |x(t)− wc(t)| (A6)
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To increase the similarity with the input vector, weights are adjusted after obtaining
the winning neuron. The rule for updating the weight vector is given by:

wi(t + 1) =
∑ hc(i)(t)× xj

∑ hc(i)(t)
, (A7)

where wi(t + 1) is the updated weight vector, xj is the input record, hc(i)(t) is the
neighborhood function related to the winning unit ci at step t, and S is the number of
input samples. The neighborhood function (usually assumed as Gaussian) determines
the rate of change of the neighborhood around the winner neuron as in equation:

hc(i)(t) = e
−
∣∣∣rc(i) − ri

∣∣∣2
2σ(t)2 , (A8)

where rc(i) and ri are, respectively, the positions on the map of the winning neuron and
of the generic unit i; σ(t) is the neighborhood radius at the iteration t of the training
process and corresponds to the width of the neighborhood function at step t. Initially,
σ(t) can be as large as the size of the map and then, to guarantee convergence and
stability, it decreases linearly with time till one during the process.

Finally, model-based clustering algorithms are those that postulate a generative statis-
tical model for the data and then use a likelihood (or posterior probability) derived from
this model as the criterion to be optimized. Model-based clustering has recently gained
widespread use both for continuous and discrete domains mainly because it allows one to
identify clusters based on their shape and structure rather than on proximity between data
points [82]. One model-based clustering algorithm was considered in this work:

6. MCL (Model-based clustering [53]) operates on the assumption that the analyzed
data originate from a finite mixture of underlying probability distributions [83]. Each
mixture component represents a cluster, and the mixture components and group
memberships are estimated using maximum likelihood (EM algorithm). MCL usually
assumes a normal or Gaussian mixture model as in the following equation:

n

∏
i=1

G

∑
k=1

τk∅k(xi|µk, Σk), (A9)

where G is the number of components, x represents the data, ∅k are the density and
parameters of the kth component in the mixture, µk (mean vector) and Σk (covariance
matrix) are parameters to model each component k by the multivariate distribution,
τk is the probability that an observation belongs to the kth component, and:

∅k(xi|µk, Σk) = (2π)−p/2|Σk|−1/2exp
{
−1

2
(xi − µk)

TΣ1
k(xi − µk)

}
. (A10)
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