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Abstract: Although unique expected energy models can be generated for a given photovoltaic (PV)
site, a standardized model is also needed to facilitate performance comparisons across fleets. Current
standardized expected energy models for PV work well with sparse data, but they have demonstrated
significant over-estimations, which impacts accurate diagnoses of field operations and maintenance
issues. This research addresses this issue by using machine learning to develop a data-driven expected
energy model that can more accurately generate inferences for energy production of PV systems.
Irradiance and system capacity information was used from 172 sites across the United States to train
a series of models using Lasso linear regression. The trained models generally perform better than
the commonly used expected energy model from international standard (IEC 61724-1), with the
two highest performing models ranging in model complexity from a third-order polynomial with
10 parameters (R2

adj = 0.994) to a simpler, second-order polynomial with 4 parameters (R2
adj = 0.993),

the latter of which is subject to further evaluation. Subsequently, the trained models provide a more
robust basis for identifying potential energy anomalies for operations and maintenance activities as
well as informing planning-related financial assessments. We conclude with directions for future
research, such as using splines to improve model continuity and better capture systems with low
(≤1000 kW DC) capacity.

Keywords: photovoltaic systems; expected energy models; fleet-scale; lasso regression; performance
modeling; machine learning

1. Introduction

The increasing penetration of photovoltaic (PV) systems within the energy markets
has established the need for evaluating and ensuring high system reliability. In particular, a
large emphasis has been placed on monitoring algorithms that can contextualize observed
energy generation at a site with information about how the system would have performed
in a nominal state [1]. The latter are commonly estimated through expected energy models.
Expected energy models are incorporated into many PV performance monitoring tasks,
including anomaly detection [2–5], financial planning [6], fleet-level (site vs. site) com-
parisons [7], degradation analysis [7], and the evaluation of extreme weather effects [8].
The comparison of observed energy values to those derived from expected energy models
serves as the basis for informing both tactical (i.e., short-term tasks such as field repair)
and strategic (i.e., long-term activities such as site planning) operations and maintenance
(O&M) activities.

Expected energy models can vary from asset-level to site-level estimates [9]. Asset-
level models typically focus on using parameters provided by the manufacturer (e.g.,
maximum power) [9,10]. However, such approaches do not always work well for in-field
performance since the parameters were developed in standardized test conditions and
thus do not reflect operational conditions [11]. In response to these limitations, empirical
methods that use field observations and regression methods have emerged to derive param-
eters across non-standardized test conditions (e.g., [12,13]). At the site-level, most expected
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energy models leverage the correlation between power production and meteorological
covariates [14,15]. For example, the standard expected energy model from the International
Electrotechnical Commission (IEC) uses irradiance and site capacity information to develop
an expected energy estimate [15]. Similarly, the PVUSA model trains a regression model for
a given site by estimating power production using local irradiance, temperature, and wind
speed conditions [16]. Industry research shows that most expected energy estimates tend
to be overestimate production by a median of 3% but could be up to 20% [17]. Although
the mismatch between observed and expected generation are well-recognized [18], limited
attention has been given to date for improving the accuracy of expected energy models at
the site-level, especially suited for fleet-level (i.e., site vs. site) comparisons.

This work aims to address this knowledge gap by generating a standardized, in-
terpretable data-driven expected energy model that can be used for fleet-level compar-
isons. Although gradient-boosted and neural network-based methods have demonstrated
significant successes for output performance [19–21], they often lack in model inter-
pretability. In particular, models with high complexity can hide prediction biases or other
vulnerabilities [22]. Thus for this work, we opted for more interpretable, regression-based
models to increase the transparency of the implemented methods. In addition to identifying
a more robust alternate for expected energy modeling, the associated publication of code
used for training models (in the open source software pvOps) enables the extension of these
methods to develop site-specific expected energy models for PV systems anywhere in the
world or to other renewable energy systems. Such advancements in expected energy model
estimates are needed to continue supporting better planning and field O&M activities,
both of which ultimately influence the sustainability of PV sites. The following sections
describes the data processing and model construction activities (Section 2), the performance
of trained models (Section 3), and summarize primary findings (Section 4).

2. Methodology

The data-driven expected energy model training activities were supported by Sandia
National Laboratories’ PV Reliability, Operations, and Maintenance (PVROM) database [23].
Information about the PVROM database, as well as data processing, model training, and
model evaluations, are described in the following Sections.

2.1. Data

The PVROM database contains 1.3 million data points of hourly production data across
176 sites in the United States [23], spanning multiple states (Figure 1) and generally ranging
between 2017 and 2020. The database contains hourly measurements of expected energy in
kiloWatt-hours (kWh), irradiance (Watts per square meter; W

m2 ), ambient temperature, and
module temperature; site-level direct current (DC) capacity is provided by the industry
partners. The DC capacity (CDC) for the sites within the database span from 37.8 kilowatts
(kW) to 130,000 kW; a majority of the sites (140) are under 10,000 kW, with 67 of those sites
under 1000 kW. A subset of the sites (100) contain industry-partner-provided expected
energy estimates generated from proprietary models; these values serve as a basis for
model validation activities (see Section 2.5).
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Figure 1. Geographical coverage of sites within the PVROM database. A majority of the sites are
located in California.

2.2. Preprocessing

Data quality issues stemming from measurement errors and system anomalous con-
ditions (reflecting local field failures, such as communication loss) could introduce signal
variations in field data that would hinder model performance. Problematic data convolute
the relationships between features, making it more difficult to measure the true parameter
estimates; these potential irreducible errors are decreased through numerous data quality
filters (Figure 2). Missing values (i.e., NaN or None values) were removed prior to applying
data quality filters. An evaluation of these missing values revealed that a majority of them
(~88%) occurred during nighttime hours (~7 p.m. to 8 a.m.), indicating that some sites
captured night-time entries as null (Figure 2). After removing these missing values, ~900 K
data points remained, which were then subject to a series of data quality filtering steps.

Figure 2. Data preprocessing activities included both data quality- and anomaly-related filters. Data
quality filters were conducted independently; only data points that passed all quality-based filters
were subject to the anomaly-based filters.

Data were filtered to ensure they are within nominal sensor ranges, using thresholds
following [24] and the IEC 61724-1 standard [15]. Specifically, we retained data that met
the following criteria:

• 20 W
m2 ≤ Irradiance (I) ≤ 1500 W

m2 ;
• Energy (E) > 0 kWh;
• Ambient temperature (Tamb) ≤ 50 ◦C and module temperature (Tmod) ≤ 90 ◦C.
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Wind speed was not consistently available from partners and thus was excluded from
analysis. Although available temperature data were used in the preprocessing steps, they
are not used as a predictor variable in the regression models, since they ate not included in
current standard models [15].

Flatlining values—determined by periods where consecutive data changed by less
than a threshold—were flagged for removal using the pecos package [25], which follows the
IEC 61724-3 standard [26]. Specifically, four consecutive hours with either ∆E < 0.01% of
the site’s capacity or ∆I < 10 W

m2 were filtered. Lastly, inverter clipping, which occurs when
the DC energy surpasses an inverter’s DC energy rating, was addressed by mathematically
observing plateaus in the energy signal using the pvanalytics package [27]. Dropping
energy measurements during inverter clipping, which manifest as a static value across
high irradiance levels, would create a better linear fit. After data quality checks, 429 K data
points across 150 sites remained (Figure 2).

Data points that passed all quality checks were also assessed for system-level anoma-
lies. These anomalies likely reflect abnormal operating conditions (i.e., local failures) and
thus require removal to ensure the trained baseline energy models reflect nominal system
performance. Anomalous entries were detected using a comparison of observed energy to
irradiance and site capacities (Figure 3). The comparison of observed energy and irradiance
filter focuses on removing data where the E–I ratio (λ) is outside its nominal distribution by
3 standard deviations {λ : λ < µλ − 3σλ ∪ λ > µλ + 3σλ}, where µλ and σλ are the mean
and standard deviation of the E–I ratio, respectively [28]. This filter was implemented
for each site separately to capture site-specific variations (including system capacity) and
resulted in the removal of 70 K data points (Figure 2). The second system anomaly filter
focused on removing sites with mismatches between observed energy and site capacity.
Namely, if a site’s maximum recorded energy was over 1.2× CDC or under 0.7× CDC,
then all data points for that site were excluded from subsequent analysis. This method
filtered 23 sites; 50%+ of these sites were under 1000 kW, and only 1 was over 10,000 kW.
Approximately 26 K data points were removed with this filter, resulting in a final dataset
that contained 332 K data points across 127 sites for model training and testing activities
(Figure 2). The age of the sites within the final dataset ranged from newly installed sites up
to 10 years, with a majority being less than 5 years in age (Figure A2).

Figure 3. An example of anomaly-based filter (energy production vs. irradiance) for a particular site.
Anomalous data points (visualized as Xs) are often lower than non-anomalous values within the
distribution-derived bands (red lines).

2.3. Variable Standardization

The specific inputs used for model training mimic commonly available parameters
used in current expected energy models (e.g., [15]), such as irradiance and site capac-
ity. However, with covariates at different scales (e.g., {0 W

m2 < I < 1.2× 103 W
m2 } while

{1× 102 kW< CDC < 1.3× 105 kW}), variable standardization is required to reduce model
sensitivity to parameter scales. In particular, without standardization, weights generated
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for each parameter are more likely to reflect scalar nuances rather than the relative im-
portance of the parameter to the outcome of interest. Variable standardization centers the
data by subtracting data points in a feature from its associated mean value (µ) and then
scales the data by dividing by the associated standard deviation (σ)—i.e., Z = µ−µ̄

σX
. The

resulting standardized variables have a mean of zero and a standard deviation of one.
This process makes parameters easier to rank in terms of influence; the variable with the
larger parameter holds a more important effect on the output response. Thus, variable
standardization also aids in the interpretability of the derived parameters, especially when
variable interactions (e.g., I × CDC) are introduced. The mean and standard deviation
parameters used to standardize irradiance, capacity, and energy values are captured in
Table 1.

Table 1. Mean and standard deviation (StDev) parameters used to standardize variables prior to
training regression models.

>1000 kW Systems <1000 kW Systems

Parameter Mean StDev Mean StDev

Irradiance 571.459 324.199 413.533 286.110
Capacity 14,916.234 20,030.000 375.919 234.151
Energy 7449.152 12,054.525 119.008 119.829

2.4. Model Design and Training

Similar to other machine learning models, regression techniques leverage input data
to learn relationships and use those relationships to predict unseen quantities. These
relationships are generally contained in model parameters (β̂), which map predictors, as
summarized in a design matrix X, to an output Ŷ = Xβ̂ + ε with residual model error ε.
Many different regression techniques exist; these techniques typically vary in the structure
of the cost function, which quantifies the error between predicted and expected values.
This cost function (C) is usually captured as a summation of loss functions (calculated
on each data point) across the training set. The set β̂, which renders the smallest cost, is
defined as the learned parameters, mathematically notated as:

β̂ = arg min
θ

C. (1)

A popular regression model is the ordinary least squares (OLS), which defines its
best model (β̂OLS = arg min

θ

SSE) with an objective function equal to the sum of squared

errors (SSE):

SSE =
n

∑
i=1

(yi − ŷi)
2 =

n

∑
i=1

(y−
p

∑
j=0

β̂ jxij)
2 (2)

where n is the number of samples, p is the number of predictors, and xij is the ith value
for the jth explanatory variable. As shown in the equation, the SSE sums the squared
difference between each sample (y) and its associated model estimate (ŷ). High emphasis
is naturally placed on reducing high-error samples. Therefore, outliers can have a large
effect on the learned parameters, so data preprocessing steps are required for robust model
development. Additionally, OLS renders non-zero coefficients on all β̂, which can create
small, insubstantial parameters which are likely components of the training dataset and
therefore contribute to model overfitting and thus should be removed from the model.

Alternate approaches to OLS include the Theil–Sen regressor [29], which is robust
against outliers since it chooses the median of the slopes of all lines between pairs of points,
as well as techniques such as Lasso regression [30] that explicitly address model overfitting
by reducing model complexity (i.e., the number of parameters used). For this analysis, the
latter was selected since Lasso regression models are able to incorporate both parameter
regularization and residual sum of squares into the loss function. The cost function for
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Lasso regression β̂lasso = arg min
θ

(SSE + α ∑
p
j=1 |β j|) incorporates an L1 regularization

term α ∑
p
j=1 |β j|, which penalizes the magnitude of the β terms. This penalization tends

to shrink coefficients to zero, rendering a more parsimonious model; we use an α = 0.003
for defining the impact of the regularization on the regression kernel. Specifically, the
penalization acts as a bias, which in turn can reduce overall error due to the bias–variance
tradeoff [31].

Standardized variables are passed into Lasso regression to learn a linear model,
which relates the input variables to energy. Multiple combinations of input variables
were used to train the regression models (more details below). For all models, a random-
ized (80–20%) split is utilized to partition the preprocessed, standardized data into train
and test partitions, respectively.

In addition to individual parameter influences, interactions and temporal factors
were incorporated as input features to capture nuances within the datasets. Interaction
parameters, which allow the effect of one parameter on the response variable to be weighted
by the value of another variable, are introduced by including terms which are the product of
two or more predictor variables. For example, Figure 4 shows that the relationship between
E and I does vary across CDC. Thus, the inclusion of an I and CDC interaction term may
be helpful in predicting the generated energy. The suite of interaction combinations are
instantiated using polynomial models up to the third order (i.e., degree d = 3). In a model
with d = 2 and 2 covariates, the initiated regression model would take the following form:

y = β0 + β1x2
1 + β2x2

2 + β3x1x2 + β4x1 + β5x2. (3)

Notice that a d = 2 also includes d = 1 parameters (i.e., β4x1 and β5x2). This remains
true for all values of the polynomial power (e.g., for a model initiated with d = 3, terms
from d = 2 and d = 1 are also included). Two interaction polynomial orders are tested: a
second-order (d = 2) and a third-order (d = 3) (Table 2). The particular interaction noted
above (I × CDC) is captured in multiple models, including an additive model with a single
interaction term (Table 2).

In addition to interactions, temporal factors are used to capture a variable’s changing
effect on the energy generated over time. For instance, the correlation between I and E
changes over the course of the year due to spectral irradiance effects [32,33]. Therefore,
allowing the model to capture time-variant nuances may be important for capturing such
nonlinearities. Three temporal based conditions were explored: seasonal (four per year),
monthly, and hourly. A model with two predictor variables and monthly temporal-based
variable conditions would be instantiated as:

y = ajan1t∈janx1 + a f eb1t∈ f ebx1 + . . . + adec1t∈decx1

+ bjan1t∈janx2 + b f eb1t∈ f ebx2 + . . . + bdec1t∈decx2,
(4)

where the a and b parameters are coefficients describing the effect of parameter x1 and x2,
respectively, when conditioned on a month of the year. For instance, ajan describes the
effect of x1 on the y response variable during the month of January. The indicator function
1t masks the predictor variable to ensure it is within its timeframe. With the various
combinations of interactions and temporal conditions, a total of 13 regression kernels were
evaluated (Table 2; see Appendix A for some of the mathematical formulations).
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(a)

(b)

Figure 4. Correlation between energy production and irradiance for raw data (a) and preprocessed
data (b) for different site capacities. Higher correlations in the preprocessed data indicate interaction
between DC capacity and irradiance for energy production.
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Table 2. Combinations of parameters used to initiate the 13 regression kernels evaluated in this study.
The simple additive model attaches a parameter to each predictor variable to evaluate individual
effects. * For hourly temporal conditions, only 15 h are used to reflect daytime hours.

Model Category Time Variables (t) Interaction Degree (d) Number Parameters for M Inputs Number Parameters for 2 Inputs

Additive M + 1 3

Additive with interaction 2nd-order (d = 2) M + 2 4

Additive with Time-weighted
Season (t = 4) tM + 1 9
Month (t = 12) 25
Hour (t = 15 *) 31

Polynomial 2nd-order (d = 2) d
∑

i=1
CR(M, i) + 1

6
3rd-order (d = 3) 10

d = 2 d = 3

Polynomial with Time-weighted
Season (t = 4) 2nd-order (d = 2)

t
d
∑

i=1
CR(M, i) + 1

t = 4 25 41
Month (t = 12) 3rd-order (d = 3) t = 12 73 121
Hour (t = 15 *) t = 15 90 151

2.5. Model Evaluation

Three metrics were used to evaluate the performance of the trained expected energy
models: logarithmic root mean squared error (log RMSE), coefficient of determination (R2),
and percent error (δ). Both partner-provided expected energy values and those calculated
by the leading standardized expected energy model (i.e., IEC 61724) were used as reference
values for model evaluations.

The root mean squared error (RMSE) is a common goodness-of-fit statistic used for
model evaluation. The RMSE is expressed as:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2

where yi and ŷi are the measured and predicted values of the response variable, and n is
the number of samples. RMSE is in the same units as the response variable (i.e., kWh).
Lower RMSE values indicate a better, lower predicted error. Because the error can be quite
large in magnitude (100 to 1010), a logarithmic transform is applied to facilitate evaluations.
Because the magnitude of the error is closely connected to a site’s capacity, the log RMSE
cannot be used to compare model performance between sites unless the sites are similar
in size.

The coefficient of determination (R2), however, can be used to compare model perfor-
mance across different site sizes. Specifically, R2 is calculated as:

R2 = 1− ∑(yi − ŷi)
2

∑(yi − ȳ)2 , (5)

where ȳ is the average of the y values. R2 denotes the proportion of variability in the
response explained by the model with a value of 1, indicating a perfect fit. R2 was used to
compare trained model outputs with partner-generated expected energy values, whose
underlying model structures were unknown.

Generally, however, R2 is not well-suited for comparing models across varying num-
bers of parameters. Thus, when comparing the 13 trained models to one another, we utilize
an adjusted R2

adj metric, which checks whether the added parameters contribute to the ex-
planation of the predictor variable and penalizes models with unnecessary complexity [34].
Low-effect parameters (i.e., β ≈ 0) reduce the model’s overall fit score. The adjusted R2

adj is
calculated as follows:

R2
adj = 1− (

(1− R2)(n− 1)
n− p− 1

), (6)

where n is the number of samples, and p is the number of predictors.
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Finally, δ was used to capture the directionality of error (i.e., overprediction vs. under-
prediction):

δ = 100× ŷ− y
y

. (7)

The log RMSE and R2 were implemented to evaluate model performance at both site
and fleet (i.e., across multiple sites) levels, while δ was only implemented at the fleet level;
all metrics were reported on the test dataset. T-tests were used to evaluate significance in
performance variations between the trained and reference values.

3. Results and Discussion

Data processing activities generally increased the correlations between the predictor
variables (i.e., irradiance and capacity) and the response variable (i.e., energy) (Table A1).
The processed data were inputted into a total of 13 trained models—ranging in model
complexity (pre-lasso) from 3 parameters for the ‘simple additive’ model pre-lasso to
151 parameters for the ‘third-order-hour’ (see Table 3). Generally, the number of parameters
were lower for all models post-lasso fit, except for the ‘simple additive’ and ‘additive
interaction’ models, likely indicating the already sparse construction of these models.

Table 3. This table describes the parameterization and performance of all of the models evaluated
in the results of this paper. Wins are summarized by showing the percentage of sites where a
given model was the top performer according to the associated goodness-of-fit metric (Adj. R2 or
log RMSE); the IEC model was used as the reference value for log RMSE calculations. The third-
order interactions model and basic model perform consistently well, a conclusion also found on the
heatmaps (Figure 5). Additionally, because lasso regression was leveraged, the models decrease in
size after training the model.

>1000 kW Systems <1000 kW Systems

Models Time Variable Interaction
Degree

Number
Parameters
Pre-Lasso

Number
Parameters
Post-Lasso

Wins: Adj. R2 Wins:
logRMSE Wins: Adj. R2 Wins:

logRMSE

Third-order
interactions 3 10 9 47.9 49.0 38.7 38.7

Additive
interaction 1 4 4 22.9 17.7 32.3 29.0

Second-order
interactions 2 6 5 15.6 10.4 6.5 0.0

Second-order
seasonal season 2 25 18 9.4 15.6 3.2 3.2

Third-order
seasonal season 3 41 27 1.0 4.2 3.2 3.2

Second-order
month month 2 73 43 0.0 0.0 3.2 3.2

Second-order
hour hour 2 90 44 0.0 0.0 0.0 0.0

Third-order
month month 3 121 68 0.0 0.0 0.0 3.2

Third-order
hour hour 3 151 81 1.0 1.0 0.0 6.5

IEC 1.0 1.0 12.9 12.9

hour hour 1 31 26 0.0 0.0 0.0 0.0

month month 1 25 25 0.0 0.0 0.0 0.0

seasonal season 1 9 9 1.0 1.0 0.0 0.0

simple
additive 1 3 3 0.0 0.0 0.0 0.0
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Initially, the various models were trained using data across all system sizes. How-
ever, this approach demonstrated systemic underperformance for low-capacity systems
(<1000 kW DC capacity). Specifically, the best trained models (i.e., ‘third-order inter-
actions’ and ‘additive interaction’) outperformed the IEC model in terms of log RMSE
when tested on every single system above 1300 kW DC capacity; however, 12 of 34 sys-
tems below a 1300 kW DC capacity underperformed relative to the IEC model. This
result likely reflects the varying relationships between the site DC capacity and the
energy generated; systems of higher capacity tend to receive a higher maximum energy
generated per DC capacity (Figure A1). To better deal with this varying linearity, two
separate sets of models were trained: one for models under 1000 kW DC capacity and
another over.

Across both high-capacity and low-capacity systems, models with the I × CDC inter-
action term perform better than those without the interaction term (i.e., ‘hour’, ‘month’,
‘seasonal’, and ‘simple additive’ models). For example, two of the top-performing models
(across both high-capacity and low-capacity systems) are the ‘simple additive’ and the
‘third-order interactions’ models, both of which contain this interaction term (Table 3 and
Figure 5). The ‘additive interaction’ trained (AIT) model has four parameters:

ê =

{
0.07 + 0.69i + 0.65c + 0.42ic CDC < 1000 kW
−0.06 + 0.29i + 0.76c + 0.40ic CDC ≥ 1000 kW

(8)

where i and c define the standardized irradiance and capacity variables, respectively, as
defined in Table 1. The ‘third-order interactions’ model, on the other hand, contains these
four terms as well as higher-order interactions (e.g., irradiance2 × capacity, capacity3).
Although the variables within both of these two models are similar to the IEC standard, the
inclusion of the interaction term, which highlights that the linear relationship between I and
E is moderated by CDC (Figure 4), likely explains the superior performance of these models
relative to that standard. The heatmaps of the log RMSE values highlight the evaluation
metric’s dependence on site capacity (Figure 5a,c), while the adjusted R2 heatmaps show
consistent performance across site capacity (Figure 5b,d). The vertical concentration of dark
bars likely reflects data quality issues not addressed by data preprocessing steps. A com-
parison of the associated partner generated expected energy estimates to those predicted
from models also demonstrates that the AIT-derived estimates have lower average percent
errors than the other models and the IEC (Table A2). Further evaluation of 2 years of
records at a single site demonstrates that the AIT-derived estimates have a lower standard
deviation and do not overestimate as much as the IEC-derived estimates (Figure A3). Given
its parsimonious nature, the AIT model is subjected to further evaluation for both high-
and low-capacity systems.
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(a): Log RMSE for high-capacity systems:

(b): Adjusted R2 for high-capacity systems:

(c): Log RMSE for low-capacity systems:

(d): Adjusted R2 for low-capacity systems:

Figure 5. High-capacity (a,b) and low-capacity (c,d) site-level model evaluations with test data.
Models with lighter colors (i.e., low values for log RMSE and values closer to 1 for adjusted R2)
indicate better performance.

3.1. High-Capacity Systems

For high-capacity systems, a significant (almost uniform) difference is found in both
the log RMSE and R2 values between the AIT and the IEC reference models (Figure 6a,b).
Across the sites, the AIT model improves the goodness of fit by 0.42 in R2 (IEC: 0.501; AIT:
0.93) and 1.16 in log RMSE (IEC: 6.99; AIT: 5.83). Generally, there are very few systems for
which the IEC model performs better than the trained models (Table 3). The percent error
(δ), on average, of the AIT model (3.65) is significantly lower than the IEC model (20.86)
for high-capacity systems. An evaluation of percent error shows that the AIT generally
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performs well (i.e., δ ≈ 0 and thinner standard deviation bars) for most irradiance levels,
except at the two extremes (i.e., <200 and >1100 W

m2 ) (Figure 7).
The difference in performance relative to the IEC model is especially pronounced for

larger system sizes (Figure 6a,b). Although the AIT model appears to show a small improve-
ment over the partner-provided values (Figure 6a,b), a t-test concluded that the distributions
of both the log RMSE (p-value: 0.78) and R2 (p-value: 0.48) are not significantly different.

(a): High-capacity systems:

(b): Low-capacity systems:

Figure 6. Model evaluation using log RMSE and R2 metrics for high-capacity systems (a) and low-
capacity systems (b). Data points reflect site-level summaries of associated test data while dotted lines
reflect best line fits to support visual pattern identification. The R2 metric was used for this analysis
(vs. adjusted R2) since partner-provided model architectures are unknown. The ‘additive interaction’
regression model (in red) is comparable to the partner-provided proprietary values (green) and
consistently performs better than the IEC standard (blue), especially at higher capacity values.
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(a) High-capacity systems:

(b): Low-capacity systems:

Figure 7. Percent error as a function of irradiance shows that the ‘additive interaction’ model
outperforms the IEC standard across both high-capacity (a) and low-capacity (b) systems. Lines
indicate mean values, while shaded region captures one standard deviation. The ‘additive interaction’
model performs best (δ ≈ 0) at 500–1100 W

m2 and at 200–1000 W
m2 for high-capacity and low-capacity

systems, respectively.

3.2. Low-Capacity Systems

The model performance of the AIT for low-capacity systems was generally comparable
to that of high-capacity systems, although the improvements were not as high. Across all
low-capacity sites, the AIT model’s goodness of fit improved by 0.165 in R2 (IEC: 0.74; AIT:
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0.90) and 0.61 in log RMSE (IEC: 3.35; AIT: 2.75) (Figure 6a,b). Out of the 31 low-capacity
sites (comprising 50K hours), the IEC-based model outperformed the trained models in
4 systems (Table 3). In some of the low-capacity systems, the measured energy is much
higher than expected (Figure 5). The tendency of the IEC model to overpredict likely
describes why this model performs better for some of the lower-capacity systems.

The δ, on average, is 4.42 and 15.37 for the AIT model and IEC model, respectively.
Similar to the high-capacity system, the percent error values are greater at the extremes
(Figure 7b). However, the standard error is generally higher in the low-capacity systems, as
evidenced by wider standard deviation bars across the irradiance levels (Figure 7b).

3.3. Limitations and Future Work

The methodological approach of this analysis was strongly guided by available data.
However, future work could extend these methods to consider: (1) energy generation at
finer resolutions, (2) additional co-variates, and (3) alternate model formulations. For ex-
ample, scaling could be used to consider alternate frequencies (beyond the hourly intervals
considered in this study) post-evaluation. The methods used in this analysis explicitly
omitted variables not included in current standard models (e.g., [15]). However, future
assessments could more explicitly incorporate co-variates such as temperature, wind speed,
and even age of the site. The latter would especially enable active consideration of degrada-
tion influence, which can influence long-term energy generation of PV sites [35]. Additional
co-variates (such as type of inverters and modules) could also be included in subsequent
iterations to capture more subtle impacts associated with differing site designs. Finally,
future work could consider alternate model formulations (e.g., splines) to improve model
continuity and better capture energy generation for smaller system sizes.

4. Conclusions

This work demonstrates the opportunities for leveraging data-driven, machine learn-
ing methods to generate more robust expected energy models. Generally, when compared
to partner-provided values, the trained regression models outperform the IEC standard, es-
pecially in high-capacity systems. Detailed evaluation of the parsimonious AIT or ‘additive
interaction’ model, in particular, demonstrated significant potential for use as a standard-
ized, fleet-level expected energy model. The specific code used to train the regression
models as well as the AIT model have been integrated with pvOps, an open source Python
package which supports the evaluation of field data by PV researchers and operators; pvOps
can be accessed at https://github.com/sandialabs/pvOps, accessed on 22 December 2021.
Although this work presents findings specific to PV systems, the general methodologies can
be applied to any domain that uses expected energy models to support site planning and
O&M activities. Ongoing evaluations and improvements of these standardized expected
energy models will continue to increase the accuracy and precision of site-level PV perfor-
mance evaluations, which is critical to supporting reliability and economic assessments of
PV operations and maintenance.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/app12041872/s1. The supplementary material also includes a
subsection with mathematical models for top-performing trained models.
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Abbreviations
The following abbreviations are used in this manuscript:

E Energy (kWh)
Ê Expected energy (kWh)
I irradiance ( W

m2 )
CDC DC capacity (kW)
Tamb ambient temperature (◦C)
Tmod module temperature (◦C)
e standardized E (see Table 1)
i standardized I (see Table 1)
c standardized C (see Table 1)
RMSE Root mean squared error
n number of samples
p number of predictors

Appendix A

Appendix A.1. Tables & Figures

Table A1. Correlations with energy generation and regression model parameters pre- and post- data
processing. Correlations with energy production are generally comparable with irradiance across
raw and filtered data, while correlations for site capacity are significantly higher for the filtered data
than the raw data.

Data Subsets

Parameters Raw Post-Data Quality
Filters

Post-System
Anomaly Filters

Irradiance (I) 0.46 0.41 0.40

Capacity (CDC) 0.55 0.85 0.89

Table A2. Summary of average percent errors for each of the trained models, using the partner-
generated values as the reference value.

Average Percent Error
>1000 kW Systems ≤1000 kW Systems

Third-order interactions 0.03 0.23

Second-order interactions 0.03 0.21

Third-order seasonal 0.05 0.20

Second-order seasonal 0.04 0.16
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Table A2. Cont.

Average Percent Error
>1000 kW Systems ≤1000 kW Systems

Third-order month 0.12 0.27

Second-order month 0.08 0.27

Third-order hour 0.13 0.15

Second-order hour 0.10 0.05

Additive interaction 0.03 0.00

simple additive 0.36 1.44

IEC 0.39 1.75

hour 0.28 1.01

month 0.32 1.30

seasonal 0.32 1.55

Figure A1. Relationship between DC capacity (kW) and hourly generated energy (kWh). The blue
dots show a site’s DC capacity versus its maximum recorded energy generated in a single hour.
Although the trends are largely linear, the slopes differ for sites smaller than 1000 kW (blue dashed
lines) and sites larger than 1000 kW (orange dashed lines). Since slight deviations in slope can render
large prediction error, we train two separate model based on site size.

Figure A2. Age of sites within the final dataset. A majority are less than five years of age.



Appl. Sci. 2022, 12, 1872 17 of 19

Figure A3. A 2-year comparison of observed energy with expected energy estimates from the trained
additive interaction trained (AIT) model and the IEC standard at a single site. The IEC-derived
estimates overestimate much more so than AIT-derived estimates. Slightly higher values of AIT-
derived estimates relative to observed values likely indicate local failures at the site.

Appendix A.2. Top-Performing Trained Models

Mathematical equations associated with the trained regression models. In general,
these model formulations contain more parameters and do not perform as well as the
additive interaction model. High-capacity refers to systems with greater than or equal to
1000 kW in CDC while low-capacity refers to systems smaller than 1000 kW in CDC.

High-capacity second-order seasonal:

e = 0.309iIwinter + 0.292iIspring + 0.281iIsummer + 0.287iIfall

+ 0.762cIwinter + 0.734cIspring + 0.724cIsummer + 0.730cIfall

− 0.003i2 Ispring − 0.009i2 Isummer − 0.007i2 Ifall + 0.430icIwinter

+ 0.397icIspring + 0.380icIsummer + 0.384icIfall + 0.008c2 Iwinter

+ 0.008c2 Ispring − 0.003c2 Ifall − 0.054

High-capacity third-order interactions:

e = 0.293i + 0.769c− 0.019i2 + 0.394ic + 0.021i2c + 0.004ic2 + 0.001c3 − 0.039

High-capacity third-order seasonal:

e = 0.265iIwinter + 0.270iIspring + 0.252iIsummer + 0.243iIfall

+ 0.749cIwinter + 0.740cIspring + 0.722cIsummer + 0.730cIfall

− 0.006i2 Isummer − 0.388icIwinter + 0.378icIspring + 0.365icIsummer

+ 0.346icIfall + 0.019c2 Iwinter + 0.005c2 Ispring − 0.002c2 Ifall

+ 0.016i3 Iwinter + 0.008i3 Ispring + 0.014i3 Isummer + 0.017i3 Ifall

− 0.013ic2 Iwinter + 0.008ic2 Ispring + 0.007ic2 Isummer + 0.019ic2 Ifall

− 0.002c3 Iwinter − 0.054
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High-capacity second-order interactions:

e = 0.295i + 0.745c− 0.018i2 + 0.404ic + 0.004c2 − 0.042

Low-capacity second-order seasonal:

e = 0.711iIwinter + 0.686iIspring + 0.680iIsummer + 0.714iIfall

+ 0.617cIwinter + 0.576cIspring + 0.605cIsummer + 0.636cIfall

− 0.046i2 Iwinter − 0.028i2 Ispring − 0.046i2 Isummer − 0.038i2 Ifall

+ 0.401icIwinter + 0.381icIspring + 0.382icIsummer + 0.427icIfall

+ 0.001c2 Iwinter − 0.006c2 Isummer − 0.104

Low-capacity third-order interactions:

e = 0.746i + 0.642c− 0.043i2 + 0.426ic− 0.019i3 − 0.034i2c− 0.017c3 + 0.115

Low-capacity third-order seasonal:

e = 0.757iIwinter + 0.684iIspring + 0.667iIsummer + 0.712iIfall

+ 0.577cIwinter + 0.486cIspring + 0.567cIsummer + 0.619cIfall

− 0.023i2 Iwinter − 0.027i2 Ispring − 0.050i2 Isummer − 0.033i2 Ifall

+ 0.413icIwinter + 0.382icIspring + 0.381icIsummer + 0.428icIfall

− 0.028i3 Iwinter − 0.007i3 Isummer − 0.022i2cIwinter − 0.004i2cIfall
− 0.047c3 Iwinter + 0.068c3 Ispring + 0.027c3 Isummer + 0.016c3 Ifall + 0.099

Low-capacity second-order interactions:

e = 0.719i + 0.630c− 0.063i2 + 0.411ic− 0.124
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